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Reaction fronts sustained by fluid mixing play a central role in a large range of porous
media systems and applications. In many cases, pointwise continuous injection of a
reactant that displaces a resident reactant in three dimensions leads to a growing spherical
reaction front. While such configurations have until now been studied under the assumption
of a constant diffusion coefficient, in porous media the dominant diffusive process at the
continuum scale is hydrodynamic dispersion, which depends linearly on the flow velocity.
Here we analyze the impact of this nonuniform and time-varying hydrodynamic dispersion
on reactive transport occurring in such a spherically advected reaction front under point
injection and at constant flow rate. During an initial transient regime, dispersion leads
to a more advanced reaction front and a larger global reaction rate than when molecular
diffusion is the only mixing process, as well as to different temporal scalings for the
reaction front properties. At larger times, the reaction front eventually reaches a steady
state, characterized by a static position and time-independent reactant concentrations and
reaction rate, regardless of the presence and strength of dispersion. When dispersion
is weak, the steady-state front is positioned in a region where dispersion is negligible
compared to diffusion. Conversely, when dispersion is large, the steady-state front is
positioned in the transition zone where dispersion and diffusion are comparable. Under
this condition, hydrodynamic dispersion permanently affects the reaction front’s transport
by altering the steady state itself and augmenting the global reaction rate.

DOI: 10.1103/PhysRevFluids.8.084502

I. INTRODUCTION

Reactive fronts, characterized as the region in which two miscible fluids, one of which displaces
the other one, react with each other, are ubiquitous in natural and man-made porous media [1–3].
Such mixing fronts between chemically contrasted fluids have important applications in processes
such as soil and aquifer remediation [4–6], CO2 sequestration [7,8], hydrogen storage [9,10],
geothermal systems [11], and the dynamics of subsurface microbial communities [12]. Reactive
fronts in porous media also find presence in biological systems such as the extracellular matrix
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(ECM) and affect cancer metastasis, disease propagation, and drug administration, to underline a
few [13]. In the presence of imposed heterogeneous flows, such mixing fronts undergo continuous
stretching and deformation [14–23], which enhance the effective mixing and reaction rates [24–26].

Mixing-induced reaction fronts are generally conceptualized as initially separated chemical
species A and B, carried by miscible fluids, that react with each other when these fluids are
mixed, following the bimolecular reaction A + B → C [27–34]. Among various possible flow
scenarios, planar fronts subjected to linear stretching (simple shear) [25,35,36] and radially [27,28]
and spherically [37] outward-moving fronts have received specific attention for their practical
relevance. Spherical reaction fronts, generated from pointlike injection, exhibit nontrivial physical
characteristics as they become stationary after a certain time, thus leading to steady-state spatial
distributions of the reactant concentrations [37]. These nonuniform flow scenarios have so far been
studied under the assumption of uniform diffusion coefficient.

In the context of transport in porous media (and in particular in subsurface hydrology), the Darcy
scale is the smallest scale at which an upscaled (or volume-averaged) continuum description of flow
and transport is applicable. Darcy scale modeling often provides valuable physical insights into
the macroscopic transport processes without explicitly requiring a pore-scale description, which
is computationally very expensive and generally even prohibitive [1,38]. In the corresponding
mathematical description of solute transport, hydrodynamic dispersion is the Darcy scale mani-
festation of the interaction between molecular diffusion and advection by the heterogeneous pore
scale velocity field. The resulting dispersion coefficient is expressed by a second rank tensor that is
customarily taken to be a linear function of the local flow velocity [39–41]. In most practical cases,
it dominates pure molecular diffusion by several orders of magnitude. Due to its dependence on
the local Darcy velocity, hydrodynamic dispersion may strongly influence the dynamics of reactive
fronts and thus significantly alter the local and global reaction rates [42,43]. However, its effect on
spherical reaction fronts is so far unknown.

In the present study, we thus quantify the impact of dispersion on a spherical bimolecular
reaction front, moving radially outward from a central injection point inside a porous medium. We
develop a mathematical framework coupling the advection-dispersion-reaction equation (ADRE)
and an irreversible bimolecular A + B → C reaction, the reactant A being continually injected
at a point into a porous medium that is initially saturated with the species B. To isolate impact
of hydrodynamic dispersion on the reaction front’s dynamics, the medium’s permeability here is
assumed to be uniform. Heterogeneous permeability fields yield additional stretching of mixing
fronts [44,45], which would otherwise combine with the mechanisms resulting from hydrodynamic
dispersion. We carry out numerical simulations and derive asymptotic analytical solutions, which
show good agreement with the numerical results. At early and intermediate times, hydrodynamic
dispersion qualitatively alters the transient front properties (front location, width, and global reaction
rate), while at sufficiently large times, the reaction front reaches a steady state. We further establish
that in order for dispersion to have a permanent impact on the steady-state reaction’s effective
kinetics, its strength has to be above a critical threshold, which depends on the flow characteristics.

The rest of the article is arranged as follows. In Sec. II we describe the physical system and
specify the notations, the governing equations along with the dispersion tensor’s expression, and the
relevant boundary conditions. We also briefly summarize the numerical solution methodology in
this section. In Sec. III we derive the approximate analytical (asymptotic) solutions to the governing
equations, present and discuss the numerical solutions, and compare the two. Finally, in Sec. IV we
conclude and highlight the key findings and inferences.

II. THE GOVERNING EQUATIONS FOR REACTIVE TRANSPORT

A. Physical description of the spherically advected reaction front

We consider a homogeneous porous medium of uniform hydraulic conductivity K and uniform
porosity φ0, initially saturated by an ambient fluid containing a dissolved species B of uniform
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FIG. 1. Illustrative representations of the reaction front; the cartoon in (c) demonstrates a typical reaction
front and the typical radial concentration profiles for the reactants (A and B) and the product (C) in the front’s
vicinity.

initial concentration (c0). A second body of the same fluid, containing another dissolved species A
of initially uniform concentration (also c0), is being injected continuously from a central point into
the porous medium with a permanent volumetric flow rate 4πQ0. As a result, the fluid containing
species A invades the porous medium initially saturated by B, while A and B react at the interface
between the injected and the resident fluids to produce C, as depicted in Fig. 1. Because of the
uniform permeability (which results in a uniform hydraulic conductivity) of the porous medium and
the spherical symmetry of the injection, the front will always have a spherical shape as it moves
outward [see in Fig. 1(a)]. Porous domains with variable permeability would exhibit nonuniform
stretching and deformation of the front [44,45]; the impact of such permeability heterogeneities
on the reaction kinetics may be quantified in a subsequent study. We consider a first-order reaction
kinetics in both the reactants (A and B), R′(x′, t ′) = kRc′

A(x′, t ′)c′
B(x′, t ′), where R′(x′, t ′) is the local

rate of reaction, c′
i(x

′, t ′) is the Darcy scale (averaged) concentration of species i (could indicate A,
B, or C) at position x′ and time t ′, and kR is the reaction rate constant.

B. The hydrodynamic dispersion tensor

Hydrodynamic dispersion is the Darcy scale description of the spreading (mechanical as well
as diffusive) of solutes at the Darcy scale, driven by pore-scale variability in the velocity and
concentration. While for flow through confined open flow domains with small aspect ratios (such
as tubes, or the space between parallel plates) Taylor dispersion is observed [46], for flows in
porous media, dispersion is dominated by incomplete mixing, and neighboring streamlines may
divert transversally from each other in a significant manner, which causes the mechanical dispersion
coefficients (either longitudinal or transverse with respect to the local Darcy scale velocity) to vary
linearly with the local velocity [1,38,47]. As such, the hydrodynamic dispersion tensor is expressed
as (a concise reasoning for the choice of the dispersion tensor has been included in Appendix A)

D∗ = D∗
M + �T ‖v′‖I + (�L − �T )

v′v′T

‖v′‖ , (1)

where D∗
M is the effective molecular diffusion coefficient of the solute in porous media assumed to

be DMI (i.e., isotropic diffusivity), v′ is the interstitial velocity (i.e., local fluid velocity averaged
over the pore space), I is the identity tensor, and �T and �L are, respectively, the transverse and
longitudinal mechanical dispersivities, which depend on the underlying geometrical features at the
pore scale as well as the medium’s porosity [1,38,47]. These lengths characterize the pore-scale
heterogeneity of the medium, and in particular its impact on solute transport at the Darcy scale. More
specifically, the isotropic part of D∗ is associated with the mechanical as well as diffusive spreading
of the solute along the direction of the macroscopic (Darcy scale) concentration gradient, whereas
the nonisotropic part [i.e., the last term of Eq. (1)] quantifies the rate of spreading in the direction
transverse to it. For the radial flow scenario studied here, the transverse dispersivity does not play
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TABLE I. Characteristic scales of relevant variables.

Variable Characteristic scale Remarks

Concentration (cc) c0 Injection concentration of species A
(same as ambient concentration of B)

Time (tc) (kRc0 )−1 Reaction timescale
Coordinate length (rc) [(Q0/φ0 )/(kRc0 )]1/3 Volume flow rate is 4πQ0

Velocity (vc) (Q0/φ0)/r2
c

Hydraulic head (hc) Q0/Krc

a role, so that the dispersion tensor simplifies to (�L‖v′‖ + DM )I, which is linearly dependent on
the velocity magnitude ||v′|| and the molecular diffusivity DM . If one disregards hydrodynamic
dispersion (�L = �T = 0), the dispersion tensor simply reduces to the isotropic molecular diffusion
tensor. Furthermore, in flow geometries with point injection, such as the one investigated here, �T

is irrelevant as the symmetry of the system nullifies any nonradial solute transport.

C. Governing equations for the concentrations of A, B, and C

Flow in the porous medium is governed by Darcy’s law, while the dynamics of chemical species
concentrations are governed by the advection-dispersion-reaction equation (ADRE). Since these
equations are well established, we directly consider their dimensionless versions (denoted without
the prime). To this end, the dimensionless version of any variable, say, ψ ′ (which could represent
c′

A, x′, t ′, etc.) is written as ψ = ψ ′/ψc, where ψc is the characteristic scale of the said variable.
Characteristic scales for all the pertinent variables are listed in Table I.

