
RESEARCH ARTICLE CHEMISTRY

Differences in enantiomeric diffusion can lead to selective
chiral amplification
Jean Gilleta,1 ID , Yves Geertsb,c , Laurence Rongya,1 ID , and Yannick De Deckera,1 ID

Edited by Lia Addadi, Weizmann Institute of Science, Rehovot, Israel; received November 10, 2023; accepted March 20, 2024

A fundamental question associated with chirality is how mixtures containing equal
amounts of interconverting enantiomers can spontaneously convert to systems enriched
in only one of them. Enantiomers typically have similar chemical properties, but can
exhibit distinct reactivity under specific conditions, and these differences can be used to
bias the system’s composition in favor of one enantiomer. Transport properties are also
expected to differ for enantiomers in chiral solvents, but the role of such differences
in chiral symmetry breaking has not been clarified yet. In this work, we develop a
theoretical framework to show that asymmetry in diffusion properties can trigger a
spontaneous and selective symmetry breaking in mixtures of enantiomers. We derive a
generic evolution equation for the enantiomeric excess in a chiral solvent. This equation
shows that the relative stability of homochiral domains is dictated by the difference of
diffusion coefficients of the two enantiomers. Consequently, deracemization toward
a specific enantiomeric excess can be achieved when this difference is large enough.
These results hold significant implications for our understanding of chiral symmetry
breaking.

homochirality | deracemization | nonlinear chemistry | reaction–diffusion | origin of life

Chirality, the property that objects cannot be superimposed onto their mirror image, plays
a pervasive role across various scientific fields. Chirality can be considered as important
as mass or energy, because it is a fundamental property that shapes the universe and the
living world.

At the molecular level, chirality has profound consequences on intermolecular
interactions (1) and, thus, on the functioning of living systems. Life as we know it relies
on large organic compounds, and chiral molecules swiftly outnumber achiral ones when
molecules possess more than eight carbon atoms (2). As a result, life depends on chiral
building blocks and chirality naturally affects the structure, function, and recognition of
large biological molecules (3). The importance of chirality becomes evident in the context
of drug design and development, as exemplified by the unfortunate case of thalidomide
in the 1950s and 1960s, where one of its enantiomers caused fetal abnormalities (4).
Chirality should not be seen as a static property, but rather as a dynamic one. Many
molecules can switch between different chiral conformations, referred to as enantiomers
(5). This dynamic interconversion leads some molecular systems to undergo racemization,
a process converting a system containing one enantiomer into a mixture of an equal
amount of both forms. The reverse process, known as deracemization, can also occur,
but it requires nonequilibrium constraints (6). Deracemization can be considered a form
of chiral symmetry breaking (CSB) since the system transforms from a globally achiral
state to a chiral one.

A central question surrounding deracemization is how to bias CSB toward a desired
enantiomer. Nature has selected a specific handedness for the building blocks of life (7),
but the mechanisms behind such selectivity are still unclear. In man-made experiments,
external biases like circularly polarized light (8), slight initial enantiomeric excesses, the
addition of another chiral molecule (9), and contact with a chiral surface (10) can be
used to direct CSB. When exposed to such bias, a racemic system, far enough from
thermodynamic equilibrium, self-enriches into an excess of one specific enantiomer
through a process known as chiral amplification (1). Chiral amplification is thought to
occur, for example, in the autocatalytic Soai reaction (11) and during Viedma ripening
(12). Many instances of chemical systems undergoing directed deracemization have, since
then, been discovered (13).

