
PHYSICAL REVIEW E 107, 065109 (2023)

Effect of variable solubility on reactive dissolution in partially miscible systems
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When two partially miscible systems are put in contact, one phase, A, can dissolve into the other one with
a given solubility. Chemical reactions in the host phase can impact this dissolution by consuming A and by
generating products that impact the solubility of A. Here, we study theoretically the optimal conditions for
transfer of a reactant A in a host phase containing a species B when a bimolecular A + B → C reaction generates
a product C that linearly decreases the solubility of A. We have quantified numerically the influence of this
variable solubility on the reaction-diffusion (RD) concentration profiles of all species in the host phase, on the
temporal evolution of the position of the reaction front, and on the flux of A through the interface. We have also
computed the analytical asymptotic concentration profiles, solutions at long times of the RD governing equations.
For a fixed negative effect of C on the solubility of A, an increase in the initial concentration of reactant B or
an increase in the diffusion rate of species B and C results in a larger flux of A and hence a larger amount of A
dissolved in the host solution at a given time. However, when the influence of C on the solubility increases, the
mass transfer decreases. Our results help understand to what extent a chemical reaction can optimize the reactive
transfer of a solute to a host phase with application to, among other things, the geological sequestration of carbon
dioxide in an aquifer.
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I. INTRODUCTION

Transfer between partially miscible (PM) phases in a two-
layer stratification has recently attracted renewed interest for
understanding convective patterns that develop when a given
solute dissolves in a host phase, triggering buoyantly unstable
density gradients. This has been observed in the cases of
a solid dissolving in a liquid [1,2] and of a gaseous com-
pound dissolving in an aqueous phase [3–10], as well as in
two-liquid stratifications [10–15], for instance. In particular,
convective dissolution of CO2 upon its transfer to a host
phase in carbon capture and sequestration (CCS) techniques
has been the subject of both theoretical [16–24] and exper-
imental [6–8,25–28] works. This convection can be affected
by reactions [4–6,14,15,29–35], pressure [27], salinity [8,36],
boundary conditions [37], and presence of impurities [38,39].

In the case of reactive systems, it has been shown that,
when a species A dissolves in a host phase containing a
reactant B, a simple bimolecular A + B → C reaction can
change the dissolution flux because the reaction modifies the
concentration profiles and hence the density stratification at
the origin of the buoyancy-driven convection [5,6,29,40–47].
In this context, reaction-diffusion (RD) concentration profiles
of A, B, and C have been classified according to the impact
of the parameters of the problem on the density profile in the
host solution [6,29,40–49].
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Most models studying convective dissolution in such PM
systems rest on the hypothesis of a constant solubility of A
in the host phase [6,14,15,29,31,36,40,41,44–49]. However,
solubility depends on pressure [24,27,34,37,50], tempera-
ture [36,51], or the concentration of other solutes [36,52],
for instance. In particular, in CCS applications, the solubility
of carbon dioxide in fluids decreases with decreasing pres-
sure [24,37] and with increasing salinity [36,51,53], which
results in less effective convective dissolution of CO2 in salted
solutions [8,54]. Recently, some theoretical studies of reactive
convective dissolution made the hypothesis that the reactant A
and the product C coexist at the interface, where the sum of
the concentrations of A and C is then a constant [42,43]. To
the best of our knowledge, the reaction-diffusion base state
was not characterized, and the generic influence of a variable
solubility on reactive dissolution is still unknown.

In this context, we study theoretically reactive transfer
properties between two PM phases when a solute A dissolves
in a host phase containing a reactant B and reacts with it
according to the reaction A + B → C, generating a product
C that decreases the solubility of A. We study numerically
the influence of such a variable solubility of A on the RD
concentration profiles, as well as on the temporal evolution
of the position of the reaction front and the flux of A through
the interface.

This work is structured as follows. The model system and
the equations are presented in Sec. II. The numerical results
are discussed in Sec. III, along with the analytical solutions
corresponding to the asymptotic profiles. An analysis of the
temporal evolution of the position of the reaction front and
the flux of A entering the host phase is presented in Sec. IV.
Finally, conclusions are drawn in Sec. V.
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FIG. 1. Schematic of the two-layer partially miscible stratifica-
tion used to analyze the reactive dissolution of A from the reservoir
phase containing pure A into the host phase containing reactant B,
where the reaction between A and B produces C.

