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When bimolecular fronts form in solutions, their
dynamics is likely to be affected by chemically driven
convection such as buoyancy- and Marangoni-
driven flows. It is known that front dynamics in
the presence of buoyancy-driven convection can
be predicted solely on the basis of the one-
dimensional reaction–diffusion concentration profiles
but that those predictions fail for Marangoni-
driven convection. With a two-dimensional reaction–
diffusion–Marangoni convection model, we analyze
here convective effects on the time scalings of the front
properties, together with the influence of reaction
reversibility and of the ratio of initial reactants’
concentrations on the front dynamics. The effect of
buoyancy forces is here neglected by assuming the
reactive system to be in zero-gravity condition and/or
the solution density to be spatially homogenous.

This article is part of the theme issue ’New trends
in pattern formation and nonlinear dynamics of
extended systems’.

1. Introduction
When the reactants of a bimolecular reaction are initially
separated, a chemical front forms and can propagate
due to the interplay of reaction and transport processes.
By gelling the medium in which the reaction occurs,

2023 The Author(s) Published by the Royal Society. All rights reserved.
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convection is prevented so that the only transport mechanism is diffusion. In this case, the
dynamical properties of the resulting A + B → C reaction–diffusion (RD) fronts that exhibit
particular time scalings are well understood.

In particular, the front width and position scale with time as w ∼ t1/6 and xf ∼ t1/2, respectively,
in the asymptotic long-time limit (diffusion-limited regime) [1]. More precisely, the front position
(defined as the position of maximum reaction rate) can be written as xf (t) = Cf

√
t, where

Cf = Cf (b0/a0, Da, Db) determines the front direction, with a0 and b0 the initial concentrations
of reactants are A and B, respectively, and Da, Db their diffusion coefficients. The sign of Cf is
determined by the sign of (a0

√
Da)/(b0

√
Db) − 1. For an initial condition corresponding to A and

B in the negative and positive x regions, respectively, Cf > 0 and the front propagates to the right
(xf > 0) when a0

√
Da > b0

√
Db and vice versa. In particular, the front is shown to be stationary

when Cf = 0, i.e. when a0
√

Da = b0
√

Da. While the aforementioned results apply for purely
irreversible RD systems, Chopard et al. extended the analysis for the reversible A + B � C case [2].
The authors found a crossover between the classical irreversible scalings and the reversible ones
at a time proportional to 1/g, where g is the backward rate constant. When t � 1/g (reversible
regime), a state of local equilibrium is reached in the reaction zone and both the front width and
position scale as t1/2.

In gel-free experiments, spontaneous macroscopic motions of the fluid (convective motions)
can arise and lead to new dynamical scenarios [3–5]. When a chemical front propagates
horizontally, i.e. perpendicularly to the gravity field, in systems open to the air, surface tension
and density gradients across the reaction zone can induce buoyancy- and Marangoni-driven
convection, respectively (see review in [6]).

When the front is only influenced by buoyant forces, with a0 = b0 and Da = Dc = Db (with Dc

the diffusion coefficient of species C), the reaction–diffusion–convection (RDC) front dynamics
can be predicted solely from the one-dimensional RD density profiles and the front motion is
directed towards the region with smallest density gradient [7]. For unequal initial concentrations
of reactants (a0 �= b0), the front motion is more complex, and in particular, the competition between
diffusion and buoyancy effects may lead to a front reversal [8]. On the other hand, when the
front is only influenced by Marangoni flows initiated along the free surface, the vertical structure
of the flow is different and asymmetric [9]. As a result, even when a0 = b0 and Da = Dc = Db,
a front reversal of purely Marangoni convective origin can be observed in the course of time,
characterized by an initial motion of the front in the direction of the return flow [9]. When the
surface tension changes during the reaction are large enough, transient oscillations can also be
observed in the presence of Marangoni-driven convection, while sustained oscillations are noted
when combined with buoyant forces [10–12]. Recently, as a unique feature of differential diffusion
effects coupled with Marangoni stresses, transient spatio-temporal oscillations of surface tension
along with a discontinuous motion of the front have been shown to emerge for appropriate
conditions on the model parameters, the mechanism of which does not require any autocatalytic
feedback nor prescribed hydrodynamic instability [13].