Note that here the only naturally occurring timescale is the typical reaction timescale, which has
been chosen as tc = 1/(kRc0). The other two well-defined quantities are, respectively, the volumetric
flow rate (4πQ0) and the reactant concentration (c0). These variables (along with the reaction rate
constant, kR) are sufficient to define the characteristic scales for length, velocity, etc., as shown in
Table I. Note that the length scale has been chosen as the distance that a fluid particle, moving
at the characteristic velocity vc, travels during the characteristic reaction time. In the following,
we shall use the spherical polar coordinates for mathematical modeling. As such, because of the
axisymmetric nature of the problem, all concentrations will be functions of r and t only.

After enforcing the nondimensionalization scheme mentioned above, the fluid mass conservation
with the discharge rate expressed as a function of the hydraulic head’s gradient according to Darcy’s
law reads (1/r2)∂/∂r(−r2K∂h/∂r) = 0, where h is the hydraulic head and yields for the interstitial
velocity (the interstitial velocity is the discharge rate divided by the porosity),

v = vr êr = 1

r2
êr, (2)

which is purely radial. With the help of Eq. (1), and assuming that the molecular diffusivities of all
chemical species are identical, the ADRE may be generally written for the species i as [1,25,26,38]

∂ci

∂t
+ vr

∂ci

∂r
= 1

Pe
(ηPe vr + 1)

1

r2

∂

∂r

(
r2 ∂ci

∂r

)
+ η

∂vr

∂r

∂ci

∂r
+ Ri(r, t ), (3a)

with Ri(r, t ) =
{

−cAcB when i = A, B

+cAcB when i = C
. (3b)

A concise derivation of the above equation has been provided in Appendix B.
Two crucial dimensionless numbers appear in the above equation. These are (1) the Péclet

number Pe, which characterizes the ratio of the diffusion timescale to the advection timescale and
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has the expression [38]

Pe = r2
c /DM

rc/vc
= (Q0/φ0)

rcDM
, (4)

where DM is the species’ molecular diffusivity, and (2) η, defined as the dimensionless longitudinal
dispersivity, which essentially characterizes the strength of mechanical dispersion; it is expressed as

η = �L

rc
. (5)

By extension, ηPe is the typical ratio of mechanical dispersion to molecular diffusion. Usually, the
ADREs also entail the Damköhler number (Da) [38], defined as the ratio of the typical diffusion
timescale (tD) to the typical reaction timescale (tr) such that Da/Pe = ta/tr , where ta = rc/vc is the
advection timescale. Since in the present configuration ta = 1/(kRc0) = tr , one naturally ends up
with Da = Pe. Therefore, the relative importance of reaction (characterized by Ri) and diffusion in
Eq. (3a) is also characterized by the Péclet number.

Equation (3a) is subject to the boundary conditions cA = 1, cB = ∂cC/∂r = 0 as r → 0 and
cB = 1, cA = ∂cC/∂r = 0 as r → ∞, as well as the initial condition cB = 1, cA = cC = 0
at t = 0, ∀ r.

We may substitute the expression for vr from Eq. (2) in Eq. (3), which then simplifies to

Pe
∂ci

∂t
=
(

ηPe

r2
+ 1

)
∂2ci

∂r2
+
(

2r − Pe

r2

)
∂ci

∂r
+ Pe Ri. (6)

III. RESULTS AND DISCUSSION

Equation (6) is solved numerically using an implicit finite difference scheme, along with source
term linearization to handle the nonlinear reaction terms. Further details on the numerical scheme
are given in Appendix C. In the following, approximate analytical solutions will also be discussed.

We use these numerical and approximate analytical solutions to quantify the impact of dispersion,
which corresponds to finite values of η, on the front’s propagation and reaction rates. The dispersion-
free scenario corresponding to η = 0 has been previously explored by Comolli et al. [37]. As
expected, our solutions for the limiting case η = 0 agree with the ones reported by these authors. In
Sec. III A we shall first summarize some of the key properties of the front, and in Sec. III B we shall
simultaneously present our inferences from the analytical and the numerical solutions.

We have also explored (numerically) the scenarios where the reactants have distinct initial
concentrations, and found that the essential physics in such cases remains similar to that of
identical initial reactant concentrations (c0) considered in the present analyses. In particular, the
scaling insights and the analytical approximations discussed ahead do remain applicable to reactive
transport processes where the initial concentrations of A and B are different, as verified by the
numerical solutions of Eq. (6). Hence, in order to delineate the consequences of dispersion in a
focused manner, the results of scenarios with distinct initial concentrations of the reactants are not
presented in the following. Note also that the consequences of different initial concentrations of the
reactants have previously been explored by Comolli et al. [37] in a dispersion-free context.

A. Observables characterizing the reaction front

While Eq. (6) governs the transport of the dissolved species, it is nonlinear owing to the presence
of the reaction term PeRi, and thus it is difficult to extract analytical insights from this equation.
However, by defining a new variable θ = cA − cB, it becomes possible to track the front location,
since θ � 1 close to the front where both the reactants are present in significant amount, while
θ ≈ ±1 away from the front. At the same time, a linear governing equation for θ may be derived by
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subtracting (6) for cB from cA, and this yields

Pe
∂θ

∂t
=
(

ηPe

r2
+ 1

)
∂2θ

∂r2
+
(

2r − Pe

r2

)
∂θ

∂r
, (7)

subject to boundary conditions: θ (r = 0, t > 0) = 1 and θ (r → ∞, t > 0) → −1, and to initial
conditions: θ (r = 0, t = 0) = 1 and θ (r 
= 0, t = 0) = −1. Equation (7) is evidently a conservative
equation for θ which quantifies the difference in the local reactant concentrations. In what follows,
we shall first discuss the nature of the transient solutions to the above equation using analytical
approximations, while later it will be shown that Eq. (7) also admits a stationary solution. However,
it is first important to outline some general front properties, whose analytical approximations (along
with numerical solutions) will be reported in the later sections.

First, the reaction front location r f may be defined as the location where θ = 0 (or cA = cB)
[32]. The reaction rate is expected to be large at this location where both cA and cB are present
in significant quantity, as it demarcates the boundary where the dominant reactant concentration
switches from cA to cB. Second, the reaction front half-width w f (denoted simply as “width”
henceforth for the sake of brevity), quantifying the thickness of the region where an appreciable
rate of reaction is observed, may be mathematically linked to the normalized second moment of the
reaction rate about the reaction front, as follows [32]:

w f =
[∫∞

0 4πr2cAcB(r − r f )2 dr∫∞
0 4πr2cAcB dr

] 1
2

. (8)

Third, the normalized global reaction rate R̄ may be evaluated by integrating the local reaction rate
(R = cAcB) over the entire domain:

R̄(t ) = 4π

∫ ∞

0
cAcB r2 dr. (9)

However, we emphasize that the local reaction rate has an appreciable magnitude only within the
reaction front; therefore, the global reaction rate R̄ is also a front property. Finally, the mass of the
product may be computed as

MC (t ) = 4π

∫ ∞

0
cC r2dr. (10)

However, integrating Eq. (6) for cC , we observe that MC is alternatively also expected to be given
by the integral

MC (t ) =
∫ t

0
dt∗R̄(t∗). (11)

B. Behavior of the spherical reaction front

In Eq. (7) the term (ηPe/r2 + 1) represents both mechanical dispersion and molecular diffusion,
wherein the component ηPe/r2 (here 1/r2 is just the local velocity) quantifies the strength of
mechanical dispersion. When this component is much larger than unity, mechanical dispersion
dominates over molecular diffusion and (ηPe/r2 + 1) may be approximated as ηPe/r2. This occurs
in the vicinity of the reaction front if the front location satisfies r2

f � ηPe. Conversely, molecular
diffusion takes over when r2

f � ηPe; this is due to the radial 1/r2 decrease of the flow velocity. As
a result, it is expected that at early times (when t � 1) the front’s spreading will be dominated by
mechanical dispersion. On the other hand, at longer times (t � 1), the front may enter a nondisper-
sive regime, where diffusive transport is dominated by molecular diffusion rather than mechanical
dispersion. This second regime is realized only when the front progresses for a sufficiently long
time before reaching a stationary state, where ∂θ/∂t = 0. Indeed, as previously shown by Comolli
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et al. [37] (for the special case of η = 0) and as we shall establish later, a spherically advected
front will always reach a steady state, provided it is allowed to travel for a sufficiently long time.
When mechanical dispersion is sufficiently strong (quantified as η � Pe), we establish that the
front may become static at a location where dispersion is comparable to diffusion, and hence
the nondispersive regime mentioned earlier never materializes. In addition to this, here we shall
depict that for ηPe � 1, i.e., when diffusion is weak (Pe � 1, provided η is not too small) and/or
dispersion is strong (η � Pe, provided Pe is not too small), the front may further go through another
intermediate mixing-limited regime at moderately large times (t � 1), wherein the reaction rate as
well as the front width decays with time before reaching the aforementioned steady state.

1. The early-time (t � 1) behavior: Dispersion-dominated reaction-limited regime

At early times, the reaction front is sufficiently close to the injection point and occupies
a sufficiently small region for the following two statements to hold within the reaction zone:
(1) r2 � ηPe and (2) |ηPe ∂2θ/∂r2| � |(2r − Pe)∂θ/∂r|. The second condition stems from the fact
that within the reaction front, ∂2θ/∂r2 ∼ 1/w2

f (w f being the front width) and ∂θ/∂r ∼ 1/w f , with
w f � 1 at early times. As a consequence, keeping only the dominant terms along with a change of
variable r̃ = r/η1/4 simplifies Eq. (7) to

∂θ

∂t
= 1

r̃2

∂2θ

∂ r̃2
. (12)

Subsequently, the above equation may be transformed into an ODE using the similarity variable
ξ = r̃4/t . With this similarity variable, the term ∂θ/∂t transforms into −(ξ/t )dθ/dξ and the term
(1/r̃2)∂2θ/∂ r̃2 transforms into (16ξ 2d2θ/dξ 2 + 12ξdθ/dξ )/(ξ t ), such that Eq. (12) transforms
into the ODE:

d2θ

dξ 2
+ 12 + ξ

16ξ

dθ

dξ
= 0. (13)

Using the boundary conditions θ (0) = 1 and θ (∞) = −1, the solution to Eq. (13) is

θ (ξ ) = −1 + 2
̄

(
1

4
,

ξ

16

)
, (14)

where 
̄(a, x) is the regularized gamma function [48], which is the ratio of the incomplete gamma
function 
(a, x) and the complete gamma function 
(a). At the front location, θ = 0, which gives
the expression for r f as

r f = [
16
̄−1

(
1
4 , 1

2

)] 1
4 η

1
4 t

1
4 = 0.914η

1
4 t

1
4 . (15)

Thus, the front location should scale as r f ∼ t1/4 at early times, which shows a qualitative departure
from the nondispersive transport characterized by r f ∼ t1/3 [37] (also see Appendix E for a concise
derivation). This indicates that the front moves at approximately the same rate as a fluid parcel
(∼t1/3) when dispersion is absent, whereas the presence of dispersion quantitatively changes its
rate of advancement. This is a direct consequence of the large enhancement in the spreading of
the reactants due to dispersion at early times (t → 0) near the injection point, where the flow
velocity is large (r f � 1), thus amplifying the influence of mechanical dispersion in the process. The
dominance of mechanical dispersion at early times because of large radial velocities also becomes
clear from Eq. (12), and this gives rise to a dispersion-dominated reaction-limited regime, because
of limited progress in the overall reaction (since t � 1).

