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Effect of external tension on the wetting of an elastic sheet
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Recent studies of elastocapillary phenomena have triggered interest in a basic variant of the classical Young-
Laplace-Dupré (YLD) problem: the capillary interaction between a liquid drop and a thin solid sheet of low
bending stiffness. Here we consider a two-dimensional model where the sheet is subjected to an external tensile
load and the drop is characterized by a well-defined Young’s contact angle θY . Using a combination of numerical,
variational, and asymptotic techniques, we discuss wetting as a function of the applied tension. We find that, for
wettable surfaces with 0 < θY < π/2, complete wetting is possible below a critical applied tension due to the
deformation of the sheet in contrast with rigid substrates requiring θY = 0. Conversely, for very large applied
tensions, the sheet becomes flat and the classical YLD situation of partial wetting is recovered. At intermediate
tensions, a vesicle forms in the sheet, which encloses most of the fluid, and we provide an accurate asymptotic
description of this wetting state in the limit of small bending stiffness. We show that bending stiffness, however
small, affects the entire shape of the vesicle. Rich bifurcation diagrams involving partial wetting and “vesicle”
solution are found. For moderately small bending stiffnesses, partial wetting can coexist with both the vesicle
solution and complete wetting. Finally, we identify a tension-dependent bendocapillary length, λBC, and find that
the shape of the drop is determined by the ratio A/λ2

BC, where A is the area of the drop.

DOI: 10.1103/PhysRevE.107.035101

I. INTRODUCTION

Elastocapillary phenomena, namely, mechanical deforma-
tions of elastic bodies due to capillary forces, are at the focus
of a growing attention. Indeed, aside from fundamental in-
terests, this field of research appears to be relevant to the
study of budding in biological cells and other biomimetic
systems [1,2] and opens new perspectives for fabrication at
small scales where surface tension dominates volume weight.
For example, capillary forces can be used to fold elastic sheets
into desired 3D objects [3–10]. In this context, focus has been
made on sheets with free ends. However, very thin sheets are
often subjected to external tensile loads due to capillary forces
for floating sheets [11–13] or due to clamped ends [14–16].
We thus propose to fill this gap by studying the influence of
an applied external tension on the wetting states of a drop
deposited on a thin elastic sheet.
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One of the basic questions in the study of elastocapillary
phenomena is how the wetting states are modified if the un-
derlying assumption of a perfectly rigid, semi-infinite solid
substrate is relaxed; see Fig. 1. When the solid substrate is
undeformable, the wetting states of a given volume of liquid
are determined by the Young-Laplace-Dupré (YLD) equa-
tion [Fig. 1(a)]

cos θY = �γ/γ , �γ ≡ γsv − γsl, (1)

where θY is the contact angle between the solid-liquid and
liquid-vapor interfaces whereas γsv, γsl, and γ , are, respec-
tively, the solid-vapor, solid-liquid, and liquid-vapor surface
energies (see, for example, [8]). When �γ < −γ , surface
energy disfavors any liquid-solid contact (nonwetting). Con-
versely, when �γ > γ , the system is said to be in a complete
wetting state. For intermediate values, −γ < �γ < γ , that is
0 < θY < π , the system is in a partial wetting state.

When the solid substrate is deformable (low elastic
Young’s modulus E ) and thick (unbendable), the local
deformation of the solid surface is on the order of the elas-
tocapillary length �EC = γ /E , and the relevant dimensionless
parameters are the ratios, �EC/a, and �EC/R, where a is a
microscopic (atomic or molecular) length, and R is the char-
acteristic drop size. The rich physics that emerges at various
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(a)

(b)

FIG. 1. (a) Classical Young-Laplace-Dupré picture of partial
wetting on a perfectly rigid substrate, involving liquid-vapor surface
tension, γ , and forces associated with “surface stress,” γsv, γsl, that
act parallel to the solid surface. (b) Schematic of our model system.
Additional control parameters: applied tension T and bending mod-
ulus B.

ranges of theses dimensionless parameters has been the sub-
ject of theoretical works [17–27] and experiments [28–33]
(see also some recent reviews [34,35]).

When the solid substrate is a thin, bendable sheet, another
length scale comes into consideration: The bendocapillary
length �BC = √

B/γ , where B = Et3/12(1 − ν2) is the bend-
ing stiffness and t is the sheet thickness [36]. The plate is
then easily bent by a liquid drop when �BC is small compared
to the size of the drop, i.e., when the bendability parameter
	 ≡ R2/�2

BC = γ R2/B is large. In a 2D setting, as we will
consider here, we may replace R2 by the cross-sectional area
A and define 	 as

	 ≡ A/�2
BC = γ A/B. (2)

Meanwhile, the local surface deformation remains small if
�EC/t � 1. This is the situation that we consider in the present
study. The double limit �EC/t � 1 and 	 � 1 can equiva-
lently be expressed as

t � �BC �
√

A, (3)

which states that the bendocapillary length must be much
larger than the sheet thickness while much smaller than the
drop size. In terms of t alone, the above inequalities yields the
constraint

γ /E � t � (γ A/E )1/3. (4)

In practice, this parameter regime characterizes a large range
of solid sheets that are commonly studied in the material sci-
ence community: from common elastomers (E ∼ MPa) with
a thickness of few micrometers to stiff polymers (E ∼ GPa)
with a thickness of few hundreds of nanometers. For a char-
acteristic drop size ranging from few tens to few hundreds
of micrometers [16], 	 varies roughly between 1 and 106

whereas �EC/t can be as small as 10−5. Most experiments
reported in Refs. [11–14,16,37,38] satisfy the above constraint
where the far edges of the sheet, away from the liquid drop,
may be free [4–8,10], clamped [14–16], or subject to a fixed
tensile load by a liquid subphase [11–13].

Equations (3) or (4) describe sheets that are “highly bend-
able” yet “nearly inextensible.” In this regime, there is a large

FIG. 2. A “wettability state diagram” of our 2D model, for a
given value of 0 < θY < π/2, exhibits three types of energetically
favorable states of a liquid drop of area A in contact with an elas-
tic sheet of length L � √

A and bending modulus B. The control
parameters are the applied tension, T , and the capillary bendability
parameter 	, Eq. (2). The dot-dashed red line T +

a is a curve derived
from the asymptotic analysis (Sec. V) of the vesicle that approxi-
mates the numerical boundary T + of existence of the vesicle state.
The vesicle and partial wetting states are illustrated by numerical
solutions; the complete wetting state is sketched for either finite or
infinite L.

contrast between the bending energy, Ubend, and the strain
energy, Ustrain, whose high cost must be taken into consider-
ation either explicitly (when studying finite liquid volume,
in which case the liquid drop imposes Gaussian curvature
on the sheet [12,39–41]), or by imposing an inextensibility
constraint, as we will do in this paper for a simplified model
system.

In this paper, we consider a 2D model composed of a liquid
cylinder of cross-sectional area A in contact with a rectangular
solid sheet of length L � R under an applied tension T ; see
Fig. 1(b). We further assume that gravity is negligible. The
absence of Gaussian curvature considerably simplifies the
analysis compared to more realistic 3D problems [10–12,42]
and allows us to push the analytical investigation beyond
scaling laws. Notice, however, that such a 2D system can, to
some extent, be realized experimentally using a thin elastic
filament floating on a fluid surface and wet by a droplet of
another immiscible fluid [43]. In contrast to previous works
on a related system [4,8–10], we pay close attention to the
effect of tensile loads, T , exerted on the solid sheet at its far
edges, away from the liquid drop and thus, we consider the
effect of another dimensionless parameter, T/γ , in addition to
	. Numerically, we study the system for both small and large
	. Analytically, we treat the high-bendability limit, 	 � 1 by
singular perturbation theory. Most of our results are derived in
the wettable regime, i.e., 0 < θY < π/2.

Our results are succinctly summarized in the schematic
state diagram (Fig. 2) on which we briefly elaborate below:

(i) As T → ∞ (i.e., T � γ ), the sheet becomes asymp-
totically flat and is only partially wet, with a contact angle
given by the classical value, Eq. (1). Such a partial wetting
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state persists for all tensions T > T −(θY , 	) and is the unique
wetting state when T > T +(θY , 	).

(ii) In the range γ cos θY < T < T +(θY , 	) the sheet can
be in self-contact and form a vesicle that wraps most (but
not all) of the liquid. The two curves T ±(θY , 	) merge at the
point 	 = 	+(θY ) and in the limit 	 → ∞, they asymptote to
γ cos2(θY /2).

(iii) T < γ cos θY is the range of existence of the complete
wetting state for a sufficiently bendable sheet [	 > 	
(θY )],
whereby the liquid completely wets one side of the sheet.
Recalling that in the classical YLD picture complete wetting is
obtained only if θY = 0, we see that high bendability enables
a complete wetting state even if θY > 0, provided the tensile
load is sufficiently small.

(iv) While the vesicle and complete wetting state are mu-
tually exclusive, the light and dark green regions in Fig. 2
indicate that the partial wetting state can coexist with the
former if 	 < 	+(θY ) and with both if 	 < 	
(θY ), paving
the way to hysteretic behavior.

