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a b s t r a c t

Dynamics of bimolecular A+B→C reaction-diffusion (RD) fronts have been well
characterized in miscible systems. We study here their properties when reactants A
and B are initially dissolved in two immiscible solvents put in contact. Neglecting
any convective effects, we show that bimolecular RD fronts developing in such
immiscible systems upon transfer from the reactants from one phase to the other
can change directions up to four times, contrary to miscible systems where only
two changes of direction are possible. Further, the conditions for which two local
maxima in the reaction rate can exist are identified.

© 2023 Published by Elsevier Ltd.

1. Introduction

Bimolecular A+B→C reaction-diffusion fronts are commonly observed in a wealth of different dynamic
ystems ranging from geology [1], biology [2] to economy [3], to name a few. Numerous theoretical studies
ave characterized the properties of such fronts including that, for large times, the reaction front moves like
he square root of time and has a width of the order of time to the power of one sixth [4–12]. To validate these
heoretical studies, experiments have been typically carried out in gels or very thin capillaries by putting in
ontact two miscible solutions of reactants A and B and following the dynamics of the product formed in
he contact zone [13–16]. These experiments have validated the theoretical scalings and have also evidenced
hat the position of the bimolecular chemical reaction front can change directions once [14]. This position
s often defined as the position Xf where the reaction rate R = kAB, with A and B the concentrations of
he respective reactant, reaches its maximum or, as in this work, the position of the first moment of the
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production rate [17], namely

Xf =

∫ ∞

−∞
RXdX∫ ∞

−∞
RdX

, (1)

here X is the Cartesian one dimensional distance from the gel interface.
For finite systems, complex dynamics can emerge [18] and, in particular, the position of the reaction

ront can change directions twice in the miscible case when the diffusion coefficients of species A and B
re unequal [19–21]. For this miscible case, a bifurcation diagram in the parameter space has identified the
umber of times the reaction front changes direction [22].

The case of immiscible systems has, however, been less studied. In such systems, two different immiscible
olvents, each containing one of the A or B reactants are put in contact and A+B→C reaction-diffusion
ronts can then develop only after transfer of the reactants from one phase to the other. The problem
s more complex as a partition coefficient controlling the jump in concentrations at the interface due to
ariable solubility in each solvent has to be introduced. Moreover, the A and B species may have different
iffusion coefficients in each solvent which enlarges the parameter space. Experiments show that complex
onvective dynamics can be observed in solutions [23–27]. There is thus a need to analyse the properties of
he underlying RD A+B→C fronts to understand the specific new properties that the immiscible character
f the problem brings before studying the effect of convection.

In this context, we analyse here theoretically the properties of A+B→C reaction-diffusion fronts in
mmiscible systems. In particular, using small and large time asymptotic results along with numerical
olutions, we examine the number of times a reaction front can change directions. We find that, in immiscible
ystems, the front can change directions up to four times, which shows the rich new possible dynamics
ntroduced by transfer properties between two different phases. We characterize the RD concentration
rofiles as a function of the parameters and delineate in the parameter space the possible number of direction
hanges that such fronts can feature.

. Physical model

Consider the case of two immiscible solutions placed next to each other at a planar interface located at
= 0 for time T ≥ 0. Each solvent contains a different reactant, either A or B. These reactants A and

B meet by transfer between the immiscible solvents at the contact line followed by diffusion and reaction
according to a bimolecular A + B → C reaction. The product C will be ignored in the model as it does
not affect the position of the reaction front. We shall use superscript notation A(i) and B(i) to distinguish
between the two solutions with i = 1 denoting the left solution initially containing A (X < 0) and i = 2
denoting the right solution where B is initially dissolved (X > 0). Hence we have the separated homogeneous
initial conditions