Now we assess the early-time (t � 1) behavior of the reaction front. Following a similar ansatz
to those employed in previous dispersion-free (η = 0) studies [37], we consider cA and cB to be of
the following form in the vicinity of the front:

cA = GA(z), cB = GB(z), z = r − r f

tα
, (16)
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where both GA and GB are functions of the similarity variable z only. Proceeding with this expression
for cA and cB, with the objective of obtaining a similarity solution at early times, Eq. (6) for cA as
well as cB in the vicinity of the reaction front transforms to[

ηPe(
ztα− 1

4 + 0.914 η
1
4
)2 + t

1
2

]
d2Gi

dz2
+
[

2tα+ 1
4(

ztα− 1
4 + 0.914 η

1
4
) − Petα(

ztα− 1
4 + 0.914 η

1
4
)2

+αPezt2α− 1
2 + 0.914 η

1
4 Pe

4
tα− 1

4

]
dGi

dz
− Pet2α+ 1

2 GAGB = 0, i = A/B, (17)

where r f = 0.914 η1/4t1/4, based on Eq. (15). To assess the early-time regime, we consider Eq. (17)
in the limit t → 0 with z fixed. It may be shown that in this limit, a physically and mathematically
consistent solution for cA requires α = 1/4 (see Appendix D 1), with which Eq. (17) simplifies
to d2Gi/dz2 + (4η)−1(z + 0.914 η1/4)3dGi/dz = 0, where i ≡ A or B. Subsequently conducting a
change of variables z = η1/4z̃, we arrive at the equation

d2Gi

dz̃2
+ (z + 0.914)3

4

dGi

dz̃
= 0, (18)

which is subjected to the boundary conditions GA(z̃ = −0.914) = 1, GB(z̃ = −0.914) = 0,

GA(z̃ = ∞) = 0, and GB(z̃ = ∞) = 1 (based upon the conditions for θ given after Eq. (7)).
Evidently, this equation along with its boundary conditions is universal, i.e., independent of η (as
well as Pe). Substituting the expression for r in terms of z̃ from Eq. (16), r = t1/4η1/4(z̃ + 0.914),
into (9), we obtain

R̄(t ) = I0η
3
4 t

3
4 = 6.30 η

3
4 t

3
4 . (19)

In the equation above, I0 = ∫∞
−0.914 GA(z̃)GB(z̃)(z̃ + 0.914)2 dz̃ is evaluated to the numerical constant

6.30 due to the universal nature of Eq. (18). Upon using Eq. (11), we may further deduce that the
product mass should follow the expression

MC (t ) = 3.60 η
3
4 t

7
4 . (20)

Owing to the factor η3/4 in Eq. (19), for sufficiently strong dispersion the instantaneous global
reaction rate becomes larger than that in a dispersion-free scenario. This is because dispersion-driven
spreading of the reactants leads to enhanced mixing at early times, which results in an augmented
global reaction rate.

On the other hand, using Eq. (8), the width may be estimated as

w f = I1 η
1
4 tα = 0.78 η

1
4 t

1
4 , (21)

where I1 =
√

(
∫∞
−c (z̃ + c)2GA(z̃)GB(z̃)z̃2 dz̃)/(

∫∞
−c (z̃ + c)2GA(z̃)GB(z̃) dz̃) (with c = 0.914) is also

a numerical constant equal to 0.78 owing to the universal nature of Eq. (18).
When η = 0, at early times the front exhibits diffusion-dominated reaction-limited behavior, in

contrast to the dispersion-dominated behavior shown here. Approximate analytical estimates for the
early-time front properties in the dispersion-free case (i.e., η = 0, previously reported by Comolli
et al. [37]) are given in Appendix E. This regime may also be realized in the presence of dispersion,
provided it is sufficiently weak, as we shall observe in Sec. III B 5 and Sec. III B 6.

2. The intermediate-time (1 � t � tSS) behavior: Dispersion-dominated
mixing-limited regime

For sufficiently large values of η and Pe, i.e., for sufficiently strong mechanical dispersion as
compared to molecular diffusion, the numerical solutions suggest that (see Figs. 2 and 3) even at
large times (t � 1), the following conditions are satisfied within the reaction front: (1) r2

f � ηPe
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(mechanical dispersion dominates) and (2) |ηPe∂2θ/∂r2| � |(2r − Pe)∂θ/∂r|. As a consequence,
the approximate solution for θ in the form θ = F (ξ ) and the front advancement in the form r f ≈
0.914 η1/4t1/4 still remain valid when t � 1. It has to be noted that the front eventually reaches a
stationary state when t = tSS (see Sec. III B 3 and III B 4 for a detailed discussion), and hence the
time period under consideration must also satisfy t � tSS .

Now, we assess the intermediate-time (1 � t � tSS) behavior of the reaction front. In the vicinity
of the front, θ may be approximated (using Taylor series expansion) as

θ = −K (r − r f )

t
1
4

, where K = 1.056

η1/4
. (22)

Following a similar ansatz to those employed in previous dispersion-free (η = 0) studies [37],
we consider cA to be of the form

cA = t− β

2 G(z), z = r − r f

tα
. (23)

Here the variable G(z) quantifies the concentration profile of A and the factor t− β

2 quantifies the
depletion of A close to the reaction front. Proceeding with this expression for cA, with the objective
of obtaining similarity solutions for the intermediate-time regime, it may be shown (see the work
of Gálfi and Rácz [32] for a detailed step-by-step argument) by considering the region behind the
reaction front that, as z → −∞, G(z) must satisfy G ∼ −z, from which it follows that, α + β/2 −
1/4 = 0.

Furthermore, substituting cA from Eq. (23) into Eq. (6), using the approximate expression for
θ from Eq. (22) and the relation cB = cA − θ , Eq. (6) for cA in the vicinity of the reaction front
transforms into[

ηPe t− 1
2(

ztα− 1
4 + 0.914 η1/4

)2 + 1

]
d2G

dz2
+
[

2tα− 1
4(

ztα− 1
4 + 0.914 η1/4

) − Petα− 1
2(

ztα− 1
4 + 0.914 η1/4

)2

+αPezt2α−1 + 0.914 η1/4Pe

4
tα−3/4

]
dG

dz
− Pet3α− 1

4 (G2 + KzG) + βPe

2
t2α−1G = 0. (24)

It may be observed from the first bracketed term in the above equation that |ηPe t−1/2/(ztα−1/4 +
0.914 η1/4)

2
| � O(1) is possible even when t � 1, provided that

t � tSS, η � O(1) and ηPe2 � 1. (25)

This is because for η � O(1), the term (ηPe t− 1
2 )/(ztα− 1

4 + 0.914 η1/4)2 may become larger than
unity even for t � 1. This will occur when α < 1/4, due to which ztα−1/4 will be negligible
compared to 0.914η1/4 provided that 1 � t � ηPe2. Consequently, when ηPe2 is sufficiently
large, this condition may be satisfied even when t � 1. Therefore, with ηPe2 � 1 and thereby
ηPe t−1/2/(ztα−1/4 + 0.914 η1/4)2 retained in the leading order, it may further be shown that a
physically consistent solution for cA when t � 1 (provided t � tSS) requires α = −1/12 (see
Appendix D 2 for a brief derivation), giving β = 2/3 (since α + β/2 − 1/4 = 0). Equation (24)
then simplifies to d2G/dz2 + [(1.828t1/6)/(η3/4Pe)]dG/dz − (0.835/η1/2)(G2 + KzG) = 0. Fur-
thermore, since η � O(1), t � ηPe2 and ηPe2 � 1, the term [(1.828t1/6)/(η3/4Pe)] is small
compared to the rest of the coefficients in the above equation, and therefore Eq. (24) further
simplifies to d2G/dz2 − (0.835/η1/2)(G2 + KzG) = 0. With another change of variable z̃ = z/η1/4,
this equation transforms into

d2G

dz̃2
− 0.835(G2 + 1.056 z̃G) = 0 (26)
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TABLE II. Expected timescaling of front properties and mass of product based on the analytical approxi-
mations discussed in Sec. III B; tSS is the time at which the reaction front reaches a steady state.

Dispersion-dominated Diffusion-dominated Dispersion-dominated
reaction-limited reaction-limited mixing-limited

(t � 1, r2
f � ηPe) (t � 1, r2

f � ηPe) (1 � t � tSS, r2
f � ηPe)

r f t1/4 t1/3 t1/4

w f t1/4 t1/2 t−1/12

R̄ = ∫ r→∞
r→0 4πr2cAcB dr t3/4 t7/6 t−1/4

MC = ∫ r→∞
r→0 4πr2cC dr t7/4 t13/6 t3/4

and is subjected to the boundary conditions: G → −1.056z̃ as z̃ → −∞ and G → 0 as z̃ → ∞.
We therefore have a universal equation for G as a function of z̃ in Eq. (26). Now, substituting the
similarity expressions for cA [Eq. (23)] and cB [= t−β/2(G + 1.056z̃)] and the expression for z̃ in
terms of t and r into Eq. (9), we may deduce that the global reaction rate follows the expression

R̄(t ) = 4πt−β+αη
1
4

∫ ∞

−r f /(η
1
4 tα )

G(z̃)(G(z̃) + 1.056z̃)
(
r f + η

1
4 tα z̃

)2
dz̃, (27)

where α = −1/12 and β = 2/3. Considering that at t � 1, (1) G(z̃)(G(z̃) + 1.056z̃) peaks around
z̃ = 0 so that z̃ does not become large in the vicinity of the reaction front, as well as (2) r f /(η

1
4 tα ) ∼

t1/3 � 1, we approximate (r f + η
1
4 tα z̃)2 ≈ r2

f = 0.835η1/2t1/2. Then taking the lower limit of the
integral in Eq. (27) as −∞, it simplifies to

R̄(t ) = 13.27η
3
4 t− 1

4 , (28)

where we have utilized Eq. (26) to evaluate the integral
∫∞
−∞(G2 + 1.056z̃G)dz̃ as 1.2[G′]z̃→∞

z̃→−∞,
which is equal to 1.26.