II. MODEL

We consider an isothermal partially miscible system con-
sisting of a reservoir of A placed above a liquid host phase
containing a reactant B. The horizontal planar interface sepa-
rating the two phases is located at z = 0, where z is the vertical
axis pointing to the host phase, as represented in Fig. 1. Re-
actant A dissolves over time with a finite solubility in the host
phase, where it reacts with species B with initial concentration
B0, forming product C via the A + B → C reaction. This
bimolecular reaction has a reaction rate v = q A B, where q
is the kinetic constant and A and B are the concentrations of
reactants A and B, respectively.

We consider that the diffusion coefficients are constant,
that no mass transfer takes place from the host phase to the
reservoir phase, that the density of the fluid is constant, and
that the interface is nondeformable. The equations governing
the RD evolution of the one-dimensional concentration pro-
files of species A, B, and C in the host phase are

∂A

∂t
= DA

∂2A

∂z2
− q A B, (1a)

∂B

∂t
= DB

∂2B

∂z2
− q A B, (1b)

∂C

∂t
= DC

∂2C

∂z2
+ q A B, (1c)

where DI is the diffusion coefficient of species I and C is the
concentration of product C. The initial conditions are

A = A0 for z = 0, A = 0 for z > 0, (2a)

B = B0 ∀ z, (2b)

C = 0 ∀ z, (2c)

where A0 is the solubility of reactant A in the initial solution
of B with concentration B0 when C = 0. Assuming that the
solubility of A depends linearly on the concentration of the

product C but not on B, the boundary conditions are taken to
be

A = A0 − α C,
∂B

∂z
= 0,

∂C

∂z
= 0 for z = 0, (3a)

A → 0, B → B0, C → 0 for z → ∞, (3b)

where α quantifies the influence of C on the solubility of A.
The conditions (3b) are used for the analytical analysis of
the long time RD solutions. For the numerical simulations at
shorter times, we use no flux conditions at z = Lz, with Lz

being the finite size of the numerical domain along the z axis,
taken here to be Lz = 300. Note that the choice of Lz does not
influence the results provided the system is long enough for
the reaction front to be far away from the boundary at z = Lz

over the times studied.
The first boundary condition (3a) differs from the constant

solubility A = A0 at z = 0, i.e., α = 0, classically used in the
literature for diluted systems [6,14,15,29,31,36,40,41,44–49].
Kim and Cardoso [42,43] used the boundary condition A =
A0 − C, i.e., α = 1 in Eq. (3a), stating that the diluted reactant
A is directly converted into product C by consuming reactant
B. In this work, we fix A = A0 − α C and vary α between
0 and 1 to account for the assumption that C linearly de-
creases the solubility of A, which is the simplest, most general
relation.

By using the characteristic RD time and length scales
[6,40,44,55,56], tc = 1/(q A0) and lc = √

DA tc, we introduce
the dimensionless time t̃ = t/tc, space coordinate z̃ = z/lc,
and concentrations [Ã, B̃, C̃] = [A, B, C]/A0 to nondimen-
sionalize Eq. (1). Dropping tildes for convenience, Eq. (1)
become the dimensionless RD system [40]

∂A

∂t
= ∂2A

∂z2
− A B, (4a)

∂B

∂t
= δB

∂2B

∂z2
− A B, (4b)

∂C

∂t
= δC

∂2C

∂z2
+ A B, (4c)

where δI = DI/DA is the ratio of the diffusion coefficient
of species I to that of species A. The dimensionless initial
conditions read

A = 1 for z = 0, A = 0 for z > 0, (5a)

B = β ∀ z, (5b)

C = 0 ∀ z, (5c)

where β = B0/A0 is the ratio of the initial concentration of
B and the solubility of A in the initial solution of B. The
dimensionless boundary conditions become

A = 1 − α C,
∂B

∂z
= 0,

∂C

∂z
= 0 for z = 0, (6a)

A → 0, B → β, C → 0 for z → ∞, (6b)

where A = 1 − α C is the generic boundary condition used
here to describe the influence of the concentration of the
product C on the variable solubility of A. The dynamics in
the reactive partially miscible two-phase system depends thus
on four dimensionless parameters: 0 � α � 1, β, δB, and δC .
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Equations (4)–(6) are integrated numerically by a fourth-
order Runge-Kutta method and second-order finite differences
with time step dt = 0.0005 and space step dz = 0.05.