Regardless of the bias used and the chiral amplification mechanism involved, it is
commonly believed that directed CSB occurs because the reaction (or crystallization)
rate becomes larger for one enantiomer than for the other, making CSB a reaction-
driven phenomenon. To the best of our knowledge, directed deracemization has
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never been considered to result from differences in the diffusion
rates of enantiomers. Enantioselective diffusion and elution
processes demonstrate such differences, leading to the separation
of enantiomers using various techniques such as permeation
through chiral membranes or chiral chromatography (14–17).
These systems create a chiral environment in which the enan-
tiomers experience different diasteroisomeric interactions and
forces that affect their mobility (14). Experimental measure-
ments have quantified this difference in mobility. For example,
Aoki et al. reported the enantioselective permeation of various
racemates through a chiral polymeric membrane (18). The ratio
of diffusion coefficients of enantiomers ranged from 1.2 to 3.6,
indicating a high degree of enantioselectivity. Hovorka et al.
measured the permeability and diffusion coefficients of methyl
lactate enantiomers in cellophane membranes (19). They found
that the ratio of diffusion coefficients of L-methyl lactate and
D-methyl lactate could be as large as 9.4. Theoretical works and
model calculations (20, 21), and subsequent experiments in chiral
nematic liquid crystals highlighted enantiomer differentiation by
migration (22, 23). For instance, Jiang and Yang showed that the
diffusion coefficient of a chiral species is doubled when moving
from a medium of opposite chirality to a medium of the same
chirality (22).

In this work, we demonstrate that such differences in the
diffusion coefficients can lead to directed deracemization. First,
we introduce a generic reaction–diffusion equation for the
evolution of the enantiomeric composition in a chiral medium.
This equation allows to identify the parameters influencing the
relative stability of two domains with different composition. We
conclude from this analysis that asymmetries in diffusion rates
play a role in the competition between domains of opposite
chirality that is as significant as the one played by asymmetric
chemical reactivities. Second, we show that diffusion-driven
deracemization can be achieved for several classes of models of
CSB, provided that the difference in diffusion coefficients is large
enough. These results open up perspectives for controlling and
elucidating deracemization processes, as discussed at the end of
this article.

Theoretical Framework
Deracemization is a dissipative phenomenon studied in the
framework of nonequilibrium thermodynamics. Far away from
equilibrium, racemic mixtures can become unstable and be
replaced by scalemic states, i.e., mixtures with an unbalanced
ratio of enantiomer concentrations. These states can be sustained
through a constant supply of energy and matter from the envi-
ronment. Theoretical models were proposed to gain insight into
the mechanisms behind deracemization (1, 24). These models
typically explore the competition between two enantiomers,
which we will denote as R and S. They include reactive events that
result in a modification of the number of particles of the species
involved, and to an interconversion between enantiomers. In
some cases, transport processes, often in the form of diffusion, are
also considered. Both deterministic reaction–diffusion equations
and stochastic approaches have been used in these models.

The observed mechanism underlying CSB can be summa-
rized as follows: An initial random fluctuation of composition
undergoes amplification through autocatalytic kinetics, where
one of the enantiomers enhances its own rate of production.
Diffusion was found to influence the transients leading to the
final scalemic states, because it controls the rate at which domains
enriched in one enantiomer propagate over space (25–27). If
the reaction kinetics and rate constants are the same for both

enantiomers, and if the initial fluctuations of composition are
random, these systems will tend to have equal probabilities of
reaching states enriched in either R or S. Biases have to be
introduced in those models to induce directed deracemization,
often by including asymmetries in the reaction kinetics (28).
Here, we show on the basis of a generic class of reaction–diffusion
models of CSB that this symmetry can also be broken if two
enantiomers have different diffusion coefficients. Consequently,
directed deracemization can be achieved even in the absence of
kinetic bias.

We consider isothermal systems containing two enantiomers,
R and S, in a chiral solvent. The evolution equations for their
local concentrations, r and s, are assumed to be of the reaction–
diffusion type:

∂r
∂t

= f (r, s) + DR ∇
2 r, [1]

∂ s
∂t

= g(r, s) + DS ∇
2 s. [2]

Here, f (r, s) and g(r, s) are kinetic terms that contain con-
tributions associated with chemical reactions, interconversion,
exchanges with the environment, etc. The second terms represent
Fickian diffusion with constant diffusion coefficients. Because we
consider chiral solvents, we expect the diffusion coefficients of
species R and S, respectively DR and DS to differ. To highlight
such difference, we introduce an adimensional parameter  =
(DR − DS)/(DR + DS) and rewrite the diffusion coefficients
as DR = D (1 + ) and DS = D (1 − ), respectively, where
D = (DR + DS)/2 is the average diffusion coefficient. The
diffusive asymmetry parameter  ranges from −1 to 1, and is
0 for enantiomers having identical diffusion coefficients. As an
illustration, the ratios of diffusion coefficients reported by Aoki
et al. would result in  = ±(0.09 − 0.56) (18) and those of
Hovorka et al. would give  = ±0.81 (19).