By considering a bimolecular front traveling in the presence of Marangoni-driven convection,
we propose here to focus on the role of initial reactants concentrations and of the reaction
reversibility on the Marangoni-driven convective front dynamics previously derived for
irreversible fronts and for a0 = b0 and Da = Dc = Db [9]. The article is organized as follows.
In §2, we describe the general model system. In §3, the influence of the ratio of initial reactants
concentrations, β = b0/a0, on the system dynamics is highlighted. We show that β = b0/a0 can be
used as an experimental control parameter to modulate the speed of the front, the reaction yield
and the switching time from the short-time convective regime to the long-time diffusive one.
When β < 1, antagonistic effects can also prevent the Marangoni-driven convective front reversal
from occurring. Next, we investigate the influence of the backward reaction rate, g, in §4. We show
that, by increasing g, the front slows down as the gradients of surface tension around the front
position become symmetrical, while the surface tension profiles tend to be monotonic. Finally,
conclusions and prospects are drawn in §5.
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Figure 1. Sketch of the system. Two solutions of reactants A and B of concentrations a0 and b0 and of surface tension γA and
γB, respectively, are initially separated in space in a two-dimensional domain of length L̂x and height L̂z . The species diffuse at
same rates, D.

2. General model system
We consider a two-dimensional system of length L̂x and height L̂z open to the air, in which
a solution of A of initial concentration a0 is initially separated from a solution of B of initial
concentration b0 (figure 1). At time t > 0, A and B meet and react according to the general

A + B
k−⇀↽−
g

C reaction scheme, which produces a third species C, with k the forward rate constant

and g the backward one. The localized reaction zone that forms between the miscible solutions
of A and B and in which C is produced is then called the reaction front. All the species diffuse
at the same rate D (assumed constant) and affect the solution surface tension, thereby inducing
gradients of surface tension leading to Marangoni-driven flows. We suppose that no evaporation
processes occur during the chemical reaction and that the air/liquid interface is not deformable.
To focus on surface tension forces, we also take the solution density as constant in space and time
preventing any buoyancy-driven convection in solution. The governing equations for this system
are therefore obtained by coupling the RDC equations for the concentrations of the reactants
â, b̂ and of the product ĉ to the two-dimensional incompressible Navier–Stokes equations for
the dimensional velocity field v̂ = (û, ŵ). We assume a zero-gravity condition and/or a spatially
homogenous solution density. The model reads

∂ â

∂ t̂
+ v̂ · ∇̂ â = D∇̂2â − kâb̂ + gĉ, (2.1)

∂ b̂

∂ t̂
+ v̂ · ∇̂ b̂ = D∇̂2b̂ − kâb̂ + gĉ, (2.2)

∂ ĉ

∂ t̂
+ v̂ · ∇̂ ĉ = D∇̂2ĉ + kâb̂ − gĉ, (2.3)

∂v̂

∂ t̂
+ (v̂ · ∇̂)v̂ = ν∇̂2v̂ − 1

ρ0
∇̂p̂ (2.4)

and ˆdiv v̂ = 0, (2.5)

or, in dimensionless form,

∂a
∂t

+ v · ∇a = ∇2a − ab + ḡc, (2.6)

∂b
∂t

+ v · ∇b = ∇2b − ab + ḡc, (2.7)

∂c
∂t

+ v · ∇c = ∇2c + ab − ḡc, (2.8)

∂v

∂t
+ (v · ∇)v = Sc(∇2v − ∇p) (2.9)

and div v = 0, (2.10)
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where ḡ = g/(ka0) is the dimensionless backward rate constant, and where Sc = (ν/D) is the
Schmidt number (fixed to 103 as typical for small species at room temperature in water), with
ν = (μ/ρ0) the kinematic viscosity, μ the dynamic viscosity (assumed constant) and ρ0 the solution
density. The problem is made dimensionless by using the characteristic scales of the RD system
[9]: for time, τc = (1/ka0), length Lc = √

Dτc, velocity Uc = (Lc/τc) = √
D/τc and concentration a0.

The dimensional dynamic pressure p̂ is rescaled by pc = (μ/τc) = ρ0ScD/τc.
The dimensionless initial conditions are separated reactants such that:

a = 1, b = 0, c = 0, ∀z, x < 0 (2.11)

and

a = 0, b = β, c = 0, ∀z, x ≥ 0, (2.12)

where β = b0/a0 is the ratio of initial reactant concentrations.
For the boundary conditions (BCs) of figure 1, we use no-flux BCs for the chemical

concentrations at each boundary of the domain. The BCs for the fluid velocity field at the rigid
boundaries (x̂ = ±L̂x/2 and ẑ = 0) are no-slip conditions, û = 0 = ŵ. At the free surface, we assume
ŵ = 0, and we use a Marangoni BC for û derived from the tangential stress balance condition of
the form, μ(∂û/∂ ẑ) = ∂γ̂ /∂ x̂ at the free surface [14,15], or in a dimensionless form,

∂u
∂z

= −
∑

i

Mi
∂ci

∂x
at z = Lz, (2.13)

where Lx and Lz represent the dimensionless length and height of the system, respectively. In
equation (2.13), the dimensionless solutal Marangoni number Mi of species i = (a, b, c), which
quantifies the influence of each chemical species on the solution surface tension, is defined as
follows:

Mi = − 1
μ

√
a0

Dk
∂γ̂

∂ ĉi
, (2.14)

where γ̂ and ĉi are the dimensional solution surface tension and concentration of solute i,
respectively.