(v) Finally, it emerges from our analysis that an
alternative bendocapillary length, defined as λBC =√

B/2(T − γ cos θY ), and which thus depend on T , is more
relevant than �BC to describe the vesicle state. In particular,
we show that the shape of the vesicle is entirely determined
by the value of the ratio A/λ2

BC, rather than 	 = A/�2
BC, a

result that is found to hold even for 	 = O(1). This implies
in particular that, at the transition between the vesicle and
complete wetting states (i.e., T = γ cos θY ), the vesicle shape
is universal and thus independent on 	 and θY . We then derive
the curve T +

a (θY , 	) that yields a very good approximation of
the numerical curve T +(θY , 	).

Thus, for a given value of 0 < θY < π/2, the partial wet-
ting predicted by the classical YLD law for nonbendable
solids separates into three distinct states—complete wetting,
vesicle, and partial wetting—enabled by the floppiness of the
solid.

The paper is organized as follow. In Sec. II we set the stage
by discussing the limit of zero bending stiffness (	 = ∞). For
a given θY , we identify the three asymptotic wetting states at
distinct intervals of T/γ : complete and partial wetting and
an intermediate wetting state where the sheet forms a circular
vesicle and wraps the entire liquid area.

The inclusion of bending stiffness starts in Sec. III, where
the governing equations of the system are presented. These are
studied numerically in Sec. IV where we show how the three
wetting states identified in Sec. II occupy distinct regions in
the parameter space spanned by T , 	, and θY . Furthermore,
we show that the shape of the vesicle can be completely
altered for any 	 < ∞ and that it is universal and necessarily
different from a circular shape near the transition between the
vesicle and the complete wetting states. Section V is devoted
to the asymptotic analysis of the “vesicle” state in the limit
	 � 1. Finally, we conclude in Sec. VI.

II. INEXTENSIBLE, INFINITELY BENDABLE SHEET

In the 2D model considered here, the energy of the sheet is
given by

U = Us + W + Uelas (5)

(a)

(b)

FIG. 3. Schematics of a cross section of the system for an in-
finitely bendable sheet (B = 0). (a) The radii of curvature, Rb, of
the wet part of the sheet and, Rd , of the liquid-vapor interface, and
the relations with the lengths of the respective circular segments,
Lb = 2ϑRb and Ld = 2βRd . (b) The displacement, 2d = Lb − 2xD,
with respect to a flat sheet prior to wetting, where xD = Rb sin ϑ is
the projection of the liquid-vapor interface onto the x axis. Ad and Ab

are the liquid areas enclosed between the chord of length 2xD and the
liquid-vapor and the wet part of the sheet, respectively.

and comprises a surface energy Us, a work W (done by pulling
the edges) and an elastic energy Uelas due to the deformation
of the sheet with respect to its strainless, planar shape. The
energetically costly stretch is eliminated by the inextensibility
constraint, whereas the bending cost is expected to be small
in comparison to the surface energy for thin enough sheets.
Hence, we start in this section by ignoring the bending stiff-
ness altogether.

As stated already in the introduction, we consider an in-
finitely long rectangular sheet in contact with a cylindrical
drop, whose cross-sectional area is A ≡ R2. Upon making
contact with the drop, the wet part of the sheet becomes
bulged, with a constant radius of curvature, Rb, due to the
Laplace pressure in the drop, p = γ /Rd , where Rd is the
constant radius of curvature of the liquid-vapor interface; see
Fig. 1(b) and Fig. 3.

In the absence of bending stiffness, the system energy is
the sum of the surface energy and the work done by tensile
loads at the edges of the sheet. The surface energy reads
as

Us = γ Ld + γsl Lb + (2L − Lb) γsv

= γ Ld − �γ Lb + 2L γsv, (6)

where L is the total length of the sheet, whereas Lb and Ld are,
respectively, the length of the bulged part of the sheet and of
the liquid-vapor interface; see Fig. 3(a). The work performed
by T is

W = 2d T = (Lb − 2xD) T, (7)

where 2xD is the projected length of the liquid-vapor inter-
face along the horizontal x axis. Since the liquid-vapor and
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FIG. 4. The three wetting states in the infinite bendability limit (A: complete wetting; B: vesicle; C: partial wetting). (a) Dependence of
the angles, β and ϑ given by Eqs. (13), on the rescaled applied tension, T/γ , for θY = π/3. (b) Reduced energy Ū = (U − 2γsvL)/(2γ

√
A) as

a function of T/γ for θY = π/3. The black curve shows Ūcw, Eq. (19), for L = 2πRb. The energy and its first derivative are both continuous at
the partial wetting-vesicle transition. By contrast, the transition between complete wetting (A) and vesicle (B) is discontinuous, characterized
by an energy gap at T = T 
 = γ cos θY .

solid-liquid interfaces are necessarily circular, we have the
following geometrical relations:

Ld = 2β Rd , Lb = 2ϑ Rb, (8a)

xD = Rd sin β = Rb sin ϑ, (8b)

where the last relation indicates that the two circular segments
share the same chord; see Fig. 3. The total energy Upw = Us +
W of the partial wetting state is then given by

Upw = 2γ β Rd − �γ Lb + 2L γsv + (Lb − 2Rd sin β ) T,

(9)
where the quantities xD, Rb and Ld have been expressed in
terms of Rd , β, and ϑ . To minimize the total energy un-
der the constraints of (i) fixed transverse area of the drop,
A(β, ϑ, Rd ) = A [see Fig. 3(b)], with A given by

A = R2
d

(
β − 1

2 sin 2β
) + R2

b

(
ϑ − 1

2 sin 2ϑ
)
, (10)

where Rb = Rd sin β/ sin ϑ , and (ii) the geometric relation (8)
for Lb, we introduce the functional

L(β, ϑ, Rd , Lb) = Upw+ μ(A − A) − η

(
Lb− 2ϑRd sin β

sin ϑ

)
,

(11)

where μ and η are Lagrange multipliers, that correspond,
respectively, to the pressure p in the liquid drop and the
parallel traction n‖ in the wet part of the sheet (which for
B = 0 identifies with the tension in the sheet). The equilibrium
equations are found by minimizing L with respect to β, ϑ , Rd ,
and Lb; see Appendix A. We find μ ≡ p = γ /Rd and η ≡ n‖,
with

n‖ = γ
sin β

sin ϑ
, T = γ cos β + n‖ cos ϑ, (12a)

n‖ = T − �γ = T − γ cos θY . (12b)

Equations (12a) are simply the vertical and horizontal force
balance at the contact line [Fig. 3(b)] and generalize Neu-
mann’s law since T 
= γsv and n‖ 
= γsl because of the applied
tension [19,20]. Equation (12b) is the familiar YLD law
for the stress jump at the contact line. Solving these equa-
tions leads to

cos β = cos θY + γ sin2 θY

2T
, (13a)

cos ϑ = 1 − γ 2 sin2 θY

2T (T − γ cos θY )
. (13b)

We call the state given by Eqs. (13) the partial wetting state
because, in the limit T/γ → ∞, it tends to the classical
solution of a drop on a semi-infinite rigid substrate: ϑ → 0,
β → θY . The evolution of the angles β and ϑ as a function
of the applied tension T is shown in Fig. 4(a) for θY = π/3.
Since −1 � cos x � 1, both Eqs. (13) imply that a partial
wetting state exists only if

T � T +
nb = γ cos2 (θY /2), (14)

where the subscript “nb” stands for “no-bending limit.” Inter-
estingly, the symmetric situation β = ϑ is obtained exactly at
T = 2T +

nb .
The condition (14) does not have an analog in the classical

YLD theory of a drop on a thick (unbendable) solid body; it
defines a minimal tensile load that is necessary to maintain
a partial wetting contact even if 0 < θY < π/2. As T → T +

nb ,
β → 0 and ϑ → π such that the wet part of the sheet tends
to a closed circle and wraps the entirety of the fluid. Such
a circular shape satisfies the conditions of static equilibrium
at all tensions below that threshold. Henceforth, we call it
the vesicle state. Equations (13) implies also that the partial
wetting state emerges supercritically from the vesicle state at
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(a)

(b)

FIG. 5. Schematics of the system for (a) the partial wetting state
and (b) the vesicle state.

T +
nb when the applied tension increases. However, Eqs. (13)

do not determine whether the circular vesicle is stable for all
T < T +

nb .
One way to address this issue is to introduce a finite,

arbitrarily small amount of bending stiffness as we do from
Sec. III onward. This rounds off the corner in the elastic sheet
near the triple line [see inset of Fig. 5(a)] and makes Eq. (12b)
appears as the true force balance at the triple line. From
this perspective, the force balance equations (12a) hold at a
distance of a few bendocapillary lengths away from the triple
line where the angles ϑ and β can be measured. Therefore,
the contact angle ϑ + β is only the “apparent” contact angle,
as measured in Refs. [12,16], but the true contact angle as
measured at a distance smaller than �BC from the contact line
remains Young’s angle, θY , in agreement with recent experi-
ments performed on a related system [44].