Upon using Eq. (11), we may further deduce that the product mass follows the expression

MC (t ) = 17.69 η
3
4 t

3
4 . (29)

Following an approach similar to that for deriving R̄ in Eq. (28), using Eq. (8), the width may be
estimated as

w f = 1.438 η
1
4 t− 1

12 . (30)

The scaling expectations set forth above in Sec. III B 1 and Sec. III B 2, and in Appendix E, are
summarized in Table II.

It may be observed that the presence of mechanical dispersion can qualitatively alter the transient
behavior of the reaction front as compared to the dispersion-free scenario. Notice that during this
intermediate regime, the global reaction rate actually decreases with time because the reactants are
consumed at an accelerated rate during the early-time reaction-limited regime in the presence of
dispersion, which causes them to get depleted near the front, thus leading to an overall drop in the
reaction rate. This depletion of the reactants also causes the width of the front to shrink with time, as
noted in Eq. (30). We thus conclude that the reaction rate during this time period is mainly dictated
by how well the reactants have mixed, which turns it into a dispersion-dominated mixing-limited
regime. Recall that at early times, the global reaction rate and the front width vary as R̄ ∼ t3/4

and w f ∼ t1/4 [see Eqs. (19) and (21)], while in the current regime both decay with time, thus
indicating that R̄ (as well as the front width w f ) must go through a maximum at t ∼ O(1), when the
condition (25) is satisfied. In contrast, without any mechanical dispersion, the global reaction rate
would vary monotonically with time [37] towards the steady-state asymptote, hence culminating
in a qualitatively different intermediate-time behavior. On the other hand, condition (25) clearly
establishes that the mere presence of mechanical dispersion is not sufficient for the mixing-limited
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regime to exist; it materializes only when ηPe2 is sufficiently large so that there is a large separation
between t = 1 and tSS . This requires molecular diffusion to be weak and mechanical dispersion to
be stronger than a critical threshold, depending on the regime of dispersion.

In the dispersion-free scenario (η = 0) also, the mixing-limited regime may occur. In that case,
the observed scalings are different from the dispersion-dominated scenario and exhibits [37]: r f ∼
t1/3, w f ∼ t1/6, R̄ ∼ t1/6, MC ∼ t7/6. We indeed recover the same scalings from our numerical
simulations in the dispersion-free system, as shown later in Sec. III B 5.

3. The steady-state solution

It may be shown that by setting ∂θ/∂t = 0 in Eq. (7), it is possible to derive a steady-state
solution for θ (r), which has the following form:

θ(S) = 1 − 2

⎧⎪⎨
⎪⎩

1 − exp
[√

Pe
η

tan−1
(

r√
ηPe

)]
1 − exp

(
π
2

√
Pe
η

)
⎫⎪⎬
⎪⎭, (31)

where the subscript (S) denotes the “steady” state. The location where θ is zero is then defined as
the static reaction front r f (S) and is given by

r f (S) =
√

ηPe tan

⎧⎨
⎩
√

η

Pe
ln

⎡
⎣1

2
+ 1

2
exp

⎛
⎝π

2

√
Pe

η

⎞
⎠
⎤
⎦
⎫⎬
⎭. (32)

In order to get an approximation for the steady-state global reaction rate R̄(S), we consider the
Taylor series expansion of θ(S) [Eq. (31)] about r f (S),

θ(S) � −KS (r − r f (S) ), where (33a)

KS = 1√
ηPe

cos2

⎛
⎝√ η

Pe
ln

⎧⎨
⎩1

2

⎡
⎣1 + exp

⎛
⎝π

2

√
Pe

η

⎞
⎠
⎤
⎦
⎫⎬
⎭
⎞
⎠ coth

⎛
⎝π

4

√
Pe

η

⎞
⎠. (33b)

With the change of variable y = r − r f (S), taking cA = GA(y) (on account of steady state) and
considering r f (S) � 1 [which is valid given Pe > O(1)], the steady state (∂/∂t ≡ 0) form of Eq. (7)
for cA in the vicinity of the stationary front transforms approximately into(

ηPe

r2
f (S)

+ 1

)
d2GA

dy2
− Pe GA(GA + KSy) = 0, with GA(y → −∞) → −KSy, GA(∞) = 0,

(34)

where cB = cA − θ = GA(y) + KSy. The first boundary condition for GA simply stems from the fact
that as y → ∞, i.e., as we move away from the front towards the origin, cB → 0 and thus one must
have cA → θ . We conduct another change of variables

GA = ᾱḠA ≡ K2/3
S

Pe1/3 ḠA, y = β̄ ȳ ≡ ȳ

(Pe KS )1/3 , where ᾱ = K2/3
S

Pe1/3 and β̄ = (PeKS )−1/3

(35)

with which Eq. (34) further transforms to(
ηPe

r2
f (S)

+ 1

)
d2ḠA

dȳ2
− ḠA(ḠA + ȳ) = 0, with ḠA(ȳ → −∞) → −ȳ, ḠA(∞) = 0, (36)

Using Eq. (9), R̄(S) may be evaluated as

R̄(S) = 4πᾱ2β̄

∫ ∞

−∞
ḠA(ȳ)[ḠA(ȳ) + ȳ](β̄ ȳ + r f (S) )

2 dȳ. (37)
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Noting that ḠA(ḠA + ȳ) is an even function because of the nature of variations in cA and cB, we
deduce that ḠA(ḠA + ȳ)ȳ must be an odd function, and hence Eq. (37) simplifies to

R̄(S) = 4πᾱ2β̄
(
c1β̄

2 + k̄r2
f (S)

)
, c1 =

∫ ∞

−∞
ḠA(z̄)[ḠA(z̄) + z̄]z̄2 dz̄ ∼ O(1), (38)

with k̄ = (ηPe/r2
f (S) + 1). The constant c1 may be evaluated numerically by solving Eq. (36) and

then integrating using the expression given above. In deriving Eq. (38), we have used the following
[from Eq. (34)]:∫ ∞

−∞
ḠA(ȳ)[ḠA(ȳ) + ȳ] dȳ =

∫ ∞

−∞

(
ηPe

r2
f (S)

+ 1

)
d2Ḡ

dȳ2
dȳ =

(
ηPe

r2
f (S)

+ 1

)
= k̄. (39)

When Pe � O(1), c1β̄
2 � r2

f (S), and thus, R̄(S) may be further approximated as

R̄(S) = 4πᾱ2β̄ k̄r2
f (S) = 4π coth

⎛
⎝π

4

√
Pe

η

⎞
⎠. (40)

While evaluating the above expression, Eq. (32) has been used for r f (S).
It is important to note that although Eqs. (31) and (32) describe steady-state solutions for θ , the

front location and the global reaction rate, respectively, cC never reaches a steady state because it is
continually produced by the reaction.

We shall now examine two limiting cases of the stationary solution: (1) the weak dispersion
regime and (2) the strong dispersion regimes.

a. The weak dispersion regime [r2
f (S) � ηPe and η � Pe]. Examining Eq. (31), we observe that

under the conditions r2
f (S) � ηPe and η � Pe, it may be approximated as

θ(S) = 1 − 2 exp

(
−Pe

r

)
. (41)

In essence, the first condition implies that the steady-state reaction front resides in a region where
molecular diffusion dominates over mechanical dispersion. With θ(S) given as in Eq. (41), Eq. (32)
yields for the front location:

r f (S) = Pe

ln 2
�
√

ηPe when η � Pe. (42)

For η � Pe, Eq. (40) approximates as

R̄(S) = 4π, when η � Pe. (43)

Note that Eq. (41) is simply the solution for θ in the dispersion-free scenario (η = 0), previously
reported by Comolli et al. [37]. Therefore, in the weak-dispersion scenario the steady-state reaction
front exhibits essentially the same behavior as in a dispersion-free case.

b. The strong dispersion regime [η � Pe]. Now examining Eq. (32), we observe that for
η � Pe, which leads to the approximations: eπ

√
Pe/2

√
η ≈ 1 + (π/2)

√
Pe/η and ln[1 − (1 −

eπ
√

Pe/2
√

η )/2] ≈ (π/4)
√

Pe/η, this equation may be simplified as

r f (S) =
√

ηPe. (44)

Thus, in this regime, the steady-state reaction front resides at a location where mechanical dispersion
and molecular diffusion are of comparable strength. At the same time, for η � Pe, Eq. (44)
approximates for the steady-state reaction rate [from Eq. (40)]

R̄(S) = 16
√

η/Pe, when η � Pe. (45)
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An alternative derivation of the scalings estimates for R̄(S) (in terms of η and Pe) has been included
in Appendix F.

Based on the discussions in Sec. III B 3 a and III B 3 b, several major inferences may be drawn,
which are summarized below:

(i) When η � Pe (weak dispersion), the steady-state reaction front resides at a location where
mechanical dispersion is negligible compared to molecular diffusion. For this scenario, the steady-
state (normalized) global reaction rate (R̄(S)) is independent of both η and Pe.

(ii) Conversely, when η � Pe (strong dispersion), the steady-state reaction front is at a location
where mechanical dispersion is comparable to molecular diffusion, characterized by r f ∼ √

ηPe.
In this case, in stark contrast to the weak dispersion scenario, the (normalized) global reaction rate
depends on both η and Pe [see Eq. (45)].

(iii) Furthermore, comparing the limiting expressions for R̄(S) in the weak [Eq. (43)] and the
strong [Eq. (45)] dispersion scenarios, we observe that the global reaction rate will always be higher
for η � Pe than for η � Pe. Therefore, it is expected that strong mechanical dispersion will leave a
permanent mark on all the reaction front’s properties, even in the steady state, while also enhancing
the global reaction rate.