Next, we define the enantiomeric excess u = r − s, and the
total concentration, v = r + s. Using Eqs. 1 and 2, the evolution
equations for these quantities read

∂u
∂t

= f (u, v)− g(u, v) + D∇2u + D  ∇2v, [3]

∂v
∂t

= f (u, v) + g(u, v) + D∇2v + D  ∇2u. [4]

In many cases, a quasi-steady-state approximation can be assumed
for the local kinetic term of the total concentration v (28),
meaning that f (u, v) + g(u, v) ≈ 0. This condition implies
that v evolves over time scales that are shorter than those
of u. This assumption often holds because f and g contain
autocatalytic terms that are very much alike, since enantiomers
have similar reactivity. This means that the total concentration
evolves rapidly compared to the difference of concentrations
as long as one starts from an almost racemic composition,
where u ≈ 0. Assuming f (u, v) + g(u, v) = 0 leads to an
expression for v = ṽ(u) which can be injected in Eq. 3. Defining
Φ(u) = f (u, ṽ(u)) − g(u, ṽ(u)), the evolution equation for u
now reads

∂u
∂t

= Φ(u)−∇ · J̄ , [5]

in which

J̄ = −D (1 +  ṽu) ∇u [6]
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is a diffusion flux, and where the subscript denotes differentiation
with respect to u. We note that the evolution law for the
enantiomeric excess u is also of the reaction–diffusion type, but
where diffusion is effectively nonideal. D (1+ ṽu) plays the role
of a variable diffusion coefficient whose value depends on the
degree of diffusive asymmetry  , but also on the local value of
the enantiomeric excess through ṽu.

Eq. 5 is very general, but there is a particular instance of this
equation that deserves attention. Most models for CSB, such as
Frank-like models (29), the Kondepudi model (28) and the cyclic
limited enantioselectivity model (30), utilize symmetric kinetic
equations in which f (r, s) = g(s, r). Because of this symmetry
with respect to permutation, all these models present a pitchfork
bifurcation in the vicinity of which the dimensionless evolution
law for u becomes

∂u
∂t

= � u− u3 + ∇ · [(1 + 2  u)∇u] , [7]

where � is a combination of constants specific to the models
(see SI Appendix, section 1 for more details). Eq. 7 can be
seen as the normal form of the evolution equation for u in the
case of symmetric kinetics. It should be noted that the kinetic
laws of models for CSB during crystallization, Soai’s reaction or
polymerization processes can also be reduced to an equation of
this type [SI Appendix, section 1 and (24, 31–33)]. It admits
three homogeneous stationary states, u = 0, and u = ±

√
�,

which merge at the critical point �c = 0. The parameter � thus
controls the system’s distance from criticality. While � is often
a complex combination of model-specific parameters, it can be
shown to increase with the concentration of a precursor for both
enantiomers, in the Kondepudi and in the cyclic LES models (SI
Appendix, section 1). In this context, it can be interpreted as a
parameter that quantifies how the rate of synthesis of R and S
compares with that of other processes.

Competition between Domains of Opposite
Handedness
To investigate the influence of diffusive asymmetry on CSB, we
will explore the evolution of an interface separating a stable S-
rich domain with enantiomeric excess u− and a stable R-rich
domain with enantiomeric excess u+. In the case of symmetric
kinetics, this situation corresponds to a system operating beyond
the bifurcation point, with two spatial regions having opposite
enantiomeric excess values (for systems obeying Eq. 7,−

√
� and

+
√
�, respectively). In the more general case, the values of u

in the two domains would have opposite signs, but could have
different absolute values.