A(1) = A0, B(1) = 0 for X < 0 (2a)
A(2) = 0, B(2) = B0 for X > 0 (2b)

where A0 and B0 are the initial concentrations of reactants A and B, respectively. The mean field
approximation is assumed and the rate of reaction is thus given by R = k(i)A(i)B(i). The kinetic constants
k(1) and k(2) are constants that depend on the gel. Neglecting any convection, this model can be expressed
as the following system of one-dimensional reaction-diffusion equations:

A
(i)
T = D(i)

a A
(i)
XX − k(i)A(i)B(i), (2c)

(i) (i) (i) (i) (i) (i)
BT = Db BXX − k A B . (2d)
2
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The reactant concentrations in the immiscible solutions are considered to be sufficiently dilute that the
molecular diffusion coefficients D

(i)
a and D

(i)
b can be assumed constant but different in each solution. The

ubscripts X and T denote partial derivatives with respect to space and time.
The difference between the solubility of A and B in each solvent can be characterized by partition

coefficients pa and pb which are constant at equilibrium. We assume that the transition of chemical species
etween the two phases is fast enough such that adsorption and desorption kinetics can be neglected and
he partition coefficient can be taken as a constant at the interface, hence at X = 0 we have

pa = A(1)

A(2) , pb = B(1)

B(2) . (2e)

he interfacial flux balances are given by

D(1)
a A

(1)
X = D(2)

a A
(2)
X , D

(1)
b B

(1)
X = D

(2)
b B

(2)
X . (2f)

he domain is considered sufficiently large that it can be treated as infinite, so we apply no flux far field
onditions:

A
(1)
X , B

(1)
X → 0 as X → −∞, (2g)

A
(2)
X , B

(2)
X → 0 as X → ∞ . (2h)

e non-dimensionalize this problem with the characteristic time and length scales using the kinetic constant
nd diffusion coefficient of reactant A in solution 2, i.e.

t0 = 1
k(2)A0

and l0 =
√

D
(2)
a t0. (3)

e introduce the dimensionless variables x = X/l0, t = T/t0, a = A/A0 and b = B/A0 and dimensionless
arameters

ϕ = B0

A0
, κ = k(1)

k(2) , q =

√
D

(2)
a

D
(1)
a

, r =

√D
(2)
a

D
(2)
b

, r̂ =

√D
(2)
a

D
(1)
b

,

here ϕ represents the initial reactant concentration ratio, κ is the ratio of the kinetic constants and q, r

nd r̂ are the square root of the diffusion coefficient ratios. It is then useful to transform the problem from
(x, t) to (η, t) using the similarity variable

η = x√
4t

.

. Asymptotic limits

.1. Small time asymptotic limit

In the small time asymptotic limit we obtain

Γ (i) = Γ
(i)
0 (η) + O(t) (4)

here i equals 1 or 2 and Γ represents a or b. The zeroth order solutions are given by [28]:

a
(1)
0 = 1 − erfc(−qη)

1 + paq−1 , a
(2)
0 = erfc(η)

pa + q
, b

(1)
0 = ϕerfc(−r̂η)

p−1
b + rr̂−1 , b

(2)
0 = ϕ − ϕerfc(rη)

1 + p−1
b r̂r−1 . (5)

ote that these zeroth order concentration profiles for immiscible solutions depend on the six variables pa,
, q, r, r̂ and ϕ.
b

3
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Fig. 1. Profiles of the reaction rate R against x illustrating two local maxima when κ = ϕ = pa = pb = r = 1, q = 1.1 and r̂ = 0.3,
at times t = 0.02 (red), 0.04 (orange), 0.06 (yellow), 0.08 (green) and 0.1 (blue).