However, the steady-state reaction front will never reside in a region where mechanical dispersion
is dominant over molecular diffusion, regardless of how strong dispersion is.

4. The transition times

a. Transition time to the steady state (tSS). At sufficiently large times, the reaction front reaches
a steady state (as discussed in Sec. III B 3) and this timescale of transition to the stationary state
(tSS) may be estimated by combining the results of Sec. III B 1 and Sec. III B 3. This is achieved
by simply equating the transient front location (r f (t )) to its steady-state position (r f (S)), given by
Eq. (32).

In the strong dispersion scenario, from Eq. (15) it follows that r f = 0.914 η1/4t1/4, while
from Eq. (44) we note that r f (S) = √

ηPe. Hence, tSS in this scenario may be estimated from
0.914η1/4t1/4

SS = η1/2Pe1/2, which yields tSS = 1.43 Pe2η. On the other hand, in the weak dis-
persion scenario (η � Pe), the front transitions from a dispersion-dominated regime into the
diffusion-dominated regime before it reaches the steady state (see the discussion in the next
paragraph, Appendix E, and Sec. III B 6). Therefore, at large times, the transition actually occurs
from the diffusion-dominated regime to the stationary state. In the former regime, r f = 31/3t1/3

[see Eq. (E3)], while in the steady state, r f (S) = [ln(2)]−1Pe and hence tSS for the weak dispersion
scenario is estimated from 31/3t1/3

SS = [ln(2)]−1Pe, which yields tSS = 3−1/3[ln(2)]−1Pe3 ≈ Pe3. The
above results are summarized as

tSS =
{

Pe3, when η � Pe

1.43 ηPe2. when η � Pe
. (46)

Evidently, the presence of sufficiently strong dispersion (characterized by η � Pe) delays the onset
of the steady state (since 1.43 ηPe2 � Pe3 when η � Pe), while this transition time is independent
of the dispersivity length when it is sufficiently weak (η � Pe). An alternative derivation for the
scalings of tSS is presented in Appendix G, which yields the same scaling expectations as presented
in Eq. (46).

The steady-state transition time tSS may also be computed numerically (say, tnum(k)
SS ) by simply

estimating the time instance when the front position r f is sufficiently close to its steady-state location
r f (S) (i.e., r f = kr f (S), where k is a numerical factor close to 1), as follows:

tnum(k)
SS = t |r f =kr f (S) . (47)

In Eq. (47), the factor k (taken as 0.9 in this study) quantifies how close the transient numerical
solution for the reaction front position is to the steady state.
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b. Transition time between the dispersion and the diffusion-dominated regimes (ttrans). In a spher-
ically advected reaction front, mechanical dispersion always dominates over molecular diffusion
at sufficiently small times. However, in Sec. III B 3 a, it has been demonstrated that in the steady
state and for weak dispersion (η � Pe), the front resides in a region where diffusion dominates over
dispersion. Therefore, it is expected that for weak dispersion, the front will undergo a transition from
the dispersion-dominated into the diffusion-dominated regime at an earlier time (say, ttrans), before
reaching the stationary state. An estimate for the scaling of this transition time may be inferred by
noting that in the diffusion-dominated regime, the front advances as r f = (3t )1/3 [Eq. (E3)], and
therefore the front moves into the diffusion-dominated region (i.e., the front position crosses the
radial distance η1/2Pe1/2) at the time

ttrans = (1/3)η3/2Pe3/2. (48)

A numerical estimate for ttrans may be deduced by computing the time instance (say, tnum
trans) when the

front position satisfies r f = √
ηPe:

tnum
trans = t |r f =

√
ηPe. (49)

Note that when η > Pe (i.e., in the strong dispersion scenario), the front actually reaches, and
saturates at,

√
ηPe. This, however, does not represent a true transition point simply because the

front does not proceed any further, and thus Eq. (49) does not apply to situations when η > Pe.

5. Transient reaction front behavior

Figure 2 depicts the numerical solutions for the temporal evolution of the front properties and
the mass of the product, for various choices of η (including η = 0, represented by the black curves)
for Pe = 100. The dashed lines represent the analytical approximations for the front properties and
the product mass as deduced in Sec. III B 1 and Sec. III B 2, while their temporal scalings are also
depicted (floating solid lines for the dispersion-dominated regimes and floating dashed-dot lines
for the diffusion-dominated reaction-limited regime). The dotted horizontal lines indicate the front
properties in the steady state. We first observe that the analytical estimates (summarized in Table II)
compare well with the numerical solutions for all the front properties as well as the mass of the
product. Furthermore, all transient solutions are seen to asymptotically approach the stationary
solution at sufficiently large times.

Examining Fig. 2(a), we note that the dispersive and the dispersion-free (η = 0) solutions
approach each other after the transition region r f ∼ √

ηPe when η � Pe = 1 (implying weak
mechanical dispersion), wherein the transition occurs at a smaller radial distance than the stationary
front location, i.e., r f (S) >

√
ηPe. On the other hand, when η > Pe = 1, the cross-over point

r2 = ηPe gets pushed radially outward and is at a distance comparable to the location of the
stationary front. Thus, dispersion leaves a permanent mark on the reaction front, as expected from
Eq. (44) and the discussion in Sec. III B 3 b. One further observes that dispersion always results in a
faster front movement as compared to the dispersion-free scenario. Moreover, the inset of Fig. 2(a)
shows that the quantity t−1/4r f (t ) indeed scales as η1/4, as predicted by Eq. (15), which provides
further confirmation for the early-time approximations derived in Sec. III B 1.

Examining the other three panels in Fig. 2, the reaction width, the global reaction rate, and the
mass of the product are also found to follow similar patterns as that of the front position, r f ; that is,
for weak dispersion (η � Pe), they all approach the diffusion-dominated reaction-limited regime
before the steady state settles, while in the case of strong dispersion (η � Pe), all front properties
remain distinct from the dispersion-free scenario (η = 0), as mechanical dispersion indelibly influ-
ences the reactive mixing process. For all values of η, the dispersion-dominated reaction-limited
regime (characterized by r f ∼ t1/4, R̄ ∼ t3/4, w f ∼ t1/4) appears at early times in all four panels.
On the other hand, for η = 104 and 106, the condition in Eq. (25) is satisfied, and therefore we indeed
observe a brief window (t > 1) during which the dispersion-dominated mixing-limited regime
(characterized by r f ∼ t1/4, R̄ ∼ t−1/4, w f ∼ t−1/12) materializes. The insets in Figs. 2(b), 2(c),
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(a) Front Location (b) Front Width

(c) Reaction Rate (d) Mass of Product

FIG. 2. Time evolution of the front properties and product mass, for various choices of η (=
0, 0.01, 1, 102, 104, and 106) and Pe = 1; the dotted lines represent the stationary solution [Eq. (32) in (a),
Eq. (40) in (c), and the numerical stationary solution in the other panels]. The legend presented in (a) applies
to all panels. The circular markers in (a) represent the transition point r f = √

ηPe (with the shaded region
surrounding it approximating the range r f = √

ηPe/2 to r f = 2
√

ηPe); the dashed lines in panel (a) represent
r f as per Eq. (15); the dashed lines in (b) to (d) represent w f , R̄, and MC , respectively, as per Eqs. (19) to (21)
for t < 10 and Eqs. (28) to (30) for t > 10; the inset in (a) shows r f t−1/4 vs η for t � 1, while those in (b),
(c), and (d), respectively, show w f η

−1/4, R̄η−3/4, and Mcη
−3/4 vs t for the above choices of η; the yellow lines

in the inset in panels (b), (c), and (d), respectively, represent 0.78 t1/4, 6.30 t3/4, and 3.60 t7/4 for t < 1 and
1.438 t−1/12, 13.27 t−1/4, and 17.69 t3/4 for t > 1.

and 2(d) indicate that at early times, the curves for w f η
−1/4, R̄η−3/4 and Mcη

−3/4 corresponding to
the various choices of η collapse onto single curves following their respective temporal scalings,
as predicted by Eqs. (19)–(21) and (28)–(30). Furthermore, the global reaction rate reaches its
maximum at t ∼ O(1) once the reaction-limited regime is over (see Sec. III B 2), and hence it is
expected to follow the same temporal behavior outlined in Sec. III B 1 during this period, which
indicates that the maximum in R̄ should also scale as η3/4 according to Eq. (19) as is indeed
recovered from the numerical simulations.
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(a) Front Location (b) Front Width

(c) Reaction Rate (d) Mass of Product

FIG. 3. Time evolution of the front properties and product mass, for various choices of Pe (= 1, 10, 102,
and 103) and η [= 0 (no dispersion), 102, 104, and 106]; the legend presented in Fig. 2(a) applies to all panels.
The line descriptions are the same as for Fig. 2. The insets in panels (b), (c), and (d) are analogous to their
counterparts in Fig. 2.

Figure 3 illustrates the same front properties as in Fig. 2 for various choices of Pe (= 1, 10, 100,
and 1000) and four choices of η (106, 104, 102, and 0); the colored lines represent the results for
dispersive (η > 0) front movement, and the gray curves denote nondispersive (η = 0) transport.
The analytical solutions reported in Sec. III B 1, Sec. III B 2, and Appendix E, along with the
temporal scalings are also shown, and they agree well with the numerical solutions in all the
panels. As expected, there are a number of qualitative similarities between Figs. 2 and 3. At small
times (t < 1), the dispersion-dominated reaction-limited regime (characterized by r f ∼ t1/4, w f ∼
t1/4, R̄ ∼ t3/4, and MC ∼ t7/4) is apparent for η > 0, while for η = 0, the diffusion-dominated
reaction-limited regime (r f ∼ t1/3, w f ∼ t1/3, R̄ ∼ t7/6 and MC ∼ t13/6; see Appendix E) also
appears clearly. Interestingly, for all choices of η, the early-time reaction-limited regime is largely
insensitive to Pe, except for the reactive front’s width [panel 3(b)] which shows a weak dependence
on Pe when η = 0. We further observe that for Pe < η, the dispersive and the nondispersive
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solutions for all the front properties differ at all times, while for Pe � η (see, for instance, the cases
Pe = 103, η = 102, and Pe = η = 102), the front’s behavior asymptotically approaches that for
η = 0 (dispersion-free scenario) before the front reaches the steady state, thus indicating a transition
into the diffusion-dominated regime from a dispersion-dominated one.