For sufficiently dilute solutions, we expect the solution surface tension to vary linearly with the
concentrations. Then, we can write that γ̂ = γ̂0 + ∑

i(∂γ̂ /∂ ĉi)ĉi, with γ̂0 the (dimensional) surface
tension of the solvent (ĉi = 0, ∀i). Using equation (2.14), the dimensionless solution surface tension,
which is defined as γ = (γ̂ − γ̂0)/γ̂c, where γ̂c = pcLc, then reads

γ (x, t) = −Maa(x, Lz, t) − Mbb(x, Lz, t) − Mcc(x, Lz, t). (2.15)

In equations (2.14) and (2.15), we take Ma,b,c ≥ 0 to describe surfactants decreasing the surface
tension of the solvent, i.e. (∂γ̂ /∂ ĉi) < 0, ∀i. From equation (2.15), we note that the surface tensions
of the initial pure A and B solutions read γA = −Ma and γB = −Mbβ, respectively.

Despite its simplicity, the Marangoni BC, equation (2.14), which couples the fluid motion
to the RDC dynamics, has been successfully applied in microgravity experiments involving
autocatalytic reactions [16]. A similar BC has also been applied to describe the neutralization
reaction in immiscible systems when the octanoic (caprylic) acid, R-COOH with R = CH3(CH2)6,
dissolved in hexane, reacts with sodium hydroxide (NaOH), dissolved in the aqueous phase in
a vertically placed Hele–Shaw cell [17]. Similar reactants involved in such acid–base reactions
could provide potential candidates for the experimental verification of the presented model.
Complexation reactions could also be envisioned [18].

The system dynamics is then obtained by numerically integrating the complete set of equations
(2.6)–(2.10) subjected to initial conditions and BCs specified above, with the numerical procedure
described in [19]. We consider two particular scenarios. In the next section, we present the
dynamics of the reactive flow and of the front by considering ḡ = 0 and β �= 1, so as to highlight
the effect of different initial reactants concentrations on the system dynamics. Next, to investigate
reversibility effects on the front, we consider β = 1 and ḡ �= 0. In both scenarios, the length Lx is
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chosen sufficiently large so that the results are not affected by lateral boundary effects on the time
of interest, typically Lx = 200.

3. Classification of Marangoni-driven nonlinear dynamics for unequal initial
concentrations of reactants

In this section, we highlight the effect of initial reactants concentrations on the Marangoni-driven
A + B → C convective front dynamics. Throughout the text, we shall summarize the results for
β = 1 and we refer the readers to [9] for additional details.

When β = 1, we have shown that the surface tension profiles can be reconstructed from a
one-dimensional RD analysis based on the conservation law, (a + b + 2c) = 1 ∀(x, t) [9]. When
β �= 1, this conservation law is broken, and thus, a similar analysis cannot be used. Fortunately,
on the basis of the long-time asymptotic analysis of Trevelyan et al. [20], one can still predict
the monotonic properties of RD profiles when β �= 1 (see [20] for the analytical derivation of
the corresponding RD profiles, along with the change of notation ρ ↔ −γ ) (figure 2a). The
classification then obtained generalizes for all values of β, the classification proposed in [9] for
β = 1 and is presented in figure 2a.

In figure 2a, the shaded regions (including the diagonal and vertical dotted lines) are the
regions of monotonic surface tension profiles driving a single convective roll. This single
convective roll is deduced from the simplest idea that the flow is initiated along the air–liquid
interface from the lowest surface tension region to the largest one and that a return flow emerges
in the bulk liquid phase due to the incompressibility condition. Outside the shaded regions,
the profiles are nonmonotonic with a maximum when Mc < (1 + β−1)Ma and a minimum when
Mc > (1 + β−1)Ma. The same analysis than mentioned earlier for the flow structure leads to two
counterclockwise convective rolls. At the solid line of figure 2a, when Mb = β−1Ma, the profiles
are nonmonotonic (two convective rolls), except when Mc = (1 + β−1)Ma or Mc = (β + 1)Mb
(intersection between the dotted and solid lines in figure 2a), for which the surface tension is
spatially constant for all times and thus where we expect no flow. In the presence of convection,
we numerically verify such a classification. We illustrate this for the surface tension profiles when
β = 0.5 in figure 2b. The profiles corresponding to the separating lines (dotted and solid lines) of
figure 2a are also illustrated with convection in figure 2c. Since the chemo-hydrodynamic patterns
resemble those found for β = 1 [9], we only show the typical structure of the flows and of the
chemical front in figure 3, for region I.