III. RESULTS

To understand the RD dynamics in the host phase, we
compute the concentration profiles specific to this partially
miscible system and compare them to the nonreactive case,
the properties of which are summarized below.

A. Nonreactive case

Upon dissolution of A in a host phase containing no reagent
B (β = 0), i.e., in the pure solvent, the diffusive concentra-
tion profile of A is the classical solution of Fick’s law ∂A

∂t =
∂2A
∂z2 , with B = 0 = C and the initial [Eq. (5)] and boundary
[Eq. (6)] conditions [40]:

ANR = 1 − erf(η), (7)

where ANR is the concentration of A in the nonreactive (NR)
case and erf(η) is the error function of the self-similar variable
η = z/(2

√
t ). The flux JNR of A dissolving in the host phase

through the interface (z = 0) in the nonreactive case is given
by

JNR = − ∂A

∂z

∣∣∣∣
z=0

= 1√
π t

. (8)

The flux of dissolving A thus decreases in time, as dif-
fusion smooths the concentration gradient [40]. We now
investigate how a reaction consuming A affects the dynamics
when the reaction product decreases the solubility of A in the
host phase.

B. Reactive case

We first study the influence of α on the concentration
profiles for β = δB = δC = 1. Note that summing Eqs. (4b)
and (4c) with the given boundary conditions evidences that, if
δB = δC , we have the conservation relation [6,48]: B + C = β.
If β = 1, we then have B = 1 − C, and since A(z = 0) =
1 − α C(z = 0), the interfacial concentrations of A and B are
then equal when α = 1.

1. Concentration profiles

a. Short times. Figure 2 shows the evolution of the con-
centration profiles along the z axis at four different times and
three values of α. Note that the extent of the z axis differs in
the different panels of Fig. 2 for the sake of visual clarity.

A dissolving at the interface diffuses in the host solution
and reacts with B to produce C in the reaction zone defined as
the region with a nonzero production rate. If the solubility of
A is constant (α = 0), we recover the profiles that have long
been characterized [6,40,44,46,48]; that is, the concentration
of A is fixed at the interface (A = 1) and decreases mono-
tonically in the host phase. The concentration of B decreases
with time at the interface up to B(z = 0) = 0, while that of C
increases to C(z = 0) = γ , where γ is the constant concentra-
tion of the product C above the reaction front [40]. Note that
for δB = δC = 1, γ = β. Below the reaction front, B increases

from zero to its initial value β, and C decreases from γ to
zero.

When α �= 0, the product of the reaction C decreases the
solubility of A, and logically, we see in Fig. 2 that, at each
time, the concentration of A at the interface is then smaller
than A = 1. As a consequence, less A diffuses in the bulk,
which results in a slower consumption of B and production
of C. At the interface, B increases with increasing α, while C
decreases. This explains the slower progression of the reaction
front (whose position is defined as the point where A = B)
across the host phase, as seen in Fig. 2. The more C decreases
the solubility of A (i.e., the larger α is), the smaller their
respective concentrations are at a certain depth z. Conversely,
the concentration of B is then larger. Note that, in the specific
case with α = 1, the concentrations of A and B are equal at
the interface when β = δB = δC = 1, as noted before. Since
A = B at z = 0, the reaction front is located at the interface in
this limit case.

b. Long times. The asymptotic profiles presented in this
section are valid for a semi-infinite system or for a system
large enough that its length does not influence the results.
To obtain the analytical asymptotic solutions of Eqs. (4)–(6)
at long times for any value of α, we follow previous works
focusing on the specific cases α = 0 [40] and α = 1 [42].
First, the reaction is assumed to take place only at the reaction
front [40,42]. For large times compared to the characteristic
reaction time, i.e., t � 1, the reaction is, indeed, limited by the
diffusion of both reactants towards each other. The position
z f of the reaction front is moving on a diffusive timescale,
i.e., z f = 2 η f