It is evident that larger values of Pe delay the onset of the steady state [as expected from Eq. (46)],
while also pushing the steady-state front location radially outward, as evident from Eqs. (42) and
(44). On the other hand, dispersion only impacts this onset time when it is sufficiently strong
[η > Pe; also see Fig. 2(a)], and as such, the presence of dispersion also delays the commencement
of the steady-state regime, as indeed is established in Sec. III B 4 a; see Fig. 7 and Appendix H for
further discussion on the various transition times.

Importantly, now the presence of the dispersion-dominated mixing-limited regime (see
Sec. III B 2) becomes prominent when t > 1, especially for relatively larger values of η and
Pe, for which the condition (25) is satisfied. Concomitantly, the mixing-limited regime for the
dispersion-free scenario (η = 0, r f ∼ t1/3, w f ∼ t1/6, R̄ ∼ t1/6, and MC ∼ t7/6) as established by
Comolli et al. [37] also materializes at the intermediate times. It is to be noted that the front still
moves as r f ∼ t1/4, despite the fact that t > 1 and as asserted in Sec. III B 2, the global reaction rate
and the front width both decay with time (R̄ ∼ t−1/4, w f ∼ t−1/12) and approach their steady-state
values form above. As a consequence, the mass of the product grows as t3/4, as shown in panel 3(d).
Furthermore, the global reaction rate indeed goes through a maximum at t ∼ O(1) for all choices
of Pe and η, thus confirming the inferences of Sec. III B 2. The front width, on the other hand,
exhibits two maxima, especially for larger values of η, which is a consequence of its definition in
Eq. (8). We have verified (not shown here for the sake of brevity) that alternative definitions of
w f [e.g., normalized second moment considering the front to be approximately planar, i.e., same
as Eq. (8) but without the 4πr2 in the denominator and the numerator] exhibit the same temporal
scalings as the original definition [Eq. (8)], while going through only one maxima in their respective
transiences. It is also worth noting that for relatively smaller values of η and Pe, such as Pe = 1
and η = 100, the mixing-limited regime does not materialize, simply because the condition (25) is
not truly met for these values. Finally, we reiterate that the mixing-limited regime pans out very
differently in the absence of mechanical dispersion regardless of the Pe value (here R̄ and w f both
continually increase with time), as evident from the curves corresponding to η = 0 in Fig. 3, which
underlines another major qualitative difference between a dispersive and a nondispersive front.

6. Steady-state reaction front behavior

Figure 4 demonstrates the variations in θ at steady state for various choices of η (see legend)
for Pe = 1 in Fig. 4(a) and Pe = 103 in Fig. 4(b). The orange vertical lines demarcate the boundary
between the dispersion-dominated and the nondispersive (or diffusion-dominated) regions, i.e., the
cross-over point r2 = ηPe. When η < Pe, the solution for θ matches the dispersion-free counterpart
[Eq. (41); green curve in Fig. 4] exactly, while at the same time it also lies to the right of its respective
orange line, indicating that the front is located in the nondispersive region. When η > Pe, however,
we observe that θ(S) deviates significantly from its dispersion-free counterpart. While the front is
located further forward, it actually resides [now r f (S) ∼ √

ηPe; see Eq. (44)] in the vicinity of the
cross-over point, i.e., well within the transition region between the nondispersive and the dispersion-
dominated regimes.

The insets illustrate the steady-state variations in the reactant concentrations and the maximum-
normalized local reaction rate (R) for η = 0 (solid lines) and η = 107 (dotted lines). Examining
the inset in Fig. 4(a), we observe that the presence of dispersion causes significantly reduced
concentration of the reactants in a relatively large region near the stationary front, although the
global stationary reaction rate is still found to be higher in presence of dispersion than otherwise.
This occurs because the stationary reaction front is located more than three orders of magnitude
ahead for η = 107 than that for the dispersion-free scenario (η = 0) and hence, despite the local
reaction rate at the front being smaller in magnitude for η = 107, the cumulative reaction rate is still
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(a)

(b)

FIG. 4. Radial profile of the stationary solution of θ (= cA − cB ); the vertical orange lines represent the
cross-over point r = √

ηPe, associated with the respective η value based on the line style (see legends).
The numerical stationary solution for cA − cB matches exactly the closed-form expression in Eq. (31). The
stationary profiles for the concentrations of reactants and the maximum-normalized local reaction rate are
presented in the insets, where the solid lines correspond to η = 0 and the dotted lines correspond to η = 107.
(a) Steady state, Pe = 1 and (b) Steady state, Pe = 103.

larger because the reaction zone is spread out over the surface of a larger sphere. Figure 4(b) and its
inset reveal that for a larger Pe (Pe = 103), the steady-state front gets pushed further ahead, while
the reactant concentrations also get smaller, for both η = 0 and η = 107. The general characteristics
discussed as above remains unchanged for Pe = 103, although now the enhancement caused by
dispersion with respect to the η = 0 scenario is relatively smaller.

Figure 5 illustrates the enhancement of the steady-state global reaction rate (R̄(S)) for η > 0
with respect to the dispersion-free scenario (steady-state global reaction rate R̄0

(S) for η = 0) as a
color map in the (Pe, η) parameter space, computed numerically from the stationary solutions of
cA and cB. R̄(S) is observed to be greatly enhanced above the Pe = η curve, which corresponds
to a strong dispersion scenario and hence results in the steady-state front residing between the
dispersion-dominated and the nondispersive regions, in agreement with Figs. 2 and 3. Furthermore,
the relative magnification in the global reaction rate seems to be larger for smaller Pe values and
larger η values, which is in agreement with the scalings obtained by comparing Eqs. (43) and (45),
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FIG. 5. Color map of the normalized steady-state global reaction rate normalized by its value in the
dispersion-free scenario, in the (Pe, η) parameter space. The thin red lines above and parallel to the white
line are η/Pe isolines (where η/Pe = const).

as well as with Fig. 3(c). In particular, Eq. (45) indicates that R̄(S) is a function of η/Pe only for
η > Pe. This feature is reflected in the region above the white line in Fig. 5, where we can observe
that the red lines drawn parallel to the white line (i.e., those corresponding to η/Pe = constant)
indeed represent the constant contour lines with adequate accuracy. On the other hand, below the
η = Pe line, there is practically no enhancement in the steady-state reaction rate, thus indicating
that there is very little separating a dispersive front from a nondispersive front in this scenario.

Figure 6 depicts the variations in the stationary front’s location normalized by Pe [r f (S)/Pe, in
Fig. 6(a)], and the steady-state global reaction rate [R̄(S), Fig. 6(b)] as functions of η/Pe, as computed
from the numerical solutions of the steady-state version of Eq. (6). Examining both the panels, we
observe that both r f (S)/Pe and R̄(S) are indeed independent of η/Pe in the weak dispersion regime,
when η/Pe � 1, while they scale as

√
η/Pe when dispersion is strong (η/Pe � 1), as expected

from Eqs. (42) and (44) for r f (S), and Eqs. (43) and (45) [or Eq. (40)] for R̄(S) in Sec. III B 3 a and
Sec. III B 3 b.

Figure 7 presents the (numerically generated) phase diagram for the reactive transport regimes
of spherically advected reaction fronts for Pe = 10. It summarizes the temporal scalings of the front
properties and the product mass for the various transient regimes as noted in Table II, along with the
stationary state scalings in terms of η and Pe as inferred from Eqs. (42) and (44) for the front location
and from Eqs. (43) and (45) for the global reaction rate. The dotted horizontal line represents η =
Pe, and the dotted vertical line shows the instant t = 1. The red curve depicts the transition time
(termed as ttrans) between the dispersion-dominated and the diffusion-dominated (nondispersive)
regions and indeed exhibits a scaling ttrans ∼ Pe3/2η3/2, as demonstrated in Sec. III B 4 b. Six distinct
regimes are clearly visible in the (t, η) plane: (1) the dispersion-dominated reaction-limited regime
at early times (dark pink; see Sec. III B 1), (2) the diffusion-dominated reaction-limited regime (dark
violet) when dispersion is sufficiently weak (see Appendix E), (3) a gray region that demarcates the
transition from the diffusion-dominated regime into the steady-state behavior at long times, (4) a
dispersion-dominated mixing-limited regime (yellow; see Sec. III B 2) above the η = Pe curve at
times sufficiently large (t > 1) but before the steady state has settled (t < tSS), (5) the dispersion-
dominated steady-state regime (blue; see Sec. III B 3 b), and (6) the diffusion-dominated steady-state
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(a) (b)

FIG. 6. Variations of (a) stationary front location normalized by Pe (i.e., r f (S)/Pe), and (b) steady-state
global reaction rate R̄(S), as functions of η/Pe; the black curves are obtained from the numerical steady-state
solution [i.e., the solution of Eq. (6) with ∂ci/∂t set to zero]; the analytical expressions for the limiting scenario
of η � Pe [Eq. (42)] and η � Pe [Eq. (44)] are shown as blue lines in (a). In (b) the blue line indicates the
analytical solutions for R̄(S) from Eq. (40).

behavior (green; see Sec. III B 3 a). The boundaries of the two steady-state regions (representing the
transition time to the steady state, tSS) have been obtained from the numerical solutions. The profile
of this boundary aptly reflects the scaling expectations derived in Eq. (46), i.e., when η � Pe (weak
dispersion), tSS is independent of η, while tSS ∼ η when η � Pe (strong dispersion). Furthermore,
we have observed (although not shown here for the sake of brevity) that for other values of Pe as
well, the qualitative nature of the phase diagram remains the same: For larger values of Pe, the red

FIG. 7. Phase diagram for the reactive transport regimes of spherically advected reaction fronts for Pe = 10,
as a function of time and η. Both transient and steady-state regimes are indicated. The exxpected temporal
scalings for the transient regimes are summarized in Table II, and the scaling for the transition times may be
found in Sec. III B 4. No particular scaling can be expected for the gray region. The curves corresponding to the
transition time ttrans and the steady-state time tSS , as obtained from the numerical solutions, are also presented.
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curve delimiting the upper boundary of regime (2) (the violet region) is pushed further downward
because of weaker molecular diffusion, while the steady-state regime [regions (5) and (6)] also
moves farther to the right because of delayed onset of the stationary state, and vice versa for smaller
values of Pe. Illustrative examples showing the variations in the transition times (tSS and ttrans) with
Pe are included in Appendix H; they confirm the scaling expectations outlined in Eqs. (46) and (48).