A quantity that is of particular interest is the reaction yield, which is proportional to the total
amount of C produced, ctot = ∫Lx

0
∫Lz

0 c(x, z, t) dx dz, for a given amount of (limiting) reactants
consumed. Independently of β, we note that the mixing driven by convection and diffusion
increase the total amount of C produced (and hence, the reaction yield) with respect to when there
is no flow (RD), i.e. ctot(t) > ctot(t) (RD), ∀t and for all the values of β tested. This is illustrated for
some values of β in figure 4a. Moreover, when increasing β, the difference of the total amount of
C produced with and without flow becomes more important (figure 4b). Such results highlight
the potential use of Marangoni-driven convection as an efficient mixing technique to enhance
reaction yields.

We next turn our attention to the effect of β on the propagation of the chemical front. In
the absence of convection, when β �= 1, diffusion drives a motion of the front in the direction
of the smallest concentration side or equivalently, of the smallest diffusive flux. Thus, when
β > 1, the front propagates to the left (towards the A-side), and the opposite when β < 1 [1].
When convection is present, we can therefore expect antagonistic effects on the front propagation
between such a diffusion-driven propagation and the convection-driven one as detailed in [9]
and summarized later. We now review the effect of β at fixed liquid depth Lz on the RDC
front dynamics. We restrict the analysis to each region of the upper part of figure 2a (above
and on the solid line, i.e. Mbβ ≥ Ma), with no loss of generality. The lower part can be deduced
straightforwardly.
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Figure2. (a) Sketchof theRDsurface tensionprofiles andexpected convective rolls in the (Mb,Mc) planeatfixedMa for arbitrary
ratio of initial concentrations of reactants,β . This scheme generalizes the classification provided forβ = 1 in [9] and holds in
the presence of convection. (b) Numerical surface tension profiles along x at t = 30 whenβ = 0.50, Lz = 5 and forMa = 20,
Mb = 80 and different values of Mc , Mc = 20, 40, 80, 110, 130, from top to bottom. Notice that the solution surface tension
changes from−Ma to−Mbβ from the pure A− to the pure B−sides, respectively. (c) Corresponding surface tension profiles
for Lz = 5,β = 0.50 at t = 30when (Ma,Mb,Mc)= (20, 80, 60), (20, 40, 80), (20, 80, 120), (20, 40, 60), corresponding to the
vertical, horizontal, diagonal lines as well as the intersection of the solid and dotted lines of (a), respectively. (Online version in
colour.)

We recall that the front position xf is here defined as the point where the depth-averaged
production rate 〈ab〉 reaches its maximum [9]. Depth-averaged quantities are all defined as
〈φ〉(x, t) = (1/Lz)

∫Lz
0 φ(x, z, t) dz, where φ stands for the considered scalar field (a, b, c or ab).

In region I of figure 2a (two convective rolls), when β = 1, the front is driven in the direction of
the weakest flow (smallest surface tension gradient) [9], i.e. in the right direction (xf > 0, see solid
line in figure 5a). Indeed, the front is mainly located in the bulk (at the convergence points between
the two convective rolls) and is pushed stronger to the right by the biggest convective roll than to
the left by the smallest one. When β < 1, diffusive and convective effects make the front propagate
in the right direction, where both the surface tension gradient and diffusive flux of reactants are
the smallest and the flow is the weakest (figure 5a). By decreasing β, the front propagates faster in
the long-time diffusive limit because of larger diffusive fluxes. We note the opposite in the short-
time convective regime where convective effects on the front position weaken as the asymmetry
between the two convective rolls decreases, i.e. Mbβ converges to Ma in region I as β decreases.
When β > 1, antagonistic effects occur. As for β = 1, we recover that the front initially propagates
in the direction of the weakest flow (to the right), while the diffusion-driven propagation takes
over only for longer times (figure 5b). By increasing β, the asymmetry between the two convective
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Figure 3. Focus on the convective rolls centred on the deformed reaction front at t = 30 for Lz = 10, (Ma,Mb,Mc)=
(20, 80, 150) and β = 0.5 (region I in figure 2a). The fluid velocity field is superimposed on a two-dimensional plot of the
production rate, which ranges between its maximum value shown in red, and its minimum value, abmin = 0, shown in blue.
The z−direction has been magnified to see the details of the velocity field. The velocity vectors are here tripled compared to
their effective length to allow for a better visualization. (Online version in colour.)
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t
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c t
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(t
)
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β = 1.00
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(a) (b)