A. The vesicle state

As we noted above, when T < T +
nb , the sheet wraps the

entirety of the liquid drop (β = 0, ϑ = π ) so that the state
is characterized by Ld = 0, Lb = 2πRb, and A = π R2

b; see
Eqs. (8) and (10). The energy (9) becomes

Uves = 2γsvL + 2
√

Aπ (T − γ cos θY ). (15)

Let us compare this energy with the one of the partial wetting
state, in the vicinity of the threshold T +

nb . Expanding Eqs. (9)
and (13) above the threshold T = T +

nb , we find

Upw − Uves = − 32

3 sin θY

√
Aγ ε3/2 + O(ε5/2), (16)

where 0 < ε = (T − T +
nb )/γ � 1. Hence the partial wetting

state has lower energy than the vesicle state when T > T +
nb .

The continuity of the angles β and ϑ , in the vicinity of
the transition between the two states, reflects the continu-
ity of both the energy, Upw = Uves, and its first derivative,
dUpw/dT = dUves/dT , at T = T +

nb . Hence, in the infinite
bendability limit, the transition is a continuous, second-
order transition. Specifically, we have a pitchfork bifurcation
whereby the angles β and ϑ vary rapidly with a small increase
of the applied force past the bifurcation point. We will see in
Sec. IV how adding bending energy to the model affects the
nature of the transition.

B. Complete wetting

We now revisit the assumption that the drop shape consists
of circular segments. If there is a finite liquid-vapor interface,
Laplace’s law implies that it is necessarily a circular arc as
well as the rest of the drop’s interface which makes a contact
with the sheet. However, for T < T +

nb , the liquid in the vesicle
state does not have a finite contact length with the vapor.
Hence, we must address the possibility that the drop, once
fully wrapped by the sheet, is no longer circular.

For this purpose, we consider the energy of a vesicle of
perimeter Lb whose shape is not necessarily circular:

U = 2γsvL + (T − γ cos θY )Lb. (17)

For a circular vesicle, Lb = 2
√

Aπ but otherwise 2
√

Aπ <

Lb � L. Therefore, if

T < T 
 = γ cos θY , (18)

the energy is minimal for Lb = L, i.e., the liquid wets the en-
tire length of the sheet. As a consequence, for 0 < θY < π/2,
a tensile load T < γ cos θY is not sufficient to stabilize the
sheet against a complete wetting by the drop. The energy of
the complete wetting state is

Ucw = (γsl + γsv)L = 2γsvL − γ cos θY L. (19)

A comparison between Eqs. (19) and (15) shows that, at T 
,
the system undergoes a discontinuous transition, characterised
by a finite energy gap; see Fig. 4(b). This gap can be viewed
as a potential barrier to the formation of a vesicle from a com-
plete wetting state which can only be overcome by applying
a sufficiently large force on the sheet’s edges (T � γ cos θY ).
Notice that, when π/2 < θY < π such a transition requires a
compressive force (T < γ cos θY < 0) and complete wetting
is therefore unobservable under any (or none) tensile load.

III. FINITE BENDABILITY: MODEL EQUATIONS

We now consider an elastic sheet with a bending mod-
ulus B > 0 and set up the mathematical model to describe
the partial wetting and vesicle state that are schematically
depicted in Fig. 5. By symmetry, we may restrict our attention
to x � 0. The model equations for the partially wet and vesicle
states are introduced in Secs. III A and III B, respectively. Two
alternative formulations of the model equations are introduced
in Sec. III C and used in Sec. V to derive an analytical de-
scription of the vesicle state in the limit 	 � 1. Finally, an
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analytical solution for the dry part of the sheet is obtained in
Sec. III D in the limit L � √

A.

A. Partially wet state

Denoting by κ , n⊥, and n‖ the curvature, perpendicular,
and parallel tractions along the elastic sheet, respectively, the
local balance of forces and torques are, in the absence of self
contact (see, e.g., [45,46] or [36, p. 189]),

B ∂sκ = −n⊥, ∂sn⊥ = p − κ n‖, ∂sn‖ = κ n⊥, (20)

where s is the distance along the sheet and ∂s denotes deriva-
tive with respect to that coordinate. The wet part of the sheet
is at s < D and is subjected to the Laplace pressure

p = γ /Rd . (21)

In the dry part, on the other hand, the pressure is atmospheric:
p = 0. Given κ , the local angle with respect to the horizontal
direction is found by

∂sθ = κ, (22)

and the Cartesian coordinates along the sheet satisfy

∂sx = cos θ, ∂sy = sin θ. (23)

Instead of n‖ and n⊥, one may use the Cartesian compo-
nents nx = n‖ cos θ − n⊥ sin θ and ny = n‖ sin θ + n⊥ cos θ .
This yields the following system of equations:

B ∂2
s θ = nx sin θ − ny cos θ, (24a)

∂snx = −p sin θ, ∂sny = p cos θ. (24b)

One recognizes the equations of an elastica subjected to a
force whose components, nx and ny, vary along it. Note that
the above equations can also be derived through energy mini-
mization, as detailed in Ref. [8].

In the dry region (s > D), there is no capillary pressure
and the force is constant and equal to the external applied
force, i.e., (nx, ny) = (T, 0). Hence, multiplying Eq. (24a) by
∂sθ and integrating, we obtain, for an infinite domain with
lims→∞(θ, κ ) = (0, 0),

κD = −2(T/B)1/2 sin (θD/2), (25)

where κD and θD respectively denote the curvature and angle
at s = D. On the wet side of this point, the force balance is

nx(D) = T − γ cos β, ny(D) = γ sin β. (26)

Assuming symmetric shapes and imposing YLD law at the
contact line, we have

θ (0) = 0, θD + β = θY . (27)

Next, translation invariance allows us to fix the values

x(0) = 0, y(0) = 0. (28)

Finally, the geometrical constraints (10) and (8b) become

A = R2
d

(
β − sin 2β

2

)
+ 2

∫ D

0
x(s) sin θ (s) ds, (29a)

xD = Rd sin β. (29b)

In the wet region 0 � s < D, we have to solve Eqs. (20)–
(23) with the boundary conditions and global constraint in

Eqs. (25)–(29). Note that there are 9 conditions because there
are 6 differential equations and three unknown parameters,
β, θD, and Rd . Notice that, integrating the last of Eqs. (24b)
between 0 and D and using the first of Eqs. (23) and (28)
together with the second of Eqs. (26) and Eq. (29b), we obtain

ny(0) = 0. (30)

Finally, by virtue of the geometrical constraint (29b) and
Eq. (21), the capillary pressure can also be expressed as

p = γ x−1
D sin β. (31)

B. Vesicle state

In the vesicle state, the sheet is in self-contact; see
Fig. 5(b). At the point of self-contact, s = �, there is a
localised reaction force, Fc, which modifies the second of
Eqs. (20) and the first of Eqs. (24b) as

∂sn⊥ = p − κ n‖ + Fc δ(s − �), (32a)

∂snx = −p sin θ − Fc δ(s − �). (32b)

Equations (32) brings two new unknown parameters, Fc and
�, into the problem which are fixed by two new boundary
conditions:

x� = 0, θ� = π/2, (33)

where subscript � means evaluation at s = �. While the total
area A of the fluid is still given by Eq. (29a), it is now split
in two parts, A1 and A2, respectively, below and above the
contact point. If the contact is such that no fluid is allowed
through, both A1 and A2 are in principle constrained to a fixed
value, instead of just A. In response to this new constraint, the
pressure p differs from the capillary pressure inside the vesi-
cle. A complete theory should therefore discuss the solution
not only as a function of A, but also of A1. However, there is
no general rule that governs how A should split between A1

and A2 and, hence, what the vesicle pressure should be. In the
absence of a law dictating the ratio A1/A2, we will assume
that it is free to vary with only the constraint A1 + A2 = A and
p1 = p2.

C. First integrals and alternative independent variables

We start this section by deriving useful first integrals of
the problem. In the wet part of the elastic sheet, combining
Eqs. (23) with Eqs. (24) and the first and last of Eqs. (20), we
obtain

∂s(x − ny/p) = 0, ∂s(y + nx/p) = 0, (34a)

∂s(Bκ2/2 + n‖) = 0. (34b)

This allows us, on the one hand, to deduce the shape of the
wet part of the sheet once the tractions and p are known and,
on the other hand, to write

B

2
κ2 + n‖ = H, (35)

where H is constant. Evaluating Eq. (35) at s = D and us-
ing the boundary conditions (25) and (26) together with the
relation between n‖ and nx and ny, one finds

H = T − γ cos θY . (36)
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In the case of self-contact, at s = � < D, we have θ (�) = π/2,
so that n‖(�) = ny(�). Next, integrating the first of Eqs. (34a)
between 0 and � and using x(0) = x(�) = ny(0) = 0, we get
n‖(�) = 0. Therefore, evaluating Eq. (35) at s = � leads to

H = T − γ cos θY = B

2
κ2

� , (37)

so that the curvature at the contact point in the vesicle state
vanishes when T = T 
 = γ cos θY . Since κ2

� � 0, the vesicle
state exists only for T � T 
 as in the infinite bendability limit
discussed in Sec. II.