Concerning transition times, it should be further noted that simply equating the reaction rates
in Eqs. (19) and (28) yields a transition time t
 = 2.1 in the global reaction rate (R̄) (applicable
when dispersion is sufficiently strong; see Sec. III B 2). Indeed, it is expected that t∗ will be O(1)
as it essentially marks the front’s transition from a reaction-limited regime (Sec. III B 1) to a
mixing-limited regime (Sec. III B 2) and given that the reaction timescale has been chosen as the
characteristic timescale here.

The phase diagram in Fig. 7 clearly shows that for sufficiently strong dispersion, when η � Pe
(along with η � 1), the front never experiences a diffusion-dominated regime and will directly
transition to the stationary state after passing through the early-time dispersion-dominated reaction-
limited and the intermediate-time mixing-limited regimes, respectively. The reactive transport for
such scenarios will thus be under the influence of mechanical dispersion at all times. However,
when the condition ηPe � 1 is not rigorously satisfied, the mixing-limited regime may become
weak and confined only to a small time window at intermediate times. On the other hand, when
η � Pe (weak dispersion), the front starts in the dispersion-dominated reaction-limited regime
[regime (1)], then transitions into the diffusion-dominated reaction-limited regime [regime (2)],
and subsequently reaches the steady state [regime (6)] at large times after passing through the
gray region of the diagram. As a consequence, the steady-state front no longer remains under the
influence of mechanical dispersion. In addition, in this scenario, despite mechanical dispersion being
active at early times, it is not sufficiently strong to enforce the mixing-limited regime, otherwise
realized for larger values of η.

IV. CONCLUSION

We have studied the dynamics of a spherically advected bimolecular reactive front with a
A + B → C type chemical reaction in the presence of mechanical dispersion. The solution contain-
ing the species A is being injected into a porous medium initially saturated with a solution containing
the species B. The governing equations are solved numerically, and analytical approximations are
also derived; they uncover hitherto unknown reactive mixing regimes, which are different from to
those previously found based on the conventional constant diffusion coefficient assumption.

At early times, mechanical dispersion dominates over molecular diffusion and the front goes
through a reaction-limited regime, wherein the presence of dispersion significantly augments the
reaction rate and product mass. We find that the front’s mean position scales in time as t1/4, as
opposed to the t1/3 behavior previously demonstrated for dispersion-free scenarios. On the other
hand, at sufficiently large times, the reaction front approaches a steady state, wherein the front
properties and reactant concentrations do not change with time. The transition from the dispersion-
dominated behavior to the nondispersive behavior occurs at r f ∼ √

ηPe. Hence, if the steady state is
reached before the said transition, mechanical dispersion will have a permanent impact on the front
properties and will thus result in a lasting augmentation of the reaction rate. Evidently, this is feasible
only when mechanical dispersion is sufficiently strong, characterized by the condition η > Pe. In
such cases, once the steady state has been established, the front always resides in a region where
mechanical dispersion and molecular diffusion are of comparable strength (r f ∼ √

ηPe) and this
transition to the stationary state occurs at tSS ∼ ηPe2.

When ηPe � 1, i.e., when either dispersion or advection is sufficiently strong as compared to
molecular diffusion, the reaction front may also go through a dispersion-dominated mixing-limited
phase at intermediate times before reaching the steady state. During this phase, the global reaction
rate and the front width continually decay with time and eventually approach their steady-state
values. It is essential for mechanical dispersion to be present for this previously unreported regime to
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exist: It cannot occur in purely diffusive (or diffusion-dominated) fronts, regardless of how large the
Péclet number is. For weak dispersion, on the other hand, the front transitions into the nondispersive
region well before the steady state settles, and thus, at large times, the relative differences in the front
properties between the dispersive and the nondispersive scenarios become negligible. When η < Pe,
the transition from the dispersion-dominated to the diffusion-dominated regime occurs at ttrans ∼
η3/2Pe3/2, while the onset of the stationary state occurs approximately at tSS ∼ Pe3, independently
of η. In the steady state, significant augmentation in the reaction rate (as compared to that in a
dispersion-free scenario) comes about only when η > Pe, i.e., for strong dispersion. This results in
the normalized steady global reaction rate (R̄(S)) scaling as R̄(S) ∼ η1/2Pe−1/2. On the contrary, in
the weak dispersion scenario (η < Pe), R̄(S) is independent of both η and Pe.

We have thus established the conditions under which hydrodynamic dispersion affects the
dynamics of spherical reaction fronts. The nonuniformity in the local dispersion coefficient resulting
from its linear velocity dependence leads to novel scaling laws and enhanced reaction rates, which
are different from the scalings predicted based on the conventional constant diffusion coefficient
hypothesis. These findings hence provide fundamental insights into reactive fronts dynamics and
will guide the development of reactive transport models for a broad range of applications that involve
local injection of fluids in porous media.
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APPENDIX A: DISCUSSION OF THE HYDRODYNAMIC DISPERSION TENSOR IN EQ. (1)

The hydrodynamic dispersion tensor (D∗) is the sum of the molecular diffusion tensor
(D∗

M = DMI, assumed to be isotropic) and the mechanical dispersion tensor (D̃), which accounts
for solute spreading due to the interaction between transverse molecular diffusion and advection by
the heterogeneous pore scale velocity field. Thus, D∗ = D∗

M + D̃, D̃ being defined at asymptotically
large times (t ′ → ∞) as [1]

D̃ = lim
t→∞

d

dt ′ {〈[x′(t ′) − 〈x′(t ′)〉][x′(t ′) − 〈x′(t ′)〉]〉}, (A1)

where 〈·〉 indicates an ensemble average over all solute particles and x′(t ′) is the position of such a
particle at time t ′.

In narrow confinements (such as tubes, or the space between parallel plates), the diffusion time
across the channel cross section is much shorter than the residence time of a particle in the channel,
which leads to a well-mixed solute concentration field within the confinement and results in D̃i j ∼
v2

c [49], where vc is the characteristic velocity in the channel. This is known as Taylor dispersion.
On the other hand, for flow in porous media, the residence time within a pore is often comparable

to the timescale of diffusion across it, and thus solute transport in such scenarios is characterized by
incomplete mixing across pores. This results in D̃i j ∼ vc [49], i.e., mechanical dispersion becomes
proportional to the local velocity. The most general expression for a second rank tensor, which is a
linear function of a vector (i.e., v′), is

D̃ = λ1||v′||I + λ2
v′v′

||v′|| , (A2)

where λ1 and λ2 are scalars with the dimensions of length. The hydrodynamic dispersion tensor in
Eq. (1) follows directly from here. The linear relation between D̃ and v′ in Eq. (A2) [or Eq. (1)]

084502-22



EFFECT OF HYDRODYNAMIC DISPERSION ON …

has been verified experimentally by several independent studies [50–54], and therefore it is well
established in the literature [41,49,55] as an appropriate model for dispersion in porous media.

APPENDIX B: A BRIEF DERIVATION OF THE ADRE (3)

The upscaled (i.e., the Darcy scale) equation for the conservation of solute mass in a porous
media may be expressed as [1,49]

∂c′

∂t ′ + ∇′ · J′ = R(c′; x′, t ′), (B1)

where c′(x′, t ′) is the Darcy scale concentration (i.e., volume averaged over a representative ele-
mentary volume of the pore space), J′ is the Darcy scale flux, and R is the instantaneous (local) rate
of reaction. The Darcy scale flux may be written as J′ = J′

adv + J′
diff + J′

disp, where J′
adv, J′

diff, and
J′

disp are, respectively, the advective, diffusive, and dispersive components of the fluxes. It is to be
noted that J′

disp is a consequence of the upscaling process from the pore scale and the variabilities
in the concentration and velocity at that scale [1]. These three components may be expressed,
respectively, as J′

adv = v′c′, J′
diff = −D∗

M · ∇′c′ (Fick’s law of diffusion) and J′
disp = −D̃ · ∇′c′,

where D̃ is the mechanical dispersion tensor; see Appendix A. Enforcing these expressions into
Eq. (B1), noting that ∇′ · v′ = 0 on account of continuity (i.e., fluid mass conservation upscaled to
the Darcy scale), and defining the hydrodynamic dispersion tensor as D∗ = D∗

M + D̃, we deduce the
advection-dispersion-reaction equation as follows:

∂c′

∂t ′ + v′ · ∇′c′ = ∇′ · (D∗ · ∇′c′) + R(c′; x′, t ′). (B2)

Using Eq. (1) for D∗, upon nondimensionalizing Eq. (B2) using the scales outlined in Table I and
then expressing it in spherical coordinates yields Eq. (3).

APPENDIX C: NUMERICAL SOLUTION METHODOLOGY

Equation (6) may be discretized using an implicit finite difference scheme as follows:

(ηPevr( j) + 1)T1 +
(

2
(
ηPevr( j) + 1

)
r( j)

+ η
dvr

dr

∣∣∣∣
( j)

)
T2 − Pevr( j)T3 −

(
Pe

t − tprev
+ SP,i

)
ci( j)

= − Pecprev
i( j)

t − tprev
+ SC,i, (C1)

T1 = 2(r j − r j−1)ci( j+1) − 2(r j+1 − r j−1)ci( j) + 2(r j+1 − r j )ci( j−1)

(r j+1 − r j )(r j+1 − r j−1)(r j − r j−1)
, (C2)

T2 = (r j − r j−1)ci( j+1) + (r j+1 + r j−1 − 2r j )ci( j) − (r j+1 − r j )ci( j−1)

2(r j+1 − r j )(r j − r j−1)
, (C3)

T3 = (r j−1 − r j−2)(2r j − r j−1 − r j−2)ci( j) − (r j − r j−2)2ci( j−1) + (r j − r j−1)2ci( j−2)

(r j−1 − r j−2)(r j − r j−1)(r j − r j−2)
. (C4)

Deducing the numerical solution implies time-marching wherein Eq. (C1) is solved at each time
step for each of the three species, A, B, and C, with vr( j) = 1/r2

j . Here ci( j) represents the
concentration of the ith species at the jth grid node, and the superscript “prev” indicates the values
from the previous time step. The terms SC,i and SP,i are the (linearized) source-term contributions
corresponding to the reaction and are given by [56]: For species A, SP,A = −cB( j), SC,A = 0; for
species B, SP,B = −cA( j), SC,B = 0; and for species C, SP,C = 0, SC,C = cA( j)cB( j). At each time
step, iterations are carried out until the maximum error (which is simply the square root of the
average of squares of the change in values of ci( j) from the previous iteration) falls below the
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tolerance (here taken as 10−5). Last, knowing that the gradients are smoother at larger r and t ,
so that the system varies gradually farther from the injection point and evolves slowly at long times,
the r and t grids are discretized nonuniformly, having smaller steps near t/r = 0 and larger steps at
larger t/r.