√
t , where η f > 0 is a constant [57,58]. Hence,

A and B are consumed at the reaction front, and the con-
centration field of species I is a solution of the diffusive
equation δI

d2I
dη2 + 2 η dI

dη
= 0, where δA = 1, with the bound-

ary condition

A = 1 − α γ for η = 0 (9)

above the reaction front (0 � η < η f ), where B = 0 and C =
γ , and boundary conditions

B → β, C → 0 for η → ∞ (10)

below the reaction front (η � η f ), where A = 0. The asymp-
totic concentration fields are hence divided into two regions
[40]. Above the reaction front, the asymptotic solutions de-
noted U (upper) are

AU = (1 − α γ )

[
1 − erf(η)

erf(η f )

]
, (11a)

BU = 0, (11b)

CU = γ , (11c)

while those below the reaction front, denoted L (lower), read

AL = 0, (12a)

BL = β

[
1 −

erfc
(

η√
δB

)
erfc

( η f√
δB

)
]

, (12b)

CL = γ

[
erfc

(
η√
δC

)
erfc

( η f√
δC

)
]
, (12c)
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FIG. 2. RD concentration profiles for different values of α and β = δB = δC = 1 shown at four successive times: (a) t = 1, (b) t = 5,
(c) t = 20, and (d) t = 50.

where erfc( η√
δI

) = 1 − erf( η√
δI

) is the complementary error
function. In order to obtain the values of γ and η f , we use
the hypothesis that the reaction is limited by the diffusion of
the species. Thus, the fluxes are equal at the reaction front,
so that dAU

dη
|η f = −δB

dBL
dη

|η f = δC
dCL
dη

|η f . The value of C above
the front γ and the position of the front η f are solutions of a
system of two equations [40,42]:

γ = β

√
δB√
δC

erfc
( η f√

δC

)
erfc

( η f√
δB

) exp

[
η2

f

(
1

δC
− 1

δB

)]
, (13a)

1 − α γ = β
√

δB
erf(η f )

erfc
( η f√

δB

) exp

[
η2

f

(
1 − 1

δB

)]
. (13b)

We compute γ and η f as a function of those four parame-
ters. Note that the position η f of the reaction front therefore
depends on α, β, δB, and δC , in contrast to previous work
with α = 0, where η f was a function of only δB and β [40].
Therefore, Eqs. (11)–(13) provide the general form of the
asymptotic concentration fields, where varying α allows the
study of variable solubility, unifying different previous bound-
ary conditions.

We first recall how γ and η f depend on the parameters β,
δB, and δC when α = 0, as studied previously [40,44]. As A
invades the host phase downwards from the interface where
it dissolves, the reaction front always moves towards posi-
tive z and η f > 0. The speed of the reaction front decreases
(η f decreases), and more C is produced (γ increases) if β

or δB increases. Indeed, if reagent B is more concentrated or
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FIG. 3. Analytical asymptotic concentration profiles in the host phase for different values of α and β = δB = δC = 1: (a) reactant A (NR
stands for nonreactive), (b) reactant B, and (c) product C.

diffuses more quickly towards the reactive zone, it increases
the consumption of A and decreases the speed of its invasion
of the host phase. Moreover, γ decreases if species C diffuses
faster because it then accumulates less at the reaction front.
Furthermore, γ = β if all species diffuse at the same speed
(δB = δC) [6,40,44]. Finally, it is important to note that the
reaction front remains at the interface for small values of time.
In these cases, only concentration profiles below the interface
are considered [4].