Equation (37) has important consequences for the vesicle
state. It shows that the radius of curvature at the contact point,
κ−1

� , does not scale as the bendocapillary length �BC, as one
could expect, but instead it scales as

√
B/H . When T > T 
,

both �BC and κ−1
� vanishes as B → 0 which is compatible

with the circular shape obtained in the infinite bendability
limit. In this case, κ−1

� ∼ √
A is constant everywhere along the

vesicle except in boundary layer near the contact point whose
size scales as �BC. However, whatever the finite value of B,
Eq. (37) shows that the radius of curvature at the contact point
diverges as T → T 
. In this case, the shape of the vesicle is
necessarily different from a circular shape as shown below
in Secs. IV and V. Taking into account the bending stiffness
of the sheet, however small, has thus a dramatic consequence
on the vesicle shape near T = T 
, i.e., near the transition
between the vesicle and the complete wetting states.

We also note that using Eq. (35) to eliminate n‖, the second
of Eqs. (20) becomes

∂sn⊥ = p − H κ + B

2
κ3. (38)

We now rewrite the model equations in view of the analyti-
cal treatment performed in Sec. V. While s appears as the most
natural variable to express all the physical quantities along the
sheet, using other quantities as independent variable can be
more advantageous. In particular, since the differential system
is autonomous in s, one can reduce its order by using one of
the dynamical variables as the independent one and seeking
all the others quantities as functions of it. One useful choice
is θ . Let us introduce

κ2 = 2q(θ (s)). (39)

The variable q may be regarded as a measure of the density
of bending energy. By differentiating each side of Eq. (39)
with respect to s, one finds that ∂sκ = ∂θq. Hence, the first of
Eqs. (20) and Eq. (38) become

B ∂θq = −n⊥, ∂θn⊥ = p

κ
− H + B q. (40)

Differentiating the first equation above with respect to θ , we
thus obtain

B
(
∂2
θ q + q

) + p

κ
= H. (41)

This last formulation leads to considerable simplification
when either p/κ or B(∂2

θ q + q) dominates the left-hand side.
Another useful trick is to treat κ as the independent

variable. Indeed, using ∂sn⊥ = (∂κn⊥)∂sκ and the first of

Eqs. (20), Eq. (38) becomes

∂κn2
⊥ = 2B

(
−p + H κ − B

2
κ3

)
, (42)

which is simple to integrate. Together with Eq. (35), this
equation yields the tractions, and hence x and y, directly as
functions of κ .

Note that a rather complete treatment of Eqs. (20) in terms
of Jacobi functions and elliptic integrals of the first and third
kinds was developed in Ref. [45]. While the approach fol-
lowed in Sec. V is only asymptotically exact, as 	 → ∞, it
has the advantage of involving mostly elementary functions,
hence expressions that are easier to interpret (see also the
comment at the end of Sec. V D).

D. Solution in the dry region

We close this section by deriving an analytical solution for
the dry part of the sheet. In this region, where nx = T and
ny = 0, Eq. (24) reduces to

B∂2
s θ − T sin θ = 0, (43)

with boundary conditions θ (D) = θD and θ (L) = 0. Letting
L → ∞, the solution has the exact form

θ (s) = 4 arctan

[
tan

(
θD

4

)
exp

(
−

√
T

B
(s − D)

)]
, (44)

whose derivative at s = D is given by Eq. (25). On the other
hand, multiplying Eq. (43) by κ = ∂sθ and integrating we
have κ = −2(T/B)1/2 sin(θ/2). Parametrizing x and y with
θ and using this expression, Eqs. (23) become

∂θx = −
√

B

T

cos θ

2 sin (θ/2)
, ∂θy = −

√
B

T

sin θ

2 sin (θ/2)
. (45)

This yields

x = cx − (B/T )1/2{2 cos(θ/2) + [tan(θ/4)]}, (46a)

y = cy − 2(B/T )1/2 sin(θ/2), (46b)

where cx,y are constants of integration. This illustrates how all
the variables can be expressed in terms of θ . If we substitute
θ by the right-hand side of Eq. (44), we obtain their explicit
dependence on s.

Note from Eq. (44) that the assumption of infinitely long
sheet amounts to L

√
T/B � 1 so that the sheet is essentially

horizontal at the edges.

IV. NUMERICAL STUDY

As shown in Sec. III D, the shape of the sheet in the dry
region, D < s � L, is known explicitly in the limit of a long
sheet. To solve the problem in the wet region, 0 � s � D,
for the partial wetting state, we need to integrate numerically
Eqs. (24) with the associated boundary conditions (25)–(27)
and geometric constraints (29). For the vesicle state, the first
of Eqs. (24b) is replaced by Eq. (32b), and we must consider
two additional boundary conditions given by Eqs. (33). For
this purpose, a shooting method is used where the boundary
value problem is transformed into an initial value problem and
the unknown initial conditions are varied until the boundary
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FIG. 6. (a)–(c) Bifurcation diagrams showing the evolution of β as a function of T/γ for θY = π/3 and three values of 	 = γ A/B. Insets:
representative shapes of the system. Note that the simulated domain is much larger than shown here and that the sheet is actually horizontal
at its ends. (a) For 	 = 2, the system bifurcates at T = T − from partial wetting to complete wetting. (b) For 	 = 30, the transition between
partial wetting and vesicle is subcritical with region of bistability, T − < T < T +, where both states exist. (c) For 	 = 200, the bifurcation
between partial wetting and vesicle is supercritical with a continuous transition as the applied tension varies. For both (b) and (c), complete
wetting occurs when T < T 
. (d) Evolution of T − and T + as a function of 	 for θY = π/3. At 	 = 	0, 	 = 	
 and 	 = 	+, the tension T −

is vanishing, equal to T 
 = γ cos θY and equal to T +, respectively.

conditions are satisfied. In this way, we may simulate the
system for values of 	 = γ A/B ≡ A/�2

BC ranging from 0 to
about 300.

Whatever the values of 	 and 0 < θY � π/2, the system is
always in a partial wetting state when the applied tension T is
large enough. Indeed, in the limit T → ∞, the sheet is flat and
behaves as an undeformable substrate. In this case, complete
wetting is possible only if θY = 0.

When the applied tension decreases, transitions towards the
vesicle state and complete wetting occur. Figures 6(a)–6(c)
shows bifurcation diagrams for θY = π/3 and three repre-
sentative values of 	 where β is used as an order parameter
and the applied tension as the bifurcation parameter. These
plots highlight the existence of three distinctive values of the
applied tension.

Similarly to the infinite bendability limit discussed in
Sec. II, there are T 
 = γ cos θY and T +(θY , 	) delimiting
the domain of existence of the vesicle state. At T = T 
, the
curvature at the contact point, s = �, vanishes [see Eq. (37)
and Fig. 10(c) in Appendix B]. This value of the tension
is thus the smallest one for which a vesicle state exists. At
T = T +(θY , 	), the self-contact occurs with a vanishing con-
tact force, i.e., Fc = 0 [see Fig. 10(b)]. Beyond this applied
tension, there is no longer self-contact.

In addition, for 	 < 	+(θY ), we find that a new special
value of the tension, T −(θY , 	), shows up for a finite bending
modulus. This is the smallest tension for which partial wetting
states exist. As T → T −(θY , 	), the curve β(T ) develops a
vertical slope [Figs. 6(a) and 6(b)] but there is no self-contact
in contrast to the case of an infinitely bendable sheet. In
addition to 	+(θY ), the bifurcation diagrams highlight the

existence of two other special values of the parameter 	, that
we denote 	0(θY ) and 	
(θY ). These three values are marked
by the three vertical dashed lines in Fig. 6(d).

When 	 < 	0(θY ), T −(θY , 	) is negative, such that when
the tensile load T is reduced, the system remains in a partial
wetting state down to T = 0.

When 	0(θY ) < 	 < 	
(θY ), as in Fig. 6(a), the system
bifurcates from partial wetting to complete wetting as the
decreased applied tension reaches T −(θY , 	). In this case, the
vesicle branch is not reached by decreasing the applied tension
from T � γ .

When 	
(θY ) < 	 < 	+(θY ), as in Fig. 6(b), the transi-
tion between vesicle and partial wetting is subcritical, and
there is a region of applied tension where both states coexist.
There are thus discontinuous transitions between both states
at T = T −(θY , 	) and T = T +(θY , 	). In this case, the partial
wetting branch that bifurcates subcritically from the vesicle
branch at T + [blue dashed line in Fig. 6(b)] is unstable; it
becomes stable only at the limit point T −. For tensions in
the range T − < T < T +, three values of β are possible, each
corresponding to a distinct equilibrium state. The middle one,
belonging to the blue dashed branch in Fig. 6(b) yields a local
maximum of the energy and is therefore unstable.

When 	 > 	+(θY ), as in Fig. 6(c), the bifurcation is super-
critical with a continuous transition between both states. The
transition occurs at T = T +(θY , 	), at which value the partial
wetting state is stable and there is self-contact with Fc = 0.