The direction of propagation of this interface will reveal the
relative stability of these domains and, thus, the selectivity of the
system toward one of the enantiomers. Starting from Eq. 5, we
find (Materials and Methods) that for spatially isotropic systems
the velocity c of such an interface is given by

c =
ΔF
�
− D 

A
�
− D

(d − 1)
�

. [8]

In this general equation, A and � are constants depending on
the shape of the interface, d = 1, 2 or 3 represents the spatial
dimension of the system, and � is the radius of curvature of the
S-rich domain. The quantity D denotes the spatial average of the
effective diffusion coefficient D (1 +  ṽu). F = −

∫
Φ(u) du

corresponds to the kinetic potential of the local evolution law,

whose minima correspond to stable steady states of the system,
and ΔF = F(u+)−F(u−) is the difference of kinetic potential
between the two nonracemic states. This quantity is zero in the
case of symmetric kinetic laws, is positive when u− is more stable
than u+, and is negative otherwise. Note that when  = 0, D
becomes the diffusion coefficient of the two species involved and
one recovers the classical prediction for the front velocity between
two stable states (34).

The first term in Eq. 8 indicates that asymmetric evolution
laws, which induce an asymmetry in the values of the homoge-
neous steady states, lead to the propagation of the interface in
favor of one of the enantiomers. The two other contributions are
related to diffusion. The third term shows that curved (concave)
domains tend to shrink. The second term is the most important
for our purpose: It shows that the sign of c and, thus the
direction of propagation of the interface, is also controlled by
the magnitude and sign of  , which measures the asymmetry of
diffusion between species R and S.

Without Kinetic Asymmetries. To illustrate this effect, we first
consider the case of symmetric kinetics (ΔF = 0) without
curvature-related effects (a planar interface or, equivalently,
a 1-dimensional system). We also consider system obeying
dimensionless Eq. 7. In this case, the dimensionless propagation
velocity becomes c = − A/�. For moderate values of  , we can
expect the profile u(z) to be close to the solution for  = 0,
denoted u0(z), which represents the profile of an immobile
interface (Fig. 1). This assumption allows us to evaluate A and �
explicitly (SI Appendix, section 4).

We performed numerical integrations of the dimensionless
evolution law for u, Eq. 7, as well as the aforementioned models
for symmetric kinetics (a Frank-like model, the Kondepudi
model, and the cyclic limited enantioselectivity model). In
the vicinity of their pitchfork bifurcations, these models obey
Eq. 7, whose stationary interface is given by u0(z) = (u− +
u+ e� z)/(1 + e� z), with � = (u+ − u−)/

√
2 (see ref. 35

and Materials and Methods). The first derivative u0
z is always

positive and the profile has an inflection point at z = 0, as
shown in Fig. 1. With this information, we can evaluate the
dimensionless front velocity, which is given by c = −2

√
2  �/5

(see SI Appendix, section 4 for more details). Consequently, the
enantiomer that diffuses the fastest will invade the entire system.

-5 -2.5 0 2.5 5
z

-2

-1.5

-1

-0.5

0

0.5

1

1.5

f(z
)

u0 (z)
u0

z (z)

J0 (z)
J-0.5 (z)
J+0.5 (z)

Fig. 1. Plot of the profile solution u0, u0
z and diffusion fluxes J as a function

of the coordinate z, i.e., the direction separating the enantiomers. Three
different values of  are shown for J:  ± 0.5 and  = 0. � = 2.
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Fig. 2. Front propagation velocity as a function of the diffusive asymmetry parameter in 1-dimensional systems with symmetric kinetics (ΔF = 0). (A)
Comparison of the dimensionless front propagation velocity c as a function of the diffusive asymmetry parameter  obtained from numerical integrations of
dimensionless Eq. 7 with predictions from Eq. 8. Considering the stationary interface u0(z), Eq. 8 predicts a dimensionless propagation velocity c that evolves
according to c = −2

√
2  �/5 (solid black line). A good agreement is observed between simulations and predictions. Simulations parameters: � = 1.0, total

simulation time = 10 and system size was L = 100, with temporal (dt) and spatial (dx, dy) step sizes set to 1.0 × 10−5 and 0.01, respectively. (B) Dimensional
front propagation velocity c as a function of the diffusive asymmetry parameter  for three classes of models. Results from numerical simulations of Frank-like
(29), Kondepudi (28) and cyclic limited enantioselectivity model (LES) models (30). All three different models exhibit a linear relationship. More detail on the
equations integrated, kinetic rates values, and simulation parameters are available in SI Appendix, section 2. Associated time scales are provided in SI Appendix,
section 5. Dashed lines are guides for the eye.