The effect of varying α on the analytical asymptotic con-
centration profiles is presented in Fig. 3 for β = δB = δC = 1.
First, note that the concentration of A is always smaller in the
reactive cases than in the diffusive NR one. As we have as-
sumed that A is directly and entirely consumed at the reaction
front, its concentration varies from 1 − α C at the interface
to zero below the reaction front. The concentration of B is
zero above the reaction front and increases in a monotonic
way below the front up to the initial concentration β. Finally,
product C accumulates in the system at a concentration γ

above the reaction front and decreases diffusively below it.
The larger α is, the more active the product C is in decreasing
the solubility of A. There is, therefore, less A in the system
when α increases. As a corollary, less B is consumed while
less C is produced, and the position of the reaction front where
the concentration of both reactants reaches zero is closer to the
interface. In the case where α = 1, the concentration of A is
zero in the whole system because it is consumed as soon as
it enters the system, with reactant B being present in excess.
The concentration of C reaches its maximum value γ only at
the interface, and its profile is then the same as the profile of
A in the nonreactive case. We note that this ensues from the
boundary condition A + C = 1 at the interface when α = 1,
implying that the solubility in the host phase fixes the total
amount of A and C, independent of their chemical nature.
The reaction, therefore, has no effect for α = 1 on the system
properties, as will be shown in the following sections.

2. Position of the reaction front

The position of the reaction front is defined as the po-
sition z f where the reaction rate R = A B is maximum.

This position coincides with the point where A = B when
δB = δC = 1. Over time, the reaction front moves in the direc-
tion z > 0, and its position z f evolves according to a diffusive
timescale

√
t . As shown in Fig. 4(a), if α increases, the reac-

tion front advances less rapidly in the system. For α = 1, the
front remains stuck at the interface (z f = 0).

We observe that, for intermediate values of α, the reaction
front remains at the interface for a certain time before first
moving further in the system and then moving diffusively.
This jump can be explained by the definition of the position
of the reaction front. As illustrated in Fig. 4(b) for the case
α = 0.5, we observe that, at shorter times (here t = 10), R is
maximum at the interface, and z f = 0. It is only after a longer
dimensionless time, t = 45, for instance, that the reaction rate
at the interface becomes smaller than the maximum value in
the bulk. At this moment, the position z f starts to move. As
the reaction takes place for a longer time close to the interface
when α increases, this explains the longer delay of the jump
away from the interface when α increases. As stated above,
if α = 1, the reaction front remains at the interface at all
times [42,43].

3. Flux of A through the interface

In the context of partially miscible systems such as CO2

sequestration or in general for any dissolution of a phase in
another one, the flux of A through the interface defined as
J = − ∂A

∂z |z=0 is an important quantity to compute. We re-
call that, for the nonreactive case, the analytical flux JNR =

1√
π t

. In the asymptotic limit, the flux in the reactive case
is

J = − ∂AU

∂z

∣∣∣∣
z=0

= 1 − α γ

erf(η f )
√

π t
= (1 − α γ ) JNR

erf(η f )
. (14)

Figure 5 shows the temporal evolution of the flux for
different values of α in the reactive case. When α = 0, the
flux is increased by the reaction, as shown previously [46,48].
However, when α increases, C hinders the dissolution of A,
and the flux decreases, tending to the value of the nonreactive
case for α = 1. This is logical because, for α = 1, A is fully
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FIG. 4. (a) Temporal evolution of the position z f of the reaction front for β = δB = δC = 1 and different values of α; (b) concentration
profiles for α = 0.50 at dimensionless times of 10 and 45.

converted into C and the asymptotic profile of C equals the
nonreactive profile of A.

4. Total amount of dissolved A

In order to estimate the storage capacity of a host phase,
we compute the dissolved amount of each species in the
solution as a function of time. For the nonreactive case,
the total amount of A dissolved in the host solution ||ANR||

FIG. 5. Temporal evolution of the flux of A through the interface
(z = 0) for different values of α and β = δB = δC = 1 compared to
the nonreactive (NR) case. The inset presents the same evolution on
a log-log scale.

can be calculated analytically, according to Eq. (15), by inte-
grating the concentration profile in space,

||ANR|| =
∫ Lz

0

[
1 − erf

(
z

2
√

t

)]
dz

= −Lz erf

(
Lz

2
√

t

)
− 2

√
t
[
exp

( − L2
z

4 t

) − 1
]

√
π

+ Lz,

(15)

where Lz is the length of the system. In the reactive cases, the
dissolved quantity of each species ||I|| is computed numeri-
cally as

||I|| =
∫ Lz

0
I (z) dz. (16)

With A being transformed into C by reaction, the total
amount of A dissolved in the host phase is the sum of the
amount of A and that of C, the temporal evolution of which is
represented in Fig. 6 for five values of α. When α increases,
the total amount of A dissolved in the host phase decreases
as the flux of A decreases. When α = 1, we recover again the
values of the NR case, i.e., ||A|| + ||C|| = ||ANR||.