This complex state diagram is summarized in Fig. 6(d),
which shows that, as 	 increases, the difference between
T + and T − decreases. When 	0(θY ) < 	 < 	
(θY ), T − is
smaller than T 
 and the bifurcation diagram is similar to the
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FIG. 7. Evolution of 	0, 	
, and 	+ as a function of θY delimit-
ing the possible types of bifurcation in the (θY , 	) space. The gray,
green, and pink regions correspond to bifurcation diagrams depicted
in Figs. 6(a)–6(c), respectively.

one shown in Fig. 6(a) in this region. When 	
(θY ) < 	 <

	+(θY ), T − is larger than T 
 while still smaller than T +.
The bifurcation diagram in this region is similar to the one
shown in Fig. 6(b). When 	 = 	+(θY ), we have the equality
T − = T +. Finally, when 	 > 	+(θY ), partial wetting states,
i.e., solutions of Eqs. (24), display self-crossing for T < T +
and must therefore be discarded. Hence, the system is in a
vesicle state when T 
 < T < T +. This corresponds to the
bifurcation diagram shown in Fig. 6(c).

The algorithm to compute 	+(θY ) is described in Ap-
pendix C. The result of this computation shows that when
θY is small enough, 	+(θY ) ∼ θ−2

Y (see Fig. 7). Therefore,
whatever the value of θY is, there always exist values of 	 such
that the transition is supercritical. However, this shows that
the limit 	 → ∞ together with θY → 0 is subtle and will not
be considered in the asymptotic theory presented in Sec. V.
Specifically, we will assume 	 � 	+(θY ) with θY = O(1).

It is also possible to compute 	0(θY ) for which T − = 0 and
	
(θY ) for which T − = T 
. For this purpose, T − is obtained
for given θY and 	 and the latter is varied by small increments.
For each value of 	, T − is computed until it reaches 0 or T 
.
The result of this computation is shown in Fig. 7. When θY is
small enough, 	0 ∼ θY and 	
 ∼ θ−2

Y .
More details on the various T -dependent quantities are

described in Appendix B.
The theory shows that the vesicle state exists only when the

tension is larger than T 
; see Eq. (37). The numerical results
show that this state exists only when the tension is smaller
than T +(θY , 	), which tends to γ cos2(θY /2) as 	 → ∞, in
agreement with the limit of vanishing bending modulus dis-
cussed in Sec. II; see Eq. (14). For 	 = ∞, the shape of the
vesicle is predicted to be circular with radius (A/π )1/2 inde-
pendently of tension. Numerical results, on the other hand,
show that the vesicle shape can significantly depart from a
circle, as can be seen in Fig. 6(b) for 	 = 30. In particular, in
the vicinity of T = T 
, the vesicle adopts a universal teardrop
shape independent on 	 and θY as shown in Fig. 10(d) in
Appendix B. The vesicle shape is also universal when β = 0
as seen in Fig. 10(e). The range of tensions for which
the vesicle is markedly noncircular shrinks as 	 → ∞ but

nevertheless remains significant even for 	 = 200. All these
observations about the vesicle shape are explained by the
asymptotic theory of Sec. V.

A nonvanishing bending modulus has thus a significant
impact on the vesicle shape, and not merely a boundary layer
near the point of self-contact. The vesicle shape is controlled
by two length scales. The radius of curvature of the sheet away
from the contact point scales like the size of the drop,

√
A.

However, the radius of curvature at the contact point does not
scale like �BC as one could expect. Instead, it scales as

λBC ≡
√

B

2H
= �BC√

2(T/γ − cos θY )
, (47)

as follows from Eq. (37). For a fixed value of T > T ∗ =
γ cos θY , it tends to zero as �BC → 0 or, equivalently, as
	 ≡ A/�2

BC → ∞. The shape adopted by the vesicle is thus
essentially controlled by the length

√
A and tends to a circle,

except in a boundary layer near the contact point. By contrast,
when T → T 
 but �BC, or 	, is kept constant, λBC diverges. In
that limit, the vesicle shape necessarily departs from a circle,
and this is what we investigate in the next section.

V. ASYMPTOTICS OF THE VESICLE SOLUTION

We now analyze the solution depicted in Fig. 5(b). We
make the assumption that self-contact at s = � takes place in
the wet part of the sheet, i.e., � � D. This is numerically ver-
ified for θY < π/2. The solution for the dry part of the sheet
is already known; see Sec. III D. The asymptotic solution for
the wet part of the sheet is derived in Secs. V A (� < s < D)
and V B (s < �).

A. Above the contact point

In the range � < s < D, one has κ = O(x−1
D ) and numer-

ical solutions indicate that β is small, so that p = γ /Rd =
γ sin β/xD 
 γ β/xD [see Eq. (31)]. Using Eq. (39), we thus
have

p/κ

Bq
= O

(
γ β x2

D

B

)
� 1 if β � A

	 x2
D

≡ �2
BC

x2
D

. (48)

Under this hypothesis, we may neglect p/κ in Eq. (41) which
becomes linear in q and can be easily integrated to give

B

2
κ2 ≡ Bq 
 H[1 + d cos (θ + ψ )], (49)

where d and ψ are constants of integration and where we have
used the relation (39) between q and κ . Evaluating Eq. (49)
at the contact point s = �, where θ = π/2, and comparing
with Eq. (37), we find ψ = 0. Next, using the boundary condi-
tion (25) and the relation (36) between H and T , the evaluation
of Eq. (49) at s = D leads to

d = γ cos θY (1 − cos θD)

H cos θD
− 1. (50)

Knowing that sgn(κ ) < 0 in the region � < s < D, the curva-
ture is readily obtained from Eq. (49):

κ (θ ) 
 −λ−1
BC

√
1 + d cos θ, (51)
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where λBC is given by Eq. (47). Hence, with ∂θx = cos θ/κ ,
we obtain

xD = λBC

∫ π/2

θD

cos θ dθ√
1 + d cos θ

. (52)

From this expression, the asymptotic limit (48) under which
the present derivation holds is simply β � 1. Hence θD ∼ θY

[see Eq. (27)] and Eq. (50) yields d 
 (γ /H )(1 − cos θY ) −
1. We thus eventually obtain the following expression for the
position of the triple line:

xD 
 �BC√
2

∫ π/2

θY

cos θ dθ√
H/γ + (1 − T/γ ) cos θ

. (53)

For cos θY � T/γ � cos2(θY /2), i.e., the largest interval of
tension for which the vesicle exists, the integral in Eq. (53) is
of order 1 if θY does not tends to 0. Therefore, xD is of order
�BC which confirms that Eq. (48) is equivalent to β � 1.

On the other hand, the equation ∂θy = sin θ/κ yields, with
Eq. (49),

y(θ ) 
 yD + B

Hd
[κD − κ (θ )]. (54)

The area A2 [see Fig. 5(b)] is given by

A2 = R2
d

(
β − 1

2
sin 2β

)
+ 2xDyD − 2

∫ xD

0
y dx. (55)

Using dx = ∂θx dθ = cos θ dθ/κ and Eq. (54), the integral
can be computed to obtain

A2 = x2
D

(
2β − sin 2β

2 sin2 β

)
+ 2B

Hd
(sin θD − 1 − κDxD). (56)

It follows that A2/A = O(	−1) and thus vanishes in the limit
	 → ∞ in agreement with the zero-bending case discussed in
Sec. II.

For future reference, let us finally note that, using Eq. (40),
we have

lim
s→�+

n⊥ = lim
θ→π/2

(−B∂θq) = γ

(
cos θY

cos θD
− T

)
. (57)

B. Below the contact point

In this section, we show that the vesicle shape below the
contact point, i.e., 0 � s < �, depends on a single form fac-
tor, namely, K , which is the ratio of curvatures of the sheet
at s = 0 and s = �. In this region, our numerical solutions
indicate that all terms in Eq. (41) are generally of the same
order. In this case, the alternative Eq. (42) is more convenient
to analyze. The curvature decreases from a value

κ0 > 0 at s = 0, (58a)

to κ� = −λ−1
BC < 0 at s = �, (58b)

where we used Eqs. (37) and (47). From Eq. (42), we directly
get

n2
⊥ = 2Bp[κ0 − κ] − BH

[
κ2

0 − κ2
] + B2

4

[
κ4

0 − κ4
]
, (59)

where we used the fact that n⊥ = ∂sκ = 0 at s = 0 [see
Eqs. (30), (24a), and (20)]. Let us rescale κ , p, and introduce
the parameter K as follows:

k = κ

κ0
, (60a)

K = κ0

√
B

2H
= κ0λBC = κ0

|κ�| , (60b)

P =
√

B

2H3
p = p

H |κ�| . (60c)

The parameter K is a geometrical parameter that is the ratio
of the curvatures at the bottom and at the contact point of the
vesicle and we will find that it alone determines its shape.
With these new notations, we may rewrite Eq. (59) as

n⊥ = Bκ2
0 N⊥(k;P, K ), (61a)

N⊥ = √
1 − k

[ P
K3

+ 1 + k

4

(
1 + k2 − 2

K2

)]1/2

. (61b)

Next, using the first of Eqs. (20), we have κ = ∂sθ =
∂sκ ∂κθ = −(Bκ0)−1n⊥∂kθ . Hence, using this last relation and
Eq. (61a), we obtain

θ (k; K ) =
∫ 1

k

k′

N⊥(k′;P, K )
dk′, (62)

where we used the fact that θ vanishes when k = 1, i.e., when
s = 0. Evaluating this expression at the contact point, where
k = −1/K , yields an equation for P:∫ 1

−1/K

k

N⊥(k;P, K )
dk = π

2
. (63)

The solution of this equation is universal and denoted by P =
P (K ); see Fig. 8(a). Note in particular that it doesn’t depend
on 	. Equation (63) assumes that N⊥ does not vanish in the
domain of integration. This is only true up to K 
 3.9207. We
ignore this issue in this section and give details in Appendix D.
A good numerical fit of P (K ), valid for all K , is given by

P (K ) ≈ (K0 − K )

(
K

K0
+ 3

14

K3

K + 0.846

)
, (64)

where K0 = 1.77842 [Fig. 8(a)]. The value K0 is such that P ,
and hence β, vanishes.