3.2. Small time maximum reaction rate

The position where the reaction rate R is maximum was referred to as xm by [22] in miscible systems.
However, in immiscible systems, using the small time asymptotic solutions in Eqs. (5), it is found that there
can be up to two local maxima in the reaction rate. Therefore for clarity we use x

(i)
m to denote the position

of the maximum local reaction rate in each solution. In solution 1, if r̂−1 ≥ paq−2, then the position of the
eaction front is x

(1)
m = 2α1

√
t where α1 satisfies

qer̂2α2
1erfc(−r̂α1) = r̂eq2α2

1
[
paq−1 + erf(−qα1)

]
, (6)

otherwise no local maximum in the reaction rate occurs in zone 1. In solution 2, if pb ≥ r̂r−2, then the
position of the reaction front is x

(2)
m = 2α2

√
t where α2 satisfies

eα2
2erfc(α2) = r−1er2α2

2
[
p−1

b r̂r−1 + erf(rα2)
]

, (7)

therwise no local maximum in the reaction rate occurs in zone 2. Thus, the condition for two local maxima
n the reaction rate is

r̂ < min(q2p−1
a , r2pb). (8)

n Fig. 1, we illustrate reaction rate profiles with two local maxima, that satisfy Eq. (8), the parameter
alues κ = ϕ = pa = pb = r = 1, q = 1.1 and r̂ = 0.3, at times t = 0.02, 0.04, 0.06, 0.08 and 0.1.

3.3. Small time moments of reaction rate

The definition of the position of the reaction front given by Chopard et al. [17] in dimensionless variables
becomes

xf = Xf

l0
= 2

√
t
I1

I0
where Im =

∫ 0

−∞
κa

(1)
0 b

(1)
0 ηmdη +

∫ ∞

0
a

(2)
0 b

(2)
0 ηmdη.

Using the small time asymptotic reactant profiles in Eq. (5) allows one to analytically evaluate these integrals
to yield the position of the reaction front

xf =
√

t

π

(
π
2 r̂p−1

b + 1 + (r − r−1) tan−1(r) − κ[ π
2 par̂−1 + 1 + (qr̂−1 − q−1r̂) tan−1 ( q

r̂

)
]√

2 2 −1 √
2

)
.

κ(pa + q + r̂ − r̂) + r̂pb + r + 1 − 1
4
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Notice, that the small time position of the reaction front xf is independent of ϕ. The reaction front is initially
stationary, i.e. xf = 0, when κ = κc where

κc =
π
2 r̂p−1

b + 1 + (r − r−1) tan−1(r)
π
2 par̂−1 + 1 + (qr̂−1 − r̂q−1) tan−1( q

r̂ )
. (9)

If κ > κc, the reaction front initially moves backwards to the left (zone 1), whilst if κ < κc the reaction
front initially moves forwards to the right (zone 2).

3.4. Large time asymptotic limit

In order to understand the dynamics of the whole system in time it is useful to know the large time
asymptotic limit for this problem. Previously [28], we found that for large times the position of the reaction
front is given by xf = 2α

√
t. If r ≥ ϕq then α ≥ 0 and α satisfies

re(r2−1)α2
erfc(rα) = ϕ[q + paerf(α)], (10)

hich, in the small α limit, yields the approximation

xf ≈
√

πt(r − ϕq)
r2 + ϕpa

.

Further, if r < ϕq then α < 0 and α satisfies

qϕe(q2−r̂2)α2
erfc(−qα) = r + p−1

b r̂erf(−r̂α), (11)

hich in the small |α| limit yields the approximation

xf ≈
√

πt(r − ϕq)
p−1

b r̂2 + ϕq2 .

4. Numerical results

We can numerically solve the system of partial differential equations using a Crank-Nicolson finite
difference scheme. A finite domain was chosen to be sufficiently large as to not affect the results and the
mesh was chosen sufficiently fine that grid independent results were obtained. As this problem involves seven
dimensionless parameters (κ, r̂, ϕ, pb, q, r and pa) a full numerical parametric investigation is not feasible,
however, an extensive numerical investigation found that the behaviour of the direction of the reaction front
was much more exotic than the current literature presented it to be. In Fig. 2, we illustrate the position of
the reaction front against the logarithm of time using the parameter values in set S with ϕ = 2 for various
values of r where