0.25 0.50 0.75 1.00 1.25 1.500

25
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75
ctot
ctot (RD)

β

β = 0.30

Figure 4. Total amount of species C produced whenMa = 20,Mb = 80 andMc = 150 for Lz = 5 (a) in the course of time and
(b) at a particular time t = 30. (a) The temporal evolution of ctot is plotted forβ = 0.30, 0.75, 1, 1.50 from bottom to top. The
dotted lines are the corresponding RD solutions (in the same order with respect to β). By increasing β , ctot(t)> ctot(t) (RD),
∀t. (b) Increasingβ enlarges the difference with the corresponding RD solution. (Online version in colour.)

rolls increases and the front travels faster in the direction of the weakest flow. Since the diffusive
flux of B also increases with β, the front also travels faster in the long-time limit but in the opposite
direction (figure 5b). Moreover, increasing β also decreases the switching time from the short-time
convective regime to the long-time diffusive one. Similar conclusions can be deduced for region
III. In that region, the front position is along the free surface, as for β = 1 (see [9] for more details).

We can corroborate those quantitative effects of β on the system dynamics from a small-
time asymptotic analysis of the RDC equations, equations (2.6)–(2.8) with ḡ = 0. We first rescale
the equations with respect to β, by introducing the rescaled variable, b̄ = b/β. Equations (2.6)–
(2.8) then write, respectively, ∂ta + v · ∇a = ∇2a − ab̄β, ∂tb̄ + v · ∇ b̄ = ∇2b̄ − ab̄, and ∂tc + v · ∇c =
∇2c + ab̄β. The initial condition becomes (a, b̄) = (1, 0) and (a, b̄) = (0, 1) ∀z, for x < 0 and x ≥ 0,
respectively. The BCs are unchanged, except for the Marangoni BC, equation (2.13), that becomes
∂zu = −Ma∂xa − βMb∂xb̄ − Mc∂xc. In the short-time asymptotic limit (t → 0), c → 0, and thus from
the equation of c, ab̄β → 0. Then, in the short-time limit, the leading-order equations for a
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Figure 5. Front trajectories, xf (t) for region I of figure 2a for (a) β ≤ 1 and (b) β ≥ 1. The model parameters are Lz = 5
and (a) (Ma,Mb,Mc)= (20, 80, 150) and (b) (Ma,Mb,Mc)= (20, 80, 400). (a) The front propagates to the right for all times.
(b) Antagonistic effectsmake the front reverse its direction of propagation in the course of time. Independently of the considered
Marangoni numbers in region I, the dynamics of the front is dominated by diffusive effects in the long-time limit, i.e. xf < 0
(xf > 0) whenβ > 1 (β < 1). (Online version in colour.)

and b are the corresponding transport (diffusion and convection) equations, while the leading-
order Marangoni BC is ∂zu = −Ma∂xa − βMb∂xb̄. Hence, in this limit, increasing β at fixed Mb
is equivalent to increasing Mb at fixed β, which therefore strengthens convective motions and
increases the asymmetry between the two convective rolls (i.e. the ratio Mbβ/Ma increases). Thus,
convective effects on the front dynamics are enhanced and the front speeds up. As time evolves,
the concentration of species C becomes non-negligible and the reaction term (βab̄) becomes
important. In this case, from the RDC equations of a and c, we note that β plays the additional
role of a (dimensionless) reactive time scale for the consumption and production of species A and
C, respectively. Hence, the switching time from the short-time convective regime to the long-time
diffusion limit is expected to be controlled by β as numerically observed.

Eventually, we comment on the case, Ma = Mbβ (solid line of figure 2a). For β = 1, the two
convective rolls are symmetrical (identical size and intensity) leading to a steady front (xf = 0)
for all times [9]. When β �= 1, convection superimposes on an already moving RD front, and such
a symmetry is broken. In this case, convective effects on the front dynamics are negligible, and
we can consider that the front moves in the direction of smallest diffusive flux for all times, i.e.
xf (t) < 0 when β > 1 ∀t, and vice versa (figure 6).