If DR < DS ,  < 0 and c is positive: The S-rich state u−,
initially located at z < 0, invades the R-rich state u+, initially
located at z > 0 (and vice versa for positive values of ). This
predicted linear relationship between c and  is in excellent
agreement with numerical integrations of Eq. 7, as shown in
Fig. 2A. Interestingly, a linear relationship is also observed for
the three models considered here (Fig. 2B), even for large diffusive
asymmetries.

With Kinetic Asymmetries. When kinetic asymmetries are
present, ΔF 6= 0 and the fate of the interface will be decided by
a balance between kinetics and diffusive asymmetries. Consider
as an illustration the case where the S-rich state is the most stable
in well-mixed systems, which translates into ΔF > 0. For 1-
dimensional systems and in the absence of diffusive asymmetry,
c > 0 and the S-rich domain invades the other one. This relative
stability can be reversed for sufficiently positive values of  , that
is when R diffuses faster than S, because c becomes negative
whenever  > ΔF/A. This means that R can dominate if it
diffuses faster than S, even when S is the kinetically favored
enantiomer.

Higher-Dimensional Systems. The situation becomes more com-
plex for nonplanar interfaces. In the presence of curvature effects,
the dominating enantiomer is not necessarily the one that diffuses
faster, even when the two enantiomers have identical evolution
laws (ΔF = 0). Consider for example the three models men-
tioned above, but in a 2-dimensional system where a circular S-
rich domain of radius � is surrounded by an R-rich environment.
In this case, Eq. 8 reduces to c = −D  A/� − D/�. This
equation predicts the existence of a critical radius, corresponding
to c = 0. For systems obeying Eq. 7, this critical radius is given by

�c = −
5

2
√

2  �
, [9]

(SI Appendix, section 4). Only S-rich nuclei with a radius larger
than �c will grow over time; smaller nuclei will disappear, even
though S diffuses faster than R. The critical radius depends on
the distance from the bifurcation point through �, and on the
asymmetry of diffusion rates through  . Notably, since  can be
negative, if � becomes increasingly large, the critical radius will
tend toward 0. This implies that when S diffuses faster than R,
a domain in the S-rich state will invade the system, regardless of
its size, effectively removing the existence of a critical nucleus.

Directed Chiral Symmetry Breaking
We will now demonstrate that directed CSB can be achieved
when starting from a globally achiral system. As a first illustration,
the time evolution of a 2-dimensional system obeying Eq. 7, is
shown in Fig. 3. The two lines depict simulations performed with
an identical initial condition, which corresponds to small random
fluctuations around a racemic composition (u = 0). The first line
shows the evolution of a system where the diffusion coefficients
of the two enantiomers are identical, so that  = 0. We observe
that the R-rich u+ state dominates for long times. For this case,
an average over 1,000 simulations with random initial conditions
gives ≈50% of R-states. As can be seen in the second line, the
final state of the system can be directed toward the S-rich u−
state when S diffuses faster than R ( < 0). This change aligns
with our previous finding that the relative stability of domains of
opposite chirality is influenced by asymmetries of diffusion.

The example provided in Fig. 3 corresponds to a specific
initial condition. A more general view on the effect of diffusive
asymmetry requires statistics over the probability to reach either
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Fig. 3. Evolution of u over time in a 2-dimensional system, obtained from numerical simulations of Eq. 7. The initial system is a racemic mixture where local
perturbations are introduced. Homochiral domains are formed rapidly and then compete to reach a single homogeneous homochiral composition. Parameter
values: � = 0.5,  = 0 (Upper line) and  = −0.1 (Bottom line), size of the system Lx = Ly = L = 250, and total simulation time = 15,000 with temporal (dt) and
spatial (dx, dy) step sizes set to 0.1 and 1.0, respectively. The concentration scales range from u− = −0.7071 to u+ = 0.7071. Snapshots have been taken at
various times: t1 = 30, t2 = 150, t3 = 375, t4 = 600, and t5 = 3,000.