APPENDIX D: BRIEF DERIVATION OF THE VALUE OF α APPEARING
IN SECS. III B 1 AND III B 2

1. The early-time dispersion-dominated reaction-limited regime

Proceeding with Eq. (17), we emphasize that the early-time regime mandates t � 1. For this,
we identify the prospective intervals for α as (1) α � 0, (2) 0 < α < 1

4 , and (3) α � 1
4 . These

values are identified such that Eq. (17) behaves distinctly in each of the intervals, subject to the
following requirements: (1) none of the terms in Eq. (17) should have a negative power of t in their
prefactors; (2) the second derivative term, d2GA/B/dz2, must be retained (otherwise the nature of the
equation changes); and (3) when considering α < 1

4 , the instances of the term (ztα− 1
4 + 0.914 η1/4)

in the denominators should be rearranged to (z + 0.914 η1/4t
1
4 −α )t− 1

4 +α . These requirements ensure
that Eq. (17) remains physically and mathematically consistent. Provided that these requirements
are fulfilled, the values of α obtained for the intervals (1) α � 0 and (2) 0 < α < 1

4 are, respectively,
α = 1

2 and α = 1
4 , both of which fall out of their designated intervals. On the other hand, for the

interval (3) α � 1
4 , we obtain α = 1

4 , which stands out as the deduced value of α in the early time
dispersion-dominated reaction-limited regime.

2. The intermediate-time dispersion-dominated mixing-limited regime

Proceeding with Eq. (24), we emphasize that the intermediate-time regime indicates 1 � t �
tSS . The condition (25) then requires that the term ηPe t− 1

2 (ztα− 1
4 + 0.914 η1/4)−2d2G/dz2 must be

dominant along with the reaction term, Pe t3α− 1
4 (G2 + KzG), simply because t > 1 indicates that

the reaction has progressed to a significant extent. Balancing these two terms yields α = −1/12,
which is consistent with the initial assumption that α < 1/4 as specified in Sec. III B 2. Furthermore,
inserting α = −1/12 back into Eq. (24) subject to the condition (25) indeed confirms that the rest
of the terms are negligibly small as compared to the above two.

APPENDIX E: APPROXIMATE SOLUTIONS FOR THE DISPERSION-FREE SCENARIO (η = 0)

Here we present the dispersion-free counterpart (i.e. η = 0) of the analysis in Sec. III B; this has
been previously reported by Comolli et al. [37]. For η = 0, Eq. (7) becomes

Pe
∂θ

∂t
= ∂2θ

∂r2
+
(

2r − Pe

r2

)
∂θ

∂r
. (E1)

Furthermore, following a path similar to that in Sec. III B 1, at early times, the reaction front is
sufficiently close to the injection point (r f � 1) and occupies a sufficiently small region for the
following assumption to hold within the reaction zone: |∂2θ/∂r2| � |[(2r − Pe)/r2]∂θ/∂r|. As a
consequence, keeping only the leading terms, Eq. (E1) simplifies to θt = r−1θr , which admits a
similarity solution, with the similarity variable ξ̂ = r3/3t ; this leads to the ODE, dθ/d ξ̂ = 0. The
solution to this ODE will be θ = �0 (a constant). Note, however, that the above simplification
reduces the order of the original equation [Eq. (E1)], thus indicating the presence of an internal
boundary layer [57], which essentially encompasses the reaction front. The simplified ODE on the
other hand governs θ in the outer regions on either side of the front, hence the constant �0 = ±1,
depending on which side of the front is being considered. Within the internal boundary layer (i.e.,
the front) θ varies rapidly between 1 and −1. Because our aim is simply to deduce the location of the
front (defined as the location where θ = 0), we note that it must be located at ξ̂ = ξ0 (a constant),
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giving us the expression for r f (t ) as (without commenting on the value of ξ0 explicitly),

r f = 3ξ0 t
1
3 = � t

1
3 ∼ t

1
3 . (E2)

In fact, with the reaction being negligible at early times, the front is simply advected by the solvent
fluid such that the front position follows:

r f = (3t )
1
3 . (E3)

Further, we again assume that cA/B have forms similar to those in Eq. (16), with which Eq. (6)
for cA/B in the vicinity of the reaction front transforms to

d2GA/B

dz2
+
[

tα− 1
3(

ztα− 1
3 + �

) − Pe tα− 2
3(

ztα− 1
3 + �

)2 + αPe zt2α−1

]
dGA/B

dz
− Pe t2αcAcB = 0. (E4)

Following Comolli et al. [37], α = 1/2, and subsequently Eq. (E4) simplifies to, G′′
A/B +

(zPe/2)G′
A/B = 0. The exact analytical solution of this equation is cA/B = 1/2 ∓ (1/2)erf (

√
Pez/2),

where the “–” sign is for A and the “+” sign for B. Substituting the expression for r in terms of z
and the above expressions for cA and cB into Eq. (9), we deduce

R̄ ∼ t
7
6 , (E5)

which gives us [using Eq. (11)] for the product mass

MC ∼ t
13
6 . (E6)

On the other hand, using Eq. (8), the width may be estimated as

w f ∼ tα = t1/2. (E7)

APPENDIX F: ALTERNATIVE DERIVATION OF THE SCALING ESTIMATES
FOR THE STEADY-STATE GLOBAL REACTION RATE (R̄(S))

The global reaction rate may also be estimated by considering Eq. (6) for the species B, which
may be multiplied by 4πr2 and integrated over the entire domain to arrive at the following:

4π

∫ ∞

0
(ηPe + r2)

d2cB

dr2
dr + 4π

∫ ∞

0
(2r − Pe)

dcB

dr
dr − 4πPe

∫ ∞

0
|RB|r2 dr ≈ 0, (F1)

where |RB| = cAcB; see Eq. (3b). We identify the last integral on the left-hand side as the steady
global reaction rate (R̄(S)). Furthermore, since the reaction between A and B (and hence their
variations) is mostly confined to a region close to the front and considering that in the steady state
the front is sufficiently far ahead from the injection point for its radial position to far exceed its width
(r f (S) � w f (S)), we may approximate r ≈ r f (S) in the first two integrals in Eq. (F1). This yields for
the global reaction rate (subjected to the boundary conditions for cB)

R̄(S) = 4π

∫ ∞

0
|RB|r2 dr ≈ 4π (2r f (S) − Pe)

Pe
. (F2)

In the weak dispersion scenario (η � Pe), r f (S) ∼ Pe [see Eq. (42)], and this leads to R̄(S) ∼ Pe0.
On the other hand, for strong dispersion (η � Pe), r f (S) ∼ √

ηPe [see Eq. (44)], which results in
R̄(S) ∼ √

η/Pe. However, the prefactors of these scaling estimates are better approximated by the
analysis of Sec. III B 3.
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(a) (b)

FIG. 8. Variations in the numerically computed (a) steady-state time normalized by Pe3 (i.e., tSS/Pe3) and
(b) transition time ttrans, with η/Pe; the expected scaling patterns of these transition times with η/Pe as per
Sec. III B 4 are also plotted as the labeled floating blue lines.

APPENDIX G: ALTERNATIVE DERIVATION OF THE TRANSITION
TIME TO STEADY STATE (tSS)

An alternative approach to derive the steady-state time is to consider the period when the front is
approaching the stationary state, such that x = r − r f (S) � r f (S). Then we may define θ = θ̂ + θ(S)

and approximate r with r f (S) in Eq. (7), which simplifies to

Pe
∂θ̂

∂t
=
(

ηPe

r2
f (S)

+ 1

)
∂2θ̂

∂x2
+
(

2r f (S) − Pe

r2
f (S)

)
∂θ̂

∂x
. (G1)

Here θ̂ represents the unsteady part of θ ; it must decay to zero as the steady state is approached.
Using separation of variables, and with the condition that at sufficiently large times, θ̂ = 0 at x = 0,
Eq. (G1) can be solved to

θ̂ = C0e−λt
[
e
− x

2r f (S)
(1−

√
1−2Peλr2

f (S) ) − e
− x

2r f (S)
(1+

√
1−2Peλr2

f (S) )
]
. (G2)

Evidently λ−1 (inverse of the separation constant) represents the timescale of decay for θ̂ and is
therefore a good approximation for tSS . To obtain an estimate for λ, we use the condition that as
x → −r f (S) (i.e., as we approach the injection point), θ̂ → 0. Imposing this condition yields as a
leading approximation, λ−1 ∼ Pe r2

f (S), which will translate into the same scalings as presented in
Eq. (46), when Eqs. (42) and (44) are, respectively, substituted for r f (S).

APPENDIX H: VARIATIONS IN THE TRANSITION TIMES (tSS AND ttrans) WITH Pe

Figure 8 presents the variations (numerically computed) in the steady-state transition time
normalized by Pe3 (i.e., tSS/Pe3) [in Fig. 8(a)] and the transition time between the dispersion and
the diffusion-dominated regimes [ttrans, in Fig. 8(b)] as functions of η/Pe. Their expected analytical
approximations from Eqs. (46) and (48) are also shown in the two panels; they exhibit very good
agreement with the numerical estimates. Indeed, tSS/Pe3 is independent of η/Pe [Fig. 8(a)] in
the weak-dispersion regime (η/Pe � 1), and it scales as η/Pe in the strong-dispersion scenario
(η/Pe � 1), as predicted by Eq. (46). On the other hand, ttrans is approximated consistently by
(1/3)(ηPe)

3
2 [Fig. 8(b)], as expected from Eq. (48).
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