S =
{

κ = r̂ = 1
2 , pb = q = 2, pa = 1

}
.

ig. 2 illustrates that the reaction front initially travels forwards, then backwards, and then if 4 < r ≤ 4.267
e find that the reaction front again travels forwards, then backwards, and finally forwards again, meaning

hat the reaction front has changed directions four times.
The small time asymptotic limit revealed that the reaction front initially moves forwards if κ < κc where

c is given by Eq. (9). Substituting the parameter values in set S into Eq. (9) yields κc ≈ 0.7341, so when
= 0.5 the reaction front will initially move forwards. Using the parameter values in set S, the large time

symptotic limit reveals that the reaction front eventually moves forwards if r > 4.

5
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Fig. 2. Position of the reaction front xf against the logarithm of time, log10(t), using the parameter values in set S and ϕ = 2 with
r varying from 4 to 4.3.

Fig. 3. Bifurcation diagram of the (r, ϕ) parameter space with the remaining parameters given in set S.

In Fig. 3, we illustrate the bifurcation diagram in the (r, ϕ) parameter space when the remaining
arameter values are given in set S. Regions 0±, I±, II±, III± and IV+ correspond to the number of times
he reaction front changes direction and the ± corresponds to the initial direction of the reaction front, with

denoting initially moves forwards and – denoting initially moves backwards. We also illustrate the ten
ossible reaction front dynamics. The condition for a stationary reaction front in the small time asymptotic

imit can be obtained by solving Eq. (9) using the values in set S, which yields the critical value rc = 2.899.
f r < 2.899, the reaction front initially moves backwards, but if r > 2.899, the reaction front initially moves
orwards. The condition for a stationary reaction front in the large time asymptotic limit using the values
n set S is r = 2ϕ. If r < 2ϕ the reaction front eventually moves backwards, but if r > 2ϕ the reaction front
ventually moves forwards.
6
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If r < 2.899, for sufficiently large ϕ we are in region 0− and the reaction front moves monotonically
ackwards. Decreasing ϕ sufficiently moves us into region II− where the reaction front initially moves
ackwards, but changes directions twice and eventually moves backwards. If ϕ is decreased so that ϕ < 2r we
ross into the narrow region III− where the reaction front initially moves backwards, it will change directions
hree times and eventually move forwards. Decreasing ϕ sufficiently more we reach region I− where the
eaction front initially moves backwards but later in time changes direction to move forwards.

If r > 2.899, for sufficiently small ϕ we are in region 0+ and the reaction front moves monotonically
orwards. Increasing ϕ sufficiently moves us into region II+ where the reaction front initially moves forwards,
ut changes directions twice and eventually moves forwards. If ϕ is increased sufficiently to reach region
V+ where the reaction front initially moves forwards, it will change directions four times and eventually
oves forwards. If ϕ is increased further so that ϕ > 2r we cross into region III+ where the reaction front

nitially moves forwards, it will change directions three times and eventually moves backwards. Increasing
sufficiently more we reach region I+ where the reaction front initially moves forwards but later in time

hanges direction to move backwards.
We notice that the parameter values in set S do not yield the region IV− which is absent from Fig. 3,

owever, by switching the roles or A and B we can create region IV− but this would remove region IV+.

. Discussions and conclusions

In this study, we have analysed the properties of A+B→C reaction-diffusion fronts when the reactants A
nd B are initially dissolved in two different immiscible solvents. We find that, in this case, the reaction rate
an in some cases feature two local maxima and there are ten possible types of reaction front dynamics.
n particular, a reaction front can change directions four times. The main cause of this phenomenon is
ifferential diffusion in the two phases. Early indications suggest that the region where the reaction front
hanges directions four times is located near the line r = qϕ. The purpose of this study was to highlight this
xotic behaviour in the hope that there will be experimental studies to verify these unexpected predictions.
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