an S-rich or an R-rich state. Fig. 4 plots the probability to reach
the R-rich state as a function of  (Fig. 4A) and � (Fig. 4B), for
2-dimensional systems obeying the normal form Eq. 7. Since all
simulations start from random fluctuations around the racemic
state, this probability will be of 50% when  = 0, because states
u+ and u− have identical stability*. However, we have seen that

the stability of R-rich regions is enhanced if  > 0. In particular,
we showed the existence of a critical distance from the bifurcation
point where R-rich or S-rich clusters will grow, whatever their
size. This situation is reflected in the statistics of Fig. 4. We
observe that the fraction of systems ending in the R-rich
state rapidly increases when operating sufficiently far from the
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Fig. 4. (A) Probability to obtain R-homochiral states from racemic mixtures as a function of  , for a given value of � = 0.5. Results obtained with negative values
of  are symmetrical. (B) Probability to obtain R-homochiral states from racemic mixtures as a function of �, for different values of the diffusive asymmetry
parameter . Results are obtained from numerical integrations of Eq. 7 in 2-dimensional systems with the same sizes and integration parameters as in Fig. 3.
Each point is obtained from 1,000 simulations starting from racemic initial conditions randomly distributed in space. Full selectivity can be achieved starting
from  = 0.25 and � ≥ 0.5. When  = 0, there is an equal probability to obtain R- or S-homochiral states (% R-simulations ≈ 50%). When the same type of
simulations are conducted for Frank-like, Kondepudi, and cyclic LES models in 1-dimensional systems, the same trends are observed (SI Appendix, section 3).
Dashed lines are guides for the eye.

*It should be noted that as  → 0, some realizations of these simulations do not lead to global homochirality, but rather to a coexistence of homochiral domains, as was also observed in
ref. 25.
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bifurcation point or with sufficiently large diffusive asymmetries.
The combination of diffusive asymmetry and nonequilibrium
constraints results in an almost perfect control of the chirality in
the system.

Discussion
Chiral symmetry breaking holds crucial importance in chemistry
and beyond. In synthetic chemistry, a precise control of the
chiral outcome in enantiomeric mixtures is often necessary. The
mechanisms underlying this symmetry breaking have probably
also played an important role in the emergence of biohomochi-
rality. This work demonstrates that an asymmetry in diffusion
rates can induce directed CSB, favoring one enantiomer. Such
asymmetry can be caused by the presence of a chiral solvent
in the system. Interestingly, the required degree of diffusive
asymmetry is not extreme: Numerical simulations suggest that
an absolute value of  around 0.2 is sufficient to achieve nearly
100% conversion to a chosen enantiomeric excess state. As a
reminder, experimental values from the literature indicate that
this parameter can range between 0.09 and 0.81 (18, 19).
Simulations of the Kondepudi model also show that diffusive
asymmetry leads to deracemization of a centimeter-sized system
within a few minutes, when parameter values consistent with
Soai’s reaction are used (SI Appendix, section 5). Therefore,
we believe that diffusion-controlled directed CSB is within
experimental reach.

Additionally, our results may shed light on existing exper-
imental examples of CSB, such as the Soai reaction (9) or
Viedma deracemization (12). It may also offer insight into the
chiral self-sorting experiments reported by Dressel et al. (36)
where a racemic mixture of helical enantiomers can spontaneous
separate into two chiral domains with opposite handedness.
These processes heavily rely on diffusion, as they involve the
formation and dissolution of crystals or molecular aggregates that
can selectively incorporate or exclude one enantiomer. Minor
differences in enantiomer diffusion coefficients may thus play
an important role in the amplification mechanisms driving these
systems.

More generally, diffusive asymmetries are expected to play a
significant role in chiral recognition and separation in complex
media. For instance, chiral chromatography, which uses a chiral
stationary phase that preferentially interacts with one of the
enantiomers, and chiral membrane separation strongly rely on
the modification of enantiomer transport properties, including
diffusivity (14–17). Our framework offers a path to a global
understanding of the role played by diffusive asymmetries in these
separation processes. More specific models could be developed to
describe all these experiments in detail (37, 38).