Substituting the function P (K ) in Eq. (62), the function
θ (k; K ) is known, and the equation for x can be rewritten as

cos θ = ∂sx = ∂sκ ∂κx = −(Bκ0)−1n⊥∂kx, (65)

and similarly for y. Knowing that x = y = 0 at k = 1, i.e., at
s = 0, and using Eqs. (65) and (61a), the shape of the vesicle
is thus given by the double quadrature

κ0 x(k; K ) =
∫ 1

k

cos θ (k′; K )

N⊥(k′;P, K )
dk′, (66a)

κ0 y(k; K ) =
∫ 1

k

sin θ (k′; K )

N⊥(k′;P, K )
dk′. (66b)

It turns out that, once Eq. (63) is satisfied, x automatically
vanishes at the contact point, so that no new constraint results
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FIG. 8. (a) Evolution of the functions |P| and φ, defined by
Eqs. (63) and (68), as a function of K together with the two ap-
proximations (64) and (69). P vanishes at K = 0 and at K = K0 

1.77842 where φ(K0) 
 5.84946. It has the asymptotic behaviors
P 
 K and P 
 −3K3/14 when K → 0 and K → ∞, respectively.
As K → 0, the vesicle becomes a circle, so that φ(0) = π . (b) Evo-
lution of (half) the length of the vesicle, �, as a function of K . Some
representative vesicle shapes are shown along the curve. As K → 0,
the vesicle shape approaches a circular shape of radius (A/π )1/2

whereas, as K → ∞, the vesicle shape tends to a teardrop.

from that condition. Finally, the area of the vesicle is com-
puted as

A1 = 2
∫ y�

0
x dy = −2

∫ 1

−1/K
x(∂ky)dk

= 2

κ2
0

∫ 1

−1/K

κ0 x(k; K ) sin θ (k; K )

N⊥(k;P, K )
dk. (67)

Having determined previously that A2/A = O(	−1), we have
A1 
 A and we obtain

κ2
0 A 
 φ(K ), (68a)

φ(K ) = 2
∫ 1

−1/K

κ0 x(k; K ) sin θ (k; K )

N⊥(k;P, K )
dk, (68b)

as long as K � 3.9207 [otherwise, N⊥(k;P, K ) vanishes
somewhere in the integration interval and the integral must
be split; see Appendix D]. Like P (K ), the function φ(K ) is
universal and independent of 	; see Fig. 8(a). Using the result
of Appendix D, it is well fitted over all K by

φ(K ) ≈ π

[
1 + 3.373 K2 + 0.606 K4

1 + 1.819 K2 + 0.276 K4

]
. (69)

We are now able to simultaneously parametrize β and T
with K . Indeed, using Eqs. (60b) and (68a), we obtain H as a

function of K and Eq. (36) then gives T as a function of K :

T (K ) = γ cos θY + H (K ), H (K ) = γ
φ(K )

2	K2
. (70)

Finally, with β 
 sin β in Eq. (31), and having determined
P (K ), H (K ), and T (K ), we obtain

β(K ) ∼ P
[

H

γ

] 3
2
∫ π/2

θY

cos θ dθ√
H/γ + [1 − T/γ ] cos θ

. (71)

Equations (70) and (71) imply that β = O(	−3/2) if K =
O(1) and that β = O(	−1/2) if H/γ = O(1), that is, if K =
O(	−1/2). Hence, the assumption β � 1 made in deriving the
solution above the contact point is verified in the large-	 limit.
On the other hand, the radius of the liquid-vapor interface is
obtained by using Eqs. (60c) and (70) in Eq. (21):

Rd√
A

= 2	 K3

φ(K )3/2 P (K )
. (72)

It is also interesting to compute the length �(K ) that makes
half the perimeter of the vesicle. To this end, recall that ∂sk =
−n⊥/κ0B. Hence ∂ks = −κ0B/n⊥. From this, and assuming
again that K is less than 3.9207 so that n⊥ does not vanish, we
obtain

�(K ) =
√

A

φ(K )

∫ 1

−1/K

dk

N⊥(k;P, K )
. (73)

The evolution of � as a function of K is shown in Fig. 8(b)
together with some representative vesicle shapes.

Finally, the shape of the vesicle is obtained by combining
Eqs. (66a) with Eq. (68a)

Z (k; K ) =
√

A

φ(K )

∫ 1

k

eiθ (k′;K )

N⊥(k′;P, K )
dk′, (74)

where −1/K < k < 1 and Z = x + iy. For a given value of
K , the above expression yields the shape of the vesicle; see
Fig. 9(a) and comparison to the numerics in Fig. 9(c). Strik-
ingly, this family of curves does not depend explicitly on 	

and is therefore valid for arbitrary bending stiffness, provided
that β � 1. Nor does it depend on θY , which is understand-
able if there is no triple line within the vesicle. Additionally,
the second of Eqs. (70) indicates that a given vesicle shape,
identified by the single number K , is achieved over the locus
of a constant product

2H	

γ
≡ A

λ2
BC

= 2A

�2
BC

(
T

γ
− cos θY

)
, (75)

where the product in question is φ(K )/K2; see Fig. 9(b). For
a given experimental setup, the quantity A/�2

BC is a constant
whereas the ratio A/λ2

BC in Eq. (75) varies as the applied
tension changes. Therefore, each T corresponds to a distinct
shape of the vesicle as in Figs. 6 and 9. However, the same
vesicle shape can be obtained at two distinct applied tensions
in two different systems characterized by two distinct values
of A/�2

BC provided the ratio A/λ2
BC is equal to the same con-

stant.
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FIG. 9. (a) Family of vesicle shapes (s � �) given by Eqs. (74) as a function of K . The applied tension increases as K decreases and
K0 
 1.77842 is the value for which β = 0. The vesicle shape approaches a circle of radius (A/π )1/2 as K → 0 and it barely changes when
K � 10. (b) Hyperbolas 2H 	/γ = c in the plane (H/γ , 	) along which the vesicle shape does not vary. The value of c = φ(K )/K2 is indicated
on the hyperbolas. (c) Comparison between vesicle shapes and those obtained numerically with 	 = 200 and θY = π/6 for the extreme values
of T . T 
/γ 
 cos θY is the numerical value of the tension below which the vesicle solution no longer exists and T +

num/γ 
 0.9114 is the
numerical value of the tension at which Fc = 0. K+ 
 0.447 is obtained by solving Fc = 0 using Eq. (76a) together with the expressions (71)
of β with 	 = 200 and θY = π/6.

Two particular vesicle shapes stand out in Fig. 9(b). One is
at K = K0, where the capillary pressure vanishes. This implies
that the liquid-vapor interface is flat, i.e., that β = 0. This cor-
responds to the unique curve Z (k, K0), with −1/K0 < k < 1,
in agreement with the numerical curves of Fig. 10(e) in Ap-
pendix B. Interestingly, when the capillary pressure vanishes,
the shape of the vesicle is the same as in the absence of
the fluid. Hence, we expect the curve Z (k, K0) to describe
the “self-encapsulation” state of the “dripping” elastic rod
described in Ref. [47]. The second corresponds to the limit
K → ∞, where H → 0 so that T → γ cos θY and κ� → 0;
see Eqs. (37) and (70). For lower tensions, i.e., T < T 
 ≡
γ cos θY , the vesicle does not exist.

The fact that the curvature at the contact point tends
to zero when T → T 
 suggests that the transition from a
vesicle to a complete wetting state occurs through a length-
ening and thinning of the region of contact as schematically
shown in Fig. 2. In this scenario, the contact region is
made of straight segments of the sheet without any bend-
ing cost whose length can be arbitrarily large. In this
lengthening process of the contact region, parts of the solid-
vapor interface are progressively replaced by a solid-liquid
interface which is energetically favorable when �γ > 0,
i.e., 0 � θY < π/2.