In region II of figure 2a (one convective roll), when β = 1, the front initially propagates in
the direction of the return flow (right side) and a front reversal of purely convective origin
occurs when Mc < Ma + Mb for intermediate times [9] (see solid line in figure 7a). When β < 1,
the diffusion-driven propagation (to the right) can prevent the front reversal from showing up
(figure 7a). For any considered value of Mc < Ma + Mb, we find that, when β < βII

min, where βII
min

is a function of the considered model parameters, the front dynamics is observed to be dominated
by diffusive processes and the front reversal is prevented. The stronger the convective motions,
the smaller the value of β for diffusion to take over (i.e. the smaller βII

min). In particular, βII
min

decreases with increasing Lz or with increasing all the Marangoni numbers (see dotted lines in
figure 7a). In the opposite case (β > βII

min), however, a double switch of direction of the front is
noted. When β ≥ 1, the front initially travels in the direction of the return flow while moving
in the opposite direction in the long-time diffusive limit (figure 7b). In this case, the convective
front reversal is enhanced by increasing β since the convective roll intensifies with Mbβ. Hence,
for the model parameters tested in region II, the convective dynamics observed for β = 1 is
recovered when Mc ≥ Ma + Mb, and when Mc < Ma + Mb, except when β < βII

min < 1 for which
the diffusion-driven motion of the front takes over on the convective front reversal dynamics. We
note that the condition Mbβ > Ma (that applies for regions I, II and III of figure 2a) ensures that
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Figure 6. Front trajectories, xf (t), for parameters on the solid line of figure 2a, for various values of β , with Lz = 5,Ma = 20
andMb = Ma/β . From top to bottom,β = 0.25, 0.50, 0.75, 1, 1.25, 2, 2.25. Whenβ = 1 (black solid line), the front is steady
for all times. Whenβ �= 1, the front propagates in the direction of the smallest diffusive flux for all times, i.e. xf (t)< 0, when
β > 1 and vice versa,∀t. (Online version in colour.)
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Figure 7. Front trajectories, xf (t) for region II of figure 2a for (a) β ≤ 1 and (b) β ≥ 1. (a) Lz = 5 and we consider two
sets of Marangoni numbers, (Ma,Mb,Mc)= (20, 80, 80) and (Ma,Mb,Mc)= 2 × (20, 80, 80)≡ (40, 160, 160) (dotted lines).
The front reversal is prevented below a critical value of β , β II

min = 0.68 ± 0.08 for (Ma,Mb,Mc)= (20, 80, 80) and β II
min =

0.55 ± 0.05 for (Ma,Mb,Mc)= (40, 160, 160). (b) Lz = 5 and (Ma,Mb,Mc)= (20, 80, 80). The front reversal is enhanced by
increasingβ . Independently of the consideredMarangoni numbers in region II, in the long-time limit, the dynamics of the front
is dominated by diffusive effects, i.e. xf < 0 whenβ > 1 and vice versa. (Online version in colour.)

the line Mc = Ma + Mb is always located in between the boundary lines Mc = (1 + β−1)Ma and
Mc = (β + 1)Mb that enclose region II in figure 2a, i.e. (1 + β−1)Ma < (Ma + Mb) < (β + 1)Mb.

4. Reaction reversibility effects
Here, we extend the analysis of the Marangoni-driven dynamics to bimolecular A + B

k−⇀↽−
g

C

reversible fronts, with k and g being the forward and backward rate constants, respectively.
To highlight the effect that reversibility can have on the convective frontal dynamics, we focus
hereafter on the case β = 1. Except for the direction of front propagation, the main conclusions of
this part, however, do not depend on β.
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Figure 8. (a) Depth-averaged forward and backward reaction rates, respectively, noted 〈ab〉(x, t) and ḡ〈c〉(x, t), at different
times for ḡ= 5. (b) Local reaction rate, Rxf (t)= 〈ab〉(x = xf , t), and concentration of C at the front position, cxf = 〈c〉(x =
xf , t), as a function of time for different values of ḡ. The dotted line denotes the maximum possible value of Rxf = 1/4. At fixed
ḡ, ab converges to ḡc in the long-time limit (t � 1/ḡ). In this limit, Rxf and cxf reach steady values. (a,b) Themodel parameters
areMa = 20,Mb = 40 andMc = 150 when Lz = 5. (Online version in colour.)

In the pure reversible RD case, a domain of local equilibrium is reached in the long-time limit
in the reaction zone where the reaction rates balance each other, i.e. in dimensionless variables,
where ab = ḡc [2]. In the presence of convection and by averaging along the depth, we recover this
balance of reaction rates 〈ab〉 = ḡ〈c〉 ∀x, for large times (t � 1/ḡ) (figure 8a). Since the reversible
regime starts to play a significant role for times t > 1/ḡ, the larger ḡ, the faster the convergence
to the reversible regime. In particular, in the limit ḡ → ∞, the reversible regime dominates the
system dynamics for all times, so that ab → ḡc ∀(x, z, t), and equations (2.1)–(2.3) reduce to the
corresponding transport equations.