C. Parametric study

We now study numerically for variable α the influence of
varying the other parameters of the system (β, δB, and δC) on
the interfacial concentration of A and on its flux through the
interface given by Eq. (14). The results are illustrated in Fig. 7,
where the scales used are different depending on the studied
parameter for the sake of visual clarity.

For a given value of α, the solubility of A decreases when
β increases since more C is produced. Conversely, A(z = 0)
decreases when α increases for a given value of β. We note
that the flux of A is not affected by α for small values of β.
This important result shows that if the host phase is not very

065109-6



EFFECT OF VARIABLE SOLUBILITY ON REACTIVE … PHYSICAL REVIEW E 107, 065109 (2023)

FIG. 6. Temporal evolution of the total amount of A dissolved in
the host phase either as reactant A or product C for different values
of α and β = δB = δC = 1 compared to the nonreactive (NR) case.
The inset features the same evolution on a log-log scale.

concentrated in B the flux of A is not limited by the reaction,
but mainly by its diffusion. Therefore, to improve the transfer
of A to the host phase, it is best to use a concentrated host
phase, even if its solubility is reduced by the reaction product.

For small values of α, varying δB, the diffusivity of B, does
not affect the solubility of A much. Since the production of
C is enhanced with an increase of δB, the solubility of A is
decreased when δB increases for high values of α. However,
it is consumed faster at the interface, and its flux is increased.
Even if this result is less marked for high values of α, it ex-
plains the fact that an increase in the diffusivity of B improves
the transfer by consuming A and allowing more of it to enter
the system. This effect is observable for any value of α < 1.

When α = 0, the diffusion of the product has no effect
on either the solubility of A or its flux. However, if α �= 0,
for high values of δC , the solubility of A and its flux are
enhanced because C is then less present near the interface.
Conversely, for small values of δC , the product stays near the
interface and hinders the dissolution of A. Hence, its solubility
and its flux are the smallest for small values of δC and high
values of α with possibility of having J < JNR in some cases
[see Fig. 7(f)].

To summarize, the mass transfer to the host phase is im-
proved with a higher initial concentration of reactant B and a
higher diffusivity of species B and C compared to that of A.

IV. DISCUSSION

A. Dynamics at the interface

The production of C at the interface is limited by the con-
centration of B at the interface when its initial concentration
is lower than that of A. Thus, when all species diffuse at

the same rate, A(z = 0) and C(z = 0) tend to 1 − α β and
β, respectively, if β < 1. On the other hand, when A is the
minority species, the production of C is limited by the pres-
ence of A and therefore by its flux. The concentration of C
at the interface rapidly exceeds that of A, tending towards β.
If the reactant B diffuses faster than A (δB > 1), the forma-
tion of the product is again limited by the presence of A. If
C diffuses more slowly than A, it accumulates close to the
interface, and its concentration increases there, exceeding β.
For high values of α and small values of δC , the concen-
tration of C has such an impact on the solubility of A that
its flow through the interface even becomes smaller than in
the absence of reaction, reducing the efficiency of the mass
transfer: J < JNR [see Fig. 7(f)].

To summarize, when α = 0, the solubility of A is constant,
and the flux J > JNR, while when increasing α > 0, the sol-
ubility and the flux of A decrease, tending to the nonreactive
value when α = 1. Previous works showed that the flux is a
function of δB and β when α = 0 [40,48] and a function of
δC when α = 1 [42,43]. In this work, we unified the boundary
conditions regarding the solubility of A and showed how J is
a function of β, δB, δC , and α.