C. Contact force

The existence of the vesicle state requires that Fc > 0. The
tension T + for which Fc vanishes is also the bifurcation point
with the partial wetting solution. From Eqs. (32), we have
Fc(K ) = limε→0[n⊥(� + ε) − n⊥(� − ε)]. The expression of
n⊥ at s = �+ is obtained from Eq. (57) with θD = θY − β. The
expression of n⊥ at s = �− is obtained by using Eqs. (61) with

k = −1/K , Eq. (68a) and the first of Eqs. (70). The expression
of the contact force as a function of K reads then

Fc(K )

γ
= cos θY

cos (θY − β )
− cos θY − F (K )

	
, (76a)

F (K ) = φ(K )

2K2

[
1 +

√
4(1 + K )P + (K2 − 1)2

]
. (76b)

Numerically solving Fc(K ) = 0 yields the root K+ and there-
fore, from Eqs. (70), T + as a function of θY and 	, in very
good agreement with the numerical simulations (see the curve
T +

a in Fig. 2). In the large-	 limit, we have β � 1 and
K+ = O(	−1/2). It is easy to find, with the aid of Eqs. (64)
and (69), that

K+ 

(

π/	

1 − cos θY

)1/2

, (77)

corresponding to T + 
 cos2(θY /2). A more detailed calcula-
tion yields

T + 
 cos2(θY /2) − C+(θY )	−1/2, (78)

where C+(θY ) is a complicated function that is approximated
in the range 0 < θY < π/2 by

C+ ≈
√

π/8 θY

1 − 0.296 θY + 0.235 θ2
Y

. (79)

D. Limiting shape at T = T �

We close this section by noting that, as T → T 
, the
boundary conditions of Eqs. (20) in the range |s| < � are
κ = n‖ = 0 at s = �, so that the problem is mathematically
equivalent to the one studied by Mora et al. in Ref. [48] using
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the method of Ref. [45] (with corrected boundary conditions).
The study in Ref. [48] addressed the shape of a fishing line
deformed by the surface tension of a soap film. At the particu-
lar point T = T 
, corresponding to K → ∞ in our theory, the
vesicle shape is thus given, up to a scale factor, by the solution
explicitly given in Ref. [48]. A similar shape is also found in
portions of solutions reported in Refs. [4,45]. In Appendix E,
we provide an alternative formulation of the solution reported
in Ref. [48] based on the present theory.

VI. CONCLUSIONS AND PERSPECTIVES

In this paper, we have presented a comprehensive picture of
the bending of a thin elastic sheet under the opposite actions
of capillary forces and an external tension T . In order to
elucidate the essential mechanisms, we have focused on a
sheet that is much larger than the drop size, so that it can
be modeled as being infinitely long. This has the concep-
tual advantage that a pure tension is automatically applied
at the edges, independently of the state of deformation in
the wet part of the sheet. In practice, we expect the limit
of an “infinitely long” sheet as soon as the dry part of the
sheet is much larger than the bendocapillary length �BC. When
T = 0, the system has been used as a 2D model for “capillary
origamis” and configurations of complete wetting had already
be reported in this context [4]. However, applying an external
tension significantly modifies the folding dynamics. Now, the
conformation of the system depends on T and upon varying
this parameter, we found the possibility of wrapping most of
the liquid inside a vesicle, which corresponds to the “budding
transition” described by Kusumaatmaja and Lipowsky [42].
In this regard, one of the most dramatic results of our study is
that, at the vicinity of the transition from the wrapped vesicle
state to the complete wetting, the vesicle shape is universal—
being independent on the explicit value of the bending rigidity
B, but nevertheless distinct from a the circular shape that is
obtained for B = 0. This is surprising for one may expect
a small B to manifest itself only in boundary layers whose
size is comparable to the bendocapillary length �BC = √

B/γ .
One intuitive explanation for this, which is motivated by the
asymptotic analysis of Sec. V, is that the effective bendocap-
illary length is not �BC but rather the tension-dependent length
scale λBC = √

B/2(T − γ cos θY ). As the denominator of this
expression tends to zero, the balance of bending and capillary
forces is pronounced in the whole vesicle.

One of the questions that motivated the introduction of
a finite B in the model was whether this would induce a
snapping transition between the partial wetting and vesicle
states, i.e., would the former emerge subcritically from the
latter. The answer is yes, but not in the asymptotic limit 	 � 1
(i.e., �2

BC � A, where A is the drop area): numerically, there
is a finite value 	+(θY ) below which the transition becomes
subcritical. For small θY , we find that 	+(θY ) scales as θ−2

Y .
This observation suggests that the limit of a small θY is singu-
lar. While we have not studied the double limit 	 � 1 and
θY � 1, analyzing this asymptotic regime may enable one
to analytically capture the subcritical vesicle-partial wetting
transition.

Numerical simulations with lower values of 	 unexpect-
edly revealed that the partial wetting state can exist at applied

tensions T significantly smaller than the threshold for com-
plete wetting T 
 = γ cos θY ; see Fig. 6(a). In that scenario,
the partial wetting state disappears upon decreasing T without
exhibiting the vesicle state. It gives way, at a limit point T −
close to T = 0, to the complete wetting state. If, subsequently,
T is increased, one expects the vesicle state to emerge from
the complete wetting state at T 
. Further, at T +, the vesicle
state opens and the system jumps discontinuously to the par-
tial wetting state.

For an infinitely long sheet, the complete wetting state can
be realized only after infinitely long time. That is, if T < T 
,
the vesicle state disappears and the tension is not sufficient to
counteract capillary forces. Hence, an infinitely long stretch
of sheet is entrained by capillarity, in a never-ending process.
Consistently with this, T 
 is precisely the value at which the
curvature at self-contact vanishes in the vesicle state. Geomet-
rically, this allows the self-contact point to become a segment
of line of arbitrary length. Interestingly, the corresponding
limiting shape coincides with that of a fishing line or hair that
collapses onto itself when dipped in a soapy solution [48].
This is a particular case in our theory, and we thus provide
an alternative formula for what these authors call a “tennis
racket”; see Appendix E.

We have not studied Young’s angles in the range π/2 <

θY < π . The threshold for complete wetting, T 
 = γ cos θY

suggests that in that case a complete wetting state may be
realized only if the sheet is under compression. This amounts
to completely modify the mechanics of the problem: for one
thing, an infinitely long sheet would buckle at arbitrarily
small compressive stresses. Thus, considering this range of
Young’s angle would require us to abandon our simplify-
ing hypothesis and include the sheet length, L, as a key
parameter. These two aspects, π/2 < θY < π and finite L,
open interesting research perspectives on this basic physical
setting.

The experimental validation of the theory developed here
presents, at least, two difficulties. First of all, the theory
applies to bidimensional systems and a cylindrical drop is un-
stable when its length exceeds few times its diameter. Second,
for thin elastic objects, the applied force is quite small and
difficult to measure. These two issues have been addressed to
some extent in Ref. [43] where a thin elastic filament floating
at air-water interface is placed in contact with a floating oil
droplet which is flattened by gravity and behaves essentially
as bidimensional object. One extremity of the filament is
attached to a translation stage and the other end to a soft
beam whose deflection yields the applied force (
 μN). Such
a system offers the possibility to vary 	 between roughly 1
and 103 and to reproduce the bifurcation and state diagrams
shown in Fig. 6 as well as to study the vesicle shapes as
the applied load varies. However, the Young’s contact angle
is larger than π/2 in the experimental setup considered in
Ref. [43]. As a consequence, only the partial wetting state was
studied. Changing the materials used or chemically treating
the filament surface to decrease θY would allow to test the
present theory.

To close this conclusion, we must mention the work by
Kusumaatmaja and Lipowski [42], who numerically studied
a (3D) axisymmetric bud forming in a membrane under ten-
sion and in contact with two distinct fluids. This budding
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solution is analogous to the vesicle solution described in the
present paper (the authors studied it as a function of the
nondimensionalized drop volume, i.e., in the present notation,
as a function of 	3/2). However, the presence of hoop stress
prevented them from obtaining analytical results for B > 0
and, in this sense, the present work provides some analytical
support to Ref. [42].
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APPENDIX A: MINIMIZATION
OF THE LAGRANGIAN (11)

We give here details about the minimization of the La-
grangian (11) leading to the Eqs. (12). Requiring that the
derivatives of L with respect to β, ϑ , Rd , and Lb vanish, leads
to, respectively,

2γ Rd − 2Rd T cos β − μ
∂A
∂β

+ 2η Rd
ϑ cos β

sin ϑ
= 0, (A1a)

−μ
∂A
∂ϑ

+ 2η Rd
sin β

sin ϑ

(
1 − ϑ cos ϑ

sin ϑ

)
= 0, (A1b)

2γ β − 2T sin β − μ
∂A
∂Rd

+ 2η
ϑ sin β

sin ϑ
= 0, (A1c)

−�γ + T − η = 0. (A1d)

Equation (A1d) gives immediately

η ≡ n‖ = T − �γ , (A2)

which is just Eq. (12b). Using the expression (10) of
A(β, ϑ, Rd ), we find that

∂A
∂ϑ

= 2R2
d sin2 β

sin2 ϑ

(
1 − ϑ cos ϑ

sin ϑ

)
. (A3)

Therefore, Eqs. (A1b) gives a relation between the two La-
grange multipliers μ and η:

η = μ Rd
sin β

sin ϑ
. (A4)

Multiplying Eq. (A1a) by sin β and Eq. (A1c) by Rd cos β and
subtracting the resulting equations, we have

2γ Rd (sin β− β cos β )− μ

[
∂A
∂β

sin β− Rd
∂A
∂Rd

cos β

]
= 0.