Due to the local equilibrium, we note that the local production rate of C, Rxf , and the maximum
of the concentration of C at the reaction zone position, cxf , reach steady values (figure 8b). The
maximum of Rxf is obtained when the concentration of C is zero, i.e. when a + b = 1 or when a =
1/2 = b. Hence, the steady value of Rxf is bounded superiorly by 1/4 (see dotted line in figure 8b).
Note that, however, the components of the fluid velocity field do not converge to steady values
since the gradients of surface tension always evolve with time.

We next focus on the effects of reversibility on the monotonic properties of surface tension
profiles. For times t � 1/ḡ, the profiles follow the predictions from the irreversible regime
(figure 2a). As time evolves, the backward reaction plays a role and converts back the product
into the reactants with the effect to reduce the concentration of C inside the reaction zone. Hence,
species C affects less the surface tension, and the extremum formed in the profiles of surface
tension is less pronounced with respect to the pure irreversible case (figure 9a). Thus, we find
the existence of a maximum value of ḡ (ḡmax) for the classification of figure 2a to remain valid or
equivalently, above which the profiles of surface tension are monotonic independently of the zone
considered in figure 2a (figure 9a). Such a critical value is a non-universal function of the model
parameters that, in particular, increases with increasing Mc (figure 9b). Below, we corroborate this
observation analytically.

Firstly, we show that the surface tension profiles must be monotonic profiles in the limit,
ḡ → ∞, ∀t. Indeed, by summing equations (2.1) + (2.2) + 2 × (2.3), we find the conservation
law, a + b + 2c = 1 ∀(x, z, t), since β = 1. In particular, in the limit ḡ → ∞, c → 0, and this law
reduces to a + b = 1 ∀(x, z, t). Thus, the gradient of surface tension writes ∂xγ = −Ma∂xa − Mb∂xb
= (Ma − Mb)∂xb. Since ∂xb ≥ 0 is single-signed, ∂xγ is also single-signed and writes ∂xγ ≤ 0 when
Mb > Ma (monotonic decreasing) and ∂xγ ≥ 0 when Mb < Ma (monotonic increasing). On the other
hand, in the limit ḡ → 0, we must recover the classification as provided in figure 2a (with β = 1).
Thus, we infer the existence of a critical value, ḡmax, above which the profiles are monotonic.
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Figure 9. Numerical surface tension profiles along x for different values of the backward rate constant, ḡ, at t = 100 for
Ma = 10,Mb = 40 and (a)Mc = 100 and (b)Mc = 150.When ḡ> ḡmax, the large-time surface tensionprofiles aremonotonic.
In particular, (a) ḡmax = 0.60 (±0.20) and (b) ḡmax = 2.25 (±0.25). (Online version in colour.)
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Figure 10. (a) Profiles of surface tension gradients ∂γ /∂x and (b) speed of the front dxf (t)/dt for various values of the
backward rate constant, ḡ. Themodel parameters areMa = 20,Mb = 40 andMc = 2Ma (vertical line of figure 2awithβ = 1).
(a,b) The asymmetry of the surface tension gradient is less pronouncedwith respect to the symmetry axis of the system (x = 0)
and dxf (t)/dt decreases (in absolute value) when increasing ḡ. (Online version in colour.)

When ḡ > ḡmax, the structure of Marangoni-driven flows is simplified and corresponds either
to a clockwise convective roll when Mb < Ma or to a counterclockwise convective roll when
Mb > Ma [9].

By increasing ḡ, the diffusive fluxes of reactants across the reaction zone tend to equalize.
In particular, in the limit ḡ → ∞, since a + b = 1∀(x, t), we deduce that ∂xa = −∂xb ∀(x, t), and
thus, the fluxes (or gradients) are symmetrical with respect to the symmetry axis (x = 0). This
means that the gradient of surface tension is also symmetrical with respect to the same axis
since ∂xγ = (Ma − Mb)∂xb (figure 10a). Hence, reaction reversibility affects the propagation of the
front and in particular slows down the front. Then, the front speed decreases in the reversible
regime with increasing ḡ (figure 10b). Even in the presence of symmetrical diffusive fluxes of
reactants, the front does not reach a steady state due to the presence of Marangoni-driven flows.
We note that such flows conduct the front in the direction of the return flow (i.e. to the right for a
counterclockwise convective roll, see §3) for large times in the reversible regime, i.e. dxf (t)/dt ≥ 0,
as t → ∞, ∀g (figure 10b).