In conclusion, our main message is that differences in diffusion
coefficients between enantiomers can be exploited to control the
chirality of a system. While theoretical models and numerical
simulations support this claim, we hope that this work triggers
corresponding experiments. We suggest focusing experimental
efforts to verify our prediction on systems with interconverting
enantiomers, in chiral media where diffusion is the main transport
phenomenon, such as chiral gels.

Materials and Methods

General Expression for the Front Velocity. In this section, we derive Eq. 8
of the main text. We start by considering a 1-dimensional system, in which the
enantiomeric excess obeys the general evolution law Eq. 5 of the main text:

∂u
∂ t

= Φ(u) +
∂

∂x

[
D (1 +  ṽu)

∂u
∂x

]
. [10]

We introduce a frame moving at a constant velocity c, whose coordinate is given
by z = x − c t. The evolution law for u becomes

−c uz = Φ(u) + [D (1 +  ṽu) uz]z , [11]

where, for simplicity, we use subscripts to denote differentiation. We now
multiply both sides of Eq. 11 by uz and integrate over z. This yields:

c
∫ +∞

−∞

(uz)2 dz = ΔF −
∫ +∞

−∞

[D (1 +  ṽu) uz]z uz dz, [12]

in which

ΔF = −

∫ +∞

−∞

Φ(u) uz dz

= −

∫ u+

u−
Φ(u) du

≡ F(u+)− F(u−), [13]

The second contribution can be simplified by noting that∫ +∞

−∞

[D (1 +  ṽu) uz]z uz dz = D
∫ +∞

−∞

uzz uz dz︸ ︷︷ ︸
I

[14]

+ D 
∫ +∞

−∞

(ṽu uz)z uz dz︸ ︷︷ ︸
II

. [15]

Since the space derivatives vanish at infinity, the first term I is zero:

I =
[
(uz)2

]+∞
−∞
−

∫ +∞

−∞

uzz uz dz [16]

= −I = 0. [17]

Expanding II gives

II =

∫ +∞

−∞

((ṽu)z uz + ṽu uzz) uz dz [18]

=

∫ +∞

−∞

(ṽu)z (uz)2 dz +

∫ +∞

−∞

ṽu uz uzz dz. [19]

Integrating the first term by parts yields∫ +∞

−∞

(ṽu)z (uz)2 dz =
[
(uz)2 ṽu

]+∞
−∞︸ ︷︷ ︸

=0

−2
∫ +∞

−∞

ṽu uz uzz dz. [20]

Therefore, we have

II =

∫ +∞

−∞

(ṽu)z (uz)2 dz −
1
2

∫ +∞

−∞

(ṽu)z (uz)2 dz,

=
1
2

∫ +∞

−∞

(ṽu)z (uz)2 dz ≡ A. [21]

Inserting II in Eq.12gives the following expression for the speed of propagation:

c =
ΔF − D  A

�
, [22]

where we defined

� ≡
∫ +∞

−∞

(uz)2 dz ≥ 0. [23]
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In more than 1 dimension, curvature effects must be accounted for. We introduce
polar coordinates (�,�) in 2d, where � is the radius and � the polar angle. For
3d systems, we can introduce spherical coordinates (�,�,�), in which � is the
azimuthal angle. In any case, in the absence of gradients along � and � (what
we call isotropic systems), the evolution equation becomes

∂u
∂ t

= Φ(u) + D
∂2

∂�2
(u +  ṽ) +

D (d − 1)
�

∂

∂�
(u +  ṽ), [24]

where d is the spatial dimension. To obtain an analytical expression for the
front velocity, we focus on situations where the radius is large, so that � can be
considered constant. We can thus write

ut = Φ(u) + D
[
(u +  ṽ)� +

(d − 1)
�

(u +  ṽ)
]
�
, [25]

where subscripts denote differentiation. The derivative with respect to �
appearing in this equation takes the form

(u +  ṽ)� = u� +  ṽu u� = (1 +  ṽu) u� . [26]

To summarize, we have an evolution equation of the type

ut = Φ(u)− J� , [27]

with an effective flux

J = −D (1 +  ṽu) u� − D
(d − 1) (u +  ṽ)

�
. [28]