(A5)

Using Eq. (10) we find that

∂A
∂β

sin β − Rd
∂A
∂Rd

cos β = 2R2
d (sin β − β cos β ). (A6)

Substituting Eq. (A6) into Eq. (A5) leads to the expression of
the Lagrange multiplier μ:

μ ≡ p = γ

Rd
, η ≡ n‖ = γ

sin β

sin ϑ
= γ

Rb

Rd
, (A7)

where we used Eqs. (A4) and (8) in the second equation. We
thus recover the first of Eqs. (12a). Equations (A7) reveal the
Lagrange multipliers η and μ as the tension n‖ in the wet part
of the sheet and the pressure p in liquid volume, respectively.
Substituting Eqs. (A7) into Eqs. (A1c) (or Eq. (A1a)), we have

2γ β − 2T sin β − 2γ
A
R2

d

+ 2γ
ϑ sin2 β

sin2 ϑ
= 0, (A8)

where we used ∂A/∂Rd = 2A/Rd . Finally, using Eq. (10), we
obtain

T = γ cos β + γ
sin β cos ϑ

sin ϑ
= γ cos β + n‖ cos ϑ, (A9)

which coincide with the second of Eqs. (12a).

APPENDIX B: ADDITIONAL NUMERICAL RESULTS

Figures 10(a)–10(c) show the evolution of various quanti-
ties characterizing the system shape as a function of T for two
values of 	 and θY = π/3. When 	 increases, the position
of the contact point along the x axis, xD, tends to zero at the
transition between partial wetting and the vesicle state, i.e., at
T = T +, and stays small in the vesicle state; see Fig. 10(a).
This is consistent with the observation that the length of
the sheet forming the vesicle, �, is close to D. Therefore,
essentially all the liquid is encapsulated in the vesicle as 	

increases. The contact force, Fc, vanishes at T = T + and
increases almost linearly when the applied tension decreases
and reaches a value γ − γ cos θY at T = T 
 when 	 → ∞,
as shown by the asymptotic theory presented in Sec. V
[see Fig. 10(b)].

Figure 10(c) shows that κ� is independent of 	 at T = T 
.
It also shows that the tension at which β = 0 depends on
	 in agreement with the results reported in Fig. 6. How-
ever, the values of κ� at β = 0 are again independent on 	.
This suggests that the vesicle shape does not depend on 	

for some particular values of the tension as confirmed by
Figs. 10(d) and 10(e). However, as shown in Fig. 10(f), the
vesicle shape at T = T + does depend on 	 and approaches a
circular shape of radius (A/π )1/2 as 	 → ∞ (see also Fig. 9).
This striking observation is fully explained by the asymptotic
theory (see Sec. V), which shows that the vesicle has a given
shape when (T − γ cos θY )	 is constant. This is obviously the
case when T = T 
 ≡ cos θY and the asymptotic theory shows
that this is also the case when β = 0. However, the product
(T − γ cos θY )	 and, hence, the vesicle shape, does change
with 	 at T = T +(θY , 	).

APPENDIX C: ALGORITHM TO FIND �+
C

By definition, 	+(θY ) is the value of 	 at which the self-
contact state with a vanishing contact force (Fc = 0) switches
from the unstable to the stable branch of the partial wetting
state at a given θY . Self-contact solutions of Eqs. (24) can
be computed by adding two additional shooting parameters,
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FIG. 10. (a)–(c) Evolution of various quantities characterizing the system shape as a function of T/γ for θY = π/3 and 	 = 30 and 200.
As in Fig. 6, the blue solid and dashed curves correspond, respectively, to the stable and unstable branches of the partial wetting state, whereas
the red curves refer to the vesicle state. Panel (c) shows that κ (�) is independent on 	 when T = T 
 = γ cos θY and β = 0. (d)–(f) Influence
of 	 and θY on the vesicle shapes at three different values of T . The shape of the vesicle is independent on 	 and θY when T → T 
 and β = 0,
whereas it does depend on these parameters at T = T + where the shape approaches a circular shape of radius R = (A/π )1/2 as 	 increases;
see panel (f).

T and �, which are fixed due to two additional boundary
conditions, θ (�) = 0 and x(�) = 0. The particular value of the
tension at which such a state is found is, by definition, T +.
This procedure allows the self-contact state with a vanishing
contact force to be computed for given values of 	 and θY .

To determine 	+ numerically, 	 is increased by small steps
for a given value of θY . When 	 < 	+, the self-contact state
belongs to the unstable branch of the partial wetting state and
the transition is subcritical, and, when 	 > 	+, it belongs to
the stable branch and the transition is supercritical.

To determine at which branch the self-contact state be-
longs to, the self-contact solution is perturbed at each value
of 	 by slightly increasing T , i.e., T = T + + �T with 0 <

�T/T + � 1. If the self-contact solution belongs to the un-
stable branch, then the perturbed solution will feature some
self-crossing, i.e., mins x(s) of the perturbed solution near s =
� is negative. If mins x(s) > 0, then the self-contact solution
belongs to the stable branch. At a given θY , 	+ corresponds
thus to the value of 	 at which mins x(s) changes its sign.

APPENDIX D: VESICLE WITH K � 3.9207

In Sec. V B we assumed that κ decreases monotonously
from κ0 > 0 to κ� < 0. This assumption ceases to hold for the
range 3.9207 � K < ∞. In that range of values, n⊥ necessar-
ily vanishes somewhere along the curve and the formulas of
Sec. V B must be revised. The change of sign of ∂sκ happens

when N⊥ vanishes, that is at k = kmin, solution of

P
K3

+ 1 + kmin

4

(
1 + k2

min − 2

K2

)
= 0. (D1)

Since the above equation is of third order, a closed form
expression can be written for kmin in terms of P and K :

kmin = −1

3
+ W 1/3

3
− 2

W 1/3

(
1

3
− 1

K2

)
, (D2)

where

W K3

2
= 9K − 5K3 − 27P +

√
27[−2 + 5K2 − 4K4 + K6

− 18KP + 10K3P + 27P2]1/2. (D3)

Starting from the lowermost point of the vesicle, i.e., x = y =
s = 0, k first decreases from 1 to kmin < 0, before increasing
again from kmin to −1/K . Starting from k = 1 and as long as
n⊥ > 0, the function θ (k; K ) has the expression [see Eq. (62)]

θ1(k) =
∫ 1

k

k′ dk′

N⊥(k′;P, K )
, kmin < k < 1. (D4)

Once kmin is reached, n⊥ changes sign and, subsequently,

θ (k; K ) = θ2(k) = θ1(kmin) +
∫ k

kmin

k′ dk′

N⊥(k′;P, K )
, (D5)

where kmin < k < −1/K and N⊥ is still the positive function
defined in Eq. (61b). Note that θ2(k) = 2θ1(kmin; K ) − θ1(k),
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so that only θ1(k) needs to be evaluated in practice. The
equation that yields P (K ) is now∫ 1

kmin

k dk

N⊥(k;P, K )
+

∫ −1/K

kmin

k dk

N⊥(k;P, K )
= π

2
. (D6)

Once P (K ) is determined, we may compute the complex
coordinates

η1(k) =
∫ 1

k

eiθ1(k′ ) dk′

N⊥(k′;P, K )
, kmin < k < 1, (D7)

of which κ0x1(k) and κ0y1(k) are the real and imaginary parts,
respectively [see Eq. (66a)]. Similarly,

η2(k) = η1(kmin) +
∫ k

kmin

eiθ2(k′ ) dk′

N⊥(k′;P, K )
, (D8)

where kmin < k < −1/K . Only the function η1(k) needs to be
evaluated, for we have

η2(k) = η1(kmin) + e2iθ1(kmin )[η∗
1 (kmin) − η∗

1 (k)], (D9)

where η∗
1 is the complex conjugate of η1. Combining the

expressions just obtained, one may derive

φ(K ) = Aκ2
0 = −2

∫ 1

kmin

Re[η1(k)]Im[η′
1(k)]dk

+ 2
∫ −1/K

kmin

Re[η2(k)]Im[e2iθ1(kmin )η′∗
1 (k)]dk,

(D10)

where Re[·] and Im[·] denote the real part and imaginary part,
respectively, and η′

1(k) is the derivative of η1 with respect to k.
To close this Appendix, let us compute the length of the curve
that makes up the vesicle. One has ∂sk = −n⊥/κ0B. Hence
∂ks = −κ0B/n⊥. From this, and bearing in mind the change
of sign of n⊥, one obtains

�(K ) =
√

A

φ(K )

(∫ 1

kmin

dk

N⊥(k;P, K )
+

∫ −1/K

kmin

dk

N⊥(k;P, K )

)
.

(D11)

FIG. 11. Limiting vesicle shape at the verge of complete wetting,
and the Mathematica code used to draw it. This is the same shape as
the “tennis racket” solution in Ref. [48].

APPENDIX E: THE “TENNIS RACKET” SHAPE

We conclude by giving the solution as K → ∞ (T → T 
),
which is an alternative formulation of the solution of Ref. [48].
In that limit, P ∼ −3K3/14 and

N⊥ → √
1 − k

√
1 + 7k + 7k2 + 7k3/

√
28, (E1a)

W → (11 + 3
√

57)/7, kmin → −0.165785 . . . . (E1b)

The profile shown in Fig. 11 is obtained by evaluating
Eq. (D4) together with the real and imaginary parts of
the functions (D7) and (D9) and using φm = φ(K → ∞) 

6.89495. Note that, contrary to Ref. [48], no root finding is
necessary to obtain the solution.
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