B. Dynamics in the solution

The reaction A + B → C occurs in the reaction front,
which is located at the interface at short times and invades
the host phase later on.

As α increases, the flux of A decreases, the reaction front is
closer to the interface, and the dissolved amount of A present
in the solution decreases and tends to zero. The amount of C
in solution also decreases when α increases and is bounded by
the total amount of A in the absence of reaction for α = 1. In
the latter case, the reaction front stays at the interface.

C. Application to CO2 sequestration

In order to increase the safety of the CO2 sequestration pro-
cess, it is preferable for the reaction to take place as quickly
as possible at depths farther from the interface (solubility
trapping). Moreover, it is desirable to have higher values of
the CO2 flux through the interface and optimize the total
quantity of CO2 that can be dissolved. We showed that the
influence on CO2 solubility of the product of the reaction
between CO2 and possible reactants needs to be considered.
In the case of CO2 dissolution in saline aquifers, reactions
have been shown to affect dissolution-driven convection. The
general boundary condition used here for CO2 solubility could
modify the classification of the effect of chemical reactions on
CO2 convective dissolution.

V. CONCLUSIONS

We have computed theoretically the reaction-diffusion con-
centration profiles of species A, B, and C in a partially
miscible system in which a reaction A + B → C occurs in the
host phase when the solubility of A linearly decreases with the
concentration of the reaction product as A(z = 0) = 1 − α C.
The mass transfer of A to the host phase is enhanced by
the chemical reaction consuming A for 0 � α < 1. If the
influence of C on the variable solubility of A increases, i.e., α
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(a) (b) (c)

(d) (e) (f)

FIG. 7. Influence of the parameters β, δB, and δC as a function of α on the solubility of A and on the flux J of A through the interface at
a dimensionless time of 300 [JNR(t = 300) = 0.03257]. In these parameter spaces, the key parameter α varies in the range 0 � α � 1 on the
vertical axis. On the horizontal axis, the second parameter, β, δB, or δC , varies between 0 and 3 while the other parameters are set to 1. The
values of the solubility and the flux are presented as a colored scatterplot between low values in blue and high values in red. Therefore, the red
areas correspond to parameter values that optimize the solubility of A and increase the flux. Specifically, the panels show the influence of α

and of (a) β on A(z = 0) (δB = δC = 1), (b) δB on A(z = 0) (β = δC = 1), (c) δC on A(z = 0) (β = δB = 1), (d) β on J (δB = δC = 1), (e) δB

on J (β = δC = 1), and (f) δC on J (β = δB = 1).

increases, the reaction front advances more slowly in the host
phase. In the limit α = 1, A is consumed as soon as it enters
the system, the reaction front remains at the interface, and we
recover the nonreactive case as the spatial dependence of C is
the same as the diffusive profile of A in the nonreactive case.
With regard to the flux, the largest value is obtained for α = 0.
If α increases, the flux of A through the interface decreases
and tends to the flux in the nonreactive case, meaning that
the chemical reaction no longer improves the mass transfer.
Finally, we have analyzed the impact on the reactive system
of varying the ratio β of the initial reactant concentration and
solubility of A and the diffusivity ratios δB and δC for variable
α. For a fixed value of α, the mass transfer from the reservoir
phase A to the host phase is enhanced by increasing β, δB,
and δC . This increase of the mass transfer is limited by the
influence of C on the solubility of A: when α increases, the
mass transfer decreases. Nevertheless, the first effect domi-
nates over the second one, as we have shown it is best to use a
concentrated reactive host phase to improve the mass transfer
of A and the total amount being dissolved even if the reaction

product decreases the solubility of A. When α → 1, the flux
J can become smaller than JNR for larger values of δC .

This study opens perspectives for future research. In ad-
dition to the influence of C on A(z = 0), the spatiotemporal
evolution of the concentration of B could also have an impact
on the local solubility of A. Related RD profiles could be
studied along the lines of the current study. Moreover, with the
density profile at the source of buoyancy-driven convection
being directly correlated to the concentration fields, this study
provides the RD concentration profiles that can serve as a
basis for a better understanding of density base state profiles
needed to investigate the effect of variable solubility on CO2

convective dissolution.
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