We notice that this total flux is the sum of a term which is identical to what we
had in 1-dimensional systems, and a correction term that takes curvature into
account. Since � is a radius, the boundaries of the spatial domain are 0 and
+∞. We consider no-flux boundary conditions and, since we focus on large
radius values, the values of u at 0 and at +∞ can be taken to be equal to u−
and u+, respectively. Introducing a new comoving frame � = � − c t, Eq. 27
reads

−c u� = Φ(u)− J� . [29]

Multiplying both sides of this equation by u� and integrating over � yields:

−c
∫ +∞

−∞

(u� )
2 d� =

∫ +∞

−∞

Φ(u) u� d� −
∫ +∞

−∞

J� u� d� .

Dividing both sides by−� = −
∫+∞
−∞

(u� )2 d� , the first term in the right-hand
side will give the right-hand side of Eq. 22, and we thus conclude that

c =
ΔF
�
− D 

A
�
− D

(d − 1)
�

, [30]

where

D =

∫+∞
−∞

D (1 +  ṽu) (u� )2 d�∫+∞
−∞

(u� )2 d�
[31]

can be seen as a weighted average of the diffusion coefficientD (1+ ṽu). Note
that because D (1 +  ṽu) plays the role of an effective diffusion coefficient in
our framework, we must limit ourselves to cases where this quantity is positive.
Consequently, D will be positive as well.

Stationary Fronts for Symmetric Kinetics and Diffusion. We look for self-
similar solutions u(z) of the 1-dimensional problem, which obey the following
boundary conditions:

u(z) =

{
u− z→−∞
u+ z→ +∞.

[32]

We consider more specifically the case of symmetric diffusion ( = 0). Eq. 11
reduces to

−c uz = Φ(u) + uzz , [33]

whereΦ is a cubic polynomial ofuwith no constant term whenever one considers
symmetric kinetic equations and systems close to the critical point (SI Appendix,
section 1). In such cases, the propagation speed of the fronts is known to be
proportional to u+ + u− − 2 u0, which in our case is equal to 0 because of
the symmetry of the steady states. We should thus expect domains of opposite
handedness to coexist indefinitely in these situations (c = 0). Moreover, one
can verify by substitution that this stationary front is characterized by a profile of
the form

u0(z) =
u− + u+ e� z

1 + e� z
, [34]

where � = (u+ − u−)/
√

2 D. A similar reasoning also applies for the
stationary profile in higher dimensional systems, where � replaces z.

Numerical Simulations. Results shown in Figs. 2–4 have been obtained using
numerical integrations (39). All equations were numerically integrated using
either fourth-order Runge–Kutta or Euler schemes and finite differences were
used for spatial discretization. One-dimensional and two-dimensional systems
were investigated with no-flux boundary conditions. For the latter, we used a
square system such that the length Lx and the width Ly are equal (Lx = Ly = L).
Evolution equations of a Frank-like (29), the Kondepudi (28) and the cyclic limited
enantioselectivity (LES) model (40) have been numerically integrated for Fig.
2B in 1-dimensional systems. Coexisting domains of opposite handedness were
used as initial conditions. The front velocity was numerically computed from the
displacement of the front and plotted against  . The evolution equations and
the parameter values used are provided in SI Appendix, section 2. Figs. 3 and
4 have been obtained from numerical integration of Eq. 7 of the main text in
2-dimensional systems. In these systems, the initial conditions in each cell were
independently sampled from a Gaussian distribution centered on u = 0, and
with a standard deviation of 0.01.

Further Material. The symmetry of the evolution equations for r and s implies
that the bifurcation of the enantiomeric excess u will also be symmetric, unless
there is a kinetic bias. We prove this property in SI Appendix for the three
aforementioned models. Distributions of probability to obtain R-homochiral
states from racemic conditions are also featured for these three models in 1-
dimensional systems. Then, we demonstrate the dimensionless expressions
obtained for front velocities and the critical radius using Eq. 7. Finally, length
and time scales for deracemization are discussed.

Data, Materials, and Software Availability. Codes have been deposited on
GitHub: https://github.com/GJeanULB/CSB-driven-by-diffusion.git (39).
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