The long-time scalings (t � 1/ḡ) with time of the front properties of the reversible problem are
governed by transport processes. For large times, when convective effects are negligible, such
time scalings are dominated by diffusion, and the related exponents asymptotically converge
to those predicted from the related RD model [2]. However, before reaching such a long-time
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Figure 11. (a) Temporal evolution of global reaction rate, R(t), and (b) reaction widthw(t), when Lz = 5 andMa = 20,Mb =
40 and Mc = 150 (log scales). For the sake of comparison, the RD solutions are added (dotted lines). The numerical data are
fitted by scaling laws (solid lines) of the forms, R∼ tμ and w ∼ tν , within the time interval of t = 10 and t = 100. We note
that the exponents differ from RD predictions, i.e. (ν ,μ)< 1/2. (Online version in colour.)

limit, discrepancies might be found. We illustrate such discrepancies for the reaction width w ∼ tν

and global rate R ∼ tμ. The latter is defined as R = ∫Lx
0 〈ab〉(x, t) dx, while the former is defined

as [1] through the second moment of the depth-averaged reaction rate 〈ab〉(x, t), i.e. w2(t) =∫Lx
0 (x − xf )2〈ab〉(x, t) dx/

∫Lx
0 〈ab〉(x, t) dx. In the regime of time considered, we recover ν = 1/2 = μ

for the RD front while we find sub-diffusive time scalings, i.e. (ν, μ) < 1/2, with convection
(figure 11).

5. Conclusion
By initially separating the reactants of a bimolecular reaction, a chemical front can be formed
and propagates in the presence of Marangoni flows when gradients of surface tension develop
across the reaction zone. The dynamics of such a zone is then described by reaction, diffusion and
Marangoni-driven convection processes that we have analyzed both numerically and analytically
for equal diffusion coefficients of all species.

We have generalized the results of the Marangoni-driven A + B → C front dynamics initially
derived for equal initial concentrations of reactants (β = 1, where β = b0/a0) to arbitrary values
of β. As for β = 1, we found two types of surface tension profiles, either monotonic or
nonmonotonic with a single extremum, that we have classified as a function of the Marangoni
numbers valid for arbitrary β (figure 2a). The structure of chemically driven Marangoni
convection is then similar to β = 1, and in particular, a maximum number of two convective rolls
can be observed in solution. Since convection superimposes on an already moving RD front when
β �= 1, there are no symmetric profiles, and the front moves even for Ma = Mbβ. The role of β on the
Marangoni-driven convective front dynamics is highlighted. As for β = 1, we found that the front
is initially driven in the direction of weakest flow (smallest surface tension gradient) in regions
I and III. Further, varying β affects the speed of the front (increasing it with increasing β in the
short-time convective regime) and the switching time from the short to the long-time diffusive
regime decreases with increasing β > 1 or decreasing β < 1 in the upper part of figure 2a. For the
specific case where Ma � Mbβ, diffusive effects can be considered to dominate the front dynamics
for all times. In region II, we showed that the convective front reversal previously observed
for β = 1 in [9] is prevented if β < 1, when β is below a minimum value function of the model
parameters (i.e. β < βII

min).

When reaction reversibility is included in the analysis, in the form of A + B
k−⇀↽−
g

C chemical

fronts, a local equilibrium state is reached inside the reaction zone in the reversible regime
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(t � 1/ḡ, where ḡ = g/k), where the forward and backward reaction rates balance each other.
By increasing ḡ, the amount of product inside the reaction zone and hence the amplitude of
the extremum formed in the surface tension profiles decrease. In particular, above a maximum
value for ḡ (i.e. ḡ > ḡmax), the profiles are monotonic in the reversible regime leading to a single
convective roll, independently of the considered Marangoni numbers. Since reversibility reduces
the asymmetry between the diffusive fluxes of reactants, the front is also observed to propagate
more slowly in the reversible regime. Also, we quantified discrepancies with predictions based
on the related RD reversible model in the intermediate time regime when Marangoni-driven
convective effects are observed to be important.

As a natural extension of this work, we could investigate differential diffusion effects on the
system dynamics, starting with the case a0

√
Da = b0

√
Db, where the RD front is stationary, since

it is naturally more common in experiments that species diffuse at different rates. On the basis of
the recent findings that differential diffusion effects coupled with Marangoni stresses can trigger
spatio-temporal oscillations of surface tension along with a discontinuous motion of the front
along the free surface [13], we expect much more exotic possibilities for the dynamical properties
of the reaction front when all the species diffuse at different rates. Along the same line, the effects
of reaction exothermicity in both cases of cooperative and competitive solutal and thermal effects
and the coupling to buoyancy-driven convection for unequal initial reactants concentrations
and/or differential diffusion effects could be envisioned. Also, the role of adsorption of surface-
active species on the dynamics could next be taken into account through the coupling of interface
equations to bulk equations. Last but not least, we hope for more experimental works to be
undertaken in the future to check all such theoretical findings of convective effects on frontal
chemical systems.
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