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Marangoni- vs. buoyancy-driven flows:
competition for spatio-temporal oscillations
in A + B - C systems†
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The emergence of self-organized behaviors such as spatio-temporal oscillations is well-known for

complex reactions involving nonlinear chemical or thermal feedback. Recently, it was shown that local

oscillations of the chemical species concentration can be induced under isothermal batch conditions for

simple bimolecular A + B - C reactions, provided they are actively coupled with hydrodynamics. When

two reactants A and B, initially separated in space, react upon diffusive contact, damped spatio-temporal

oscillations could develop when the surface tension increases sufficiently in the reaction zone.

Additionally, if the density decreases, the coupling of both surface tension- and buoyancy-driven

contributions to the flow can further sustain this oscillatory instability. Here, we investigate the opposite

case of a reaction inducing a localized decrease in surface tension and an increase in density in the

reacting zones. In this case, the competition arising from the two antagonistic flows is needed to create

oscillatory dynamics, i.e., no oscillations are observed for pure chemically driven Marangoni flows. We

study numerically these scenarios in a 2-dimensional system and show how they are controlled by the

following key parameters: (i) DM and DR governing the surface tension and density variation during the

reaction, respectively, (ii) the layer thickness of the system, and (iii) its lateral length. This work is a

further step toward inducing and controlling chemical oscillations in simple reactions.

1 Introduction

When a system is kept out of equilibrium, ordered structures and
self-organized behaviors can emerge.1 Under these conditions
chemical systems are governed by their kinetics and, if this
involves nonlinear chemical or thermal feedback, dynamics as
complex as autonomous oscillations can occur.2–4 Complicated
temporal behaviors like periodic or chaotic dynamics are not the
only possibility and, in spatially extended systems, the interplay
between oscillatory kinetics and transport phenomena can bear
the formation of travelling waves and structures.5

The famous Bray–Liebhafsky6 or Belousov–Zhabotinsky7

reactions are now classical examples of such a class of reactions
which represent a sort of inorganic model systems for complex
oscillatory dynamics encountered in the biological world, such

as metabolic cycles, calcium signaling, circadian rhythms or
morphogenesis, to name a few.8,9

Apart from the understanding and imitation of biological
functional behaviors, oscillatory dynamics find application in a
large variety of fields including the design of new smart materials,
like self-oscillatory polymers or gels.10 These are typically chemo-
responsive materials that, coupled to chemical oscillators, can
show periodic volume variations (chemo-mechanical oscillations)
which can be exploited for the delivery of drugs at controlled
time lapses, to actuate autonomous locomotion and to design
chemorobots.10–13 Networks of chemical oscillators, where auton-
omous self-oscillators are encapsulated in confined domains,
were also employed to mimic neuron behaviors and unveil
how their communication gives rise to collective dynamics and
different synchronization patterns on the basis of functional
activity.14–18 This represents the ground for the development of
chemical computing (so-called wetware) and chemical artificial
intelligence,19 recently applied to unconventional diagnosis of
schizophrenia and some kind of cancers.20,21 The mastery devel-
oped in nonlinear chemical phenomena has also been applied to
control and optimize relevant processes for the production of
alternative green sources of energy, like molecular hydrogen from
borohydrides.22
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Most of the oscillatory dynamics considered in these different
fundamental and applied studies are limited to the realm of
nonlinear chemical reactions. However, a parallel line studying
the occurrence of complex behaviors in systems governed by simple
reactions has attracted increasing interest in recent years.23,24

Boosted by the pioneering work of Gàlfi and Ràcz,25 reaction-
diffusion (RD) fronts in A + B - C systems, whereby two reactants
A and B initially separated in space react upon diffusive
mixing,25,26 have been thoroughly studied. If both reactants pre-
sent equal initial concentrations and diffusion rates, the bimole-
cular RD front remains localized at its initial position and develops
symmetrically. However, as a small difference in the initial con-
centrations of the reactants and/or diffusion rates is introduced,
the front propagates in time toward preferential directions.27,28

It was shown that these simple structures can evolve to unex-
pected behaviors, for example, when one reactant is sandwiched
between two pools of the other one, two A + B - C fronts can
interact together in the form of attractive or repulsive collective
dynamics, depending on the initial distance between the fronts.29

It was recently shown that simple A + B - C reactions can
also exhibit spatiotemporal oscillations, provided that the
reaction combines with hydrodynamics.30–33 In reactive fluids,
natural convection can indeed arise spontaneously from
changes in the composition/temperature of the system, further
inducing in situ local gradients in the physical properties
(i.e. density and/or surface tension), thereby activating convective
motions within the fluid itself. Convective flows interact, in turn,
with the initial RD fronts and new dynamics can develop.34,35

Both the scenarios in which the reaction induces a flow35 and
when chemical structures like fronts or waves propagate through
an established flow field36–38 have been thoroughly studied.

Oscillatory and wavy dynamics were observed, both
numerically39,40 and experimentally,41–44 for nonlinear non-
oscillatory kinetics. For instance, in the case of autocatalytic
fronts, an antagonistic coupling between solute and thermal
effects triggers oppositely-oriented buoyancy- or Marangoni-
driven flows. Spatio-temporal oscillations were also reported
for isothermal conditions in the propagation of an autocatalytic
front again due to an antagonistic interplay between Maran-
goni- and buoyancy-driven convection.45

The behavior of already oscillatory kinetics was shown to be
further complicated by the onset of chemically-induced convection.
This can drive the transition from regular periodic waves to
chemical turbulence,46–48 the development of pulsating and/or
traveling hydrodynamic fingering if the oscillator is localized across
the mixing area of two stratified solutions containing subparts of
the reaction,49–51 and the enhancement or suppression of chemical
oscillations involving an enzymatic component.52 The potential of
hydrodynamics in combination to oscillatory kinetics has even
been introduced in neuromorphic engineering, chemical artificial
intelligence, and chaos computing.53,54

With the objective of designing autonomous self-organized
complex behaviors in simple chemical systems (without any inter-
nal or external feedback), we will exploit here chemohydrodynamics
in combination with an A + B - C reaction. As it was already
shown, if a reaction front can locally increase the surface-tension of

a solution beyond a certain threshold, transient oscillatory
dynamics can develop due to the competition between Marangoni
converging flows (front compression) and vertical diffusive
relaxation.30,31 Furthermore, when buoyancy-driven flows combine
antagonistically with the Marangoni effect, i.e. when the localized
reaction increases the surface tension and decreases the density in
the mixing zone, the oscillatory mechanism is further enhanced
and sustained pulsations can be observed.30–32

In this article, we focus on the reverse antagonistic case
where the reaction decreases the surface tension of the solution
and increases its density, for which a new kind of oscillatory
behavior (e.g. a bimodal oscillatory dynamics), so far not encoun-
tered in bimolecular A + B - C systems, has been identified.31,32

Section 2 details the model and governing equations. This is
followed by a presentation of the oscillatory dynamics in Section
3. The mechanism of the formation and propagation of spatio-
temporal oscillations, as well as the role of different key parameters
on these dynamics are described before concluding in Section 4.

2 Model

We consider a two-dimensional reactor of length LX and height
LZ in the (X, Z) reference frame, where Z is oriented against the
gravitational acceleration g = (0, �g). The reactor is supposed to
be isothermal, closed at the bottom and lateral borders and
open at the top border with an air–liquid interface supposed to
be non-deformable. We neglect any evaporation. The chemical
species concentrations A, B, C are initially spatially distributed as

ðA;B;CÞ ¼

ðA0; 0; 0Þ forXoX0 8Z;

ð0;B0; 0Þ forX4X0 8Z;

ðA0;B0; 0Þ forX ¼ X0 8Z:

8>>><
>>>:

The reactant solutions A and B, initially separated, react upon
diffusive mixing across the contact line localized at the center of
the system (X0) and form product C, following the bimolecular A +
B - C reaction. In order to simplify the system and to allow for a
symmetrical development of the reactive zone, both reactant
solutions are assumed to have the same initial surface tension
gA = gB = gR, density rA = rB = rR, and their initial concentrations
are considered equal A0 = B0. The formation of C in the reactive
zone induces local changes in the surface tension and density,
triggering convective transport in the system [Fig. 1].

The resulting nonlinear dynamics is governed by a set of partial
differential reaction–diffusion–convection (RDC) equations,

qTA + (V�r)A = Dr2A � kAB, (1)

qTB + (V�r)B = Dr2B � kAB, (2)

qTC + (V�r)C = Dr2C + kAB, (3)

@TV þ ðV � rÞV ¼ �
1

r0
rPþ m

r0
r2V � g

ðr� r0Þ
r0

1Z; (4)

r�V = 0, (5)
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where the evolution of the chemical concentration fields
(eqn (1)–(3)) is coupled to the incompressible Navier–Stokes
equations (eqn (4) and (5)) via the state equation for the density
and surface tension, and the Marangoni boundary condition
(eqn (6)) described below. In this set of equations, T is the time,
V = (U, V) is the velocity field, D is the molecular diffusion
coefficient assumed constant and equal for all species, P is the
dynamic pressure, m is the constant dynamic viscosity and g is
the gravitational acceleration. The Boussinesq approximation is
also introduced and implies that density changes only affect

the gravitational force term g
ðr� r0Þ

r0
.55 Marangoni boundary

conditions (6) are imposed at the free surface to describe the
chemically induced shear stress

mqZU = qXg, V = 0 at Z = LZ. (6)

The state equations for the density, r ¼ r0 1þ 1

r0

P
I

I@Ir
� �

,

and the surface tension, g ¼ g0 1þ 1

g0

P
I

I@Ig
� �

, where I = A, B,

C are the dimensional concentrations of the chemical species,
are assumed to be linear combinations of the chemical

concentrations in diluted solutions, with
1

r0
@Ir and

1

g0
@Ig

representing respectively the density and surface tension solu-
tal coefficient of the Ith species.56 r0 and g0 represent the
solvent density and surface tension, respectively. No-flux
boundary conditions are imposed for the chemical concentrations
at the four boundaries of the reactor, and no-slip conditions are
used for the velocity field at the three solid boundaries.

The reaction–diffusion scales for concentration, A0, time, t0 = 1/
kA0, length, L0 ¼

ffiffiffiffiffiffiffiffi
Dt0
p

, and the derived scales for velocity,

V0 ¼
ffiffiffiffiffiffiffiffiffiffi
D=t0

p
, and pressure, P0 = m/t0 are used to cast the system

in its dimensionless form. The reaction–diffusion scales for

density, r0 ¼ m
t0L0g

, and surface tension, g0 ¼ mL0

t0
, are respectively

used to define the dimensionless density, ~r ¼ r� r0
r0

¼
P
i

Rii,

and the dimensionless surface tension, ~g ¼ g� g0
g0
¼ �

P
i

Mii

(with i representing the dimensionless concentration of A, B
and C). The dimensionless solutal Rayleigh, Ri, and Marangoni,
Mi, numbers of the Ith species represent the contribution of each
species to the density, (qIr), and surface tension, (qIg), respectively,

Fig. 1 The top panels represent the sketch of the initial configuration of the A + B - C system. The reactant solutions A and B have the same
dimensionless surface tension ~gR and density ~rR and product C forms in the reactive zone, where the reaction (a) increases the surface tension ~gP 4 ~gR

and decreases the density ~rP o ~rR, (b) decreases the surface tension ~gP o ~gR and increases the density ~rP 4 ~rR. The bottom panels display typical spatio-
temporal evolution of the product concentration with increasing dimensionless time for systems of length Lx = 256, height Lz = 20 and (a) DM = 700 and
DR = 3 (b) DM = �300 and DR = �2 (cf. Movies SM1.a and b in the ESI†). The white square (x0 � 30, 3Lz/4) located in the chemical field of (b) at t = 1
identifies the particular position (chosen arbitrarily) at which the concentrations and stream function values are used to build representative time series of
the system dynamics. The white arrows illustrate the flow’s motion during the formation of an oscillatory cycle. Since the system and the equations are
symmetric with respect to the axis x = x0, so is the flow field on either side of the reaction zone.
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and are defined as30–32

Ri ¼
@IrA0L0

3g

Dm
; (7)

Mi ¼ �
1

m

ffiffiffiffiffiffiffi
A0

kD

r
@Ig: (8)

The equations are then expressed in the stream function–
vorticity formulation57 with the stream function c defined such
that u = qzc, v = �qxc and vorticity o = r � v. When the
reactants have same initial concentrations and identical diffu-
sion coefficients, the conservation of mass implies that a + b +
2c = 1 8 x, z, t.30 The final dimensionless RDC equations, in
which the lowercase characters represent dimensionless vari-
ables, therefore read

qta + qzcqxa � qxcqza = r2a � ab, (9)

qtb + qzcqxb � qxcqzb = r2b � ab, (10)

qto + qzcqxo � qxcqzo = Sc(r2o � DR(qxa + qxb)), (11)

r2c = �o, (12)

with the Marangoni boundary condition

o = DM (qxas + qxbs) at z = Lz, (13)

where as and bs represent the concentrations at the surface of the
reactant solutions A and B, respectively. Sc = m/Dr0 = n/D is the
Schmidt number where n = m/r0 is the kinematic viscosity. Sc is
set equal to 1000, based on the typical values for the kinematic
viscosity n = 0.0089 cm2 s�1 and diffusivity of chemical species
D B 10�5 cm2 s�1 in aqueous solutions. DR and DM are defined
as, DR = R� Rc/2 and DM = M�Mc/2, respectively, where R = RA =
RB, M = MA = MB. DR and DM represent the key parameters to
tune the relative importance of solutal buoyancy and surface
tension contributions to the convective flows, and thus to control
the onset of oscillatory dynamics.

Eqn (9)–(12) are solved numerically with the defined initial
and boundary conditions by using an implicit finite difference
method, i.e. the alternating direction implicit (ADI) method.58,59

Typical simulations are run over a spatial domain of variable
dimensionless length Lx and height Lz, discretized over a grid
with the integration space steps hx = hz = 0.25 and the integration
time step ht = 10�5.

3 Chemo-Marangoni-
buoyancy oscillations

Under the conditions considered in this study, reaction–diffu-
sion A + B - C fronts (i.e. in the absence of convection) show a
symmetrical development of the reaction zone around x = x0.25

When those fronts are studied in aqueous media, convective
flows can be triggered if the reaction induces changes in
density (DR a 0) or in surface tension (DM a 0). The pure
buoyancy-60 and Marangoni-61driven convective cases have
shown propagating fronts, and transient oscillatory dynamics

have been reported in the latter case for both equal30 and
differential33 molecular diffusion coefficients.

Depending on the signs of DR and DM, the coupling between
buoyancy- and surface-driven flows can be cooperative or
antagonistic. In the former, the convection rolls induced by
each effect reinforce each other, while the two contributions
oppose each other in the latter. The parameter space is there-
fore divided into 4 regions represented in Fig. 2. When both
parameters are of opposite signs, the coupling is cooperative
(regions II and IV). In contrast, when both parameters have the
same sign, the induced flows are in competition (see Fig. 1) and the
coupling is antagonistic (regions I and III). We will focus here on
antagonistic cases since the competition between opposite flows
has long been known to induce complex dynamics.30–32,35,38,45

3.1 Phenomenology

Fig. 1a illustrates the previously studied case (region I) where
the production of C, less dense than the reactant solutions,
generates a vertical upward flow due to gravitational currents
and, concurrently, increases the surface tension, thus inducing
a vertically downward Marangoni flow.30–32 In such a case,
oscillations occur when DM is beyond a critical threshold,
regardless of the value of DR.

In the pure chemo-Marangoni case, region I with DR = 0, the
product C formed at the center of the system x0 is pushed
toward the bottom boundary of the system, due to a local
increase in the surface tension in the reaction zone, causing
the deformation of the concentration field into two symmetri-
cal fronts. The competition between the Marangoni-induced
compressive flow and the vertical diffusion relaxation triggers
oscillatory dynamics. The addition of buoyancy-driven flows,

Fig. 2 Classification in a (DM, DR) parameter plane of the possible inter-
play between buoyancy- and surface tension-driven flows induced by an
A + B - C reaction, for equal diffusion coefficients of all species and equal
properties of the reactants. Regions I/III represent antagonistic couplings
where the surface tension increases/decreases and the density decreases/
increases in the reaction zone. Regions II/IV represent cooperative cou-
plings where both surface tension and density are increased/decreased by
the reaction.
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induced by a local decrease in density in the reaction zone
(DR 4 0), further generates a vertical upward flow, as opposed
to the Marangoni-induced contribution, along with two new
convective rolls at the bottom of the system, sweeping the
product from the reactor’s bottom to the surface [Fig. 1a] and
reinforcing the vertical diffusive transport, thereby initiating
sustained oscillations.30,31

In the system studied here (region III), a new type of
oscillations can be obtained when the local production of C
decreases the surface tension and increases the density (DM o 0,
DR o 0) [Fig. 1b]. In contrast to region I, the Marangoni-driven
flow rapidly brings the product to the reactor surface and spreads
it laterally toward the borders. In this case, Marangoni-driven
convection alone (DM o 0, DR = 0) is insufficient to observe the
emergence of oscillatory dynamics and the only effect is that the
product accumulates in the top part of the reactor. When gravita-
tional effects are at play, the denser product layered at the reactor
surface by Marangoni forces deforms into sinking fingers [Fig. 1b,
t = 40�80]. The Marangoni-induced return flow then sweeps the
freshly formed fingers toward the center of the system, creating a
local accumulation of the product around x0 at the bottom of the
system and restoring a situation similar to the initial condition,
thereby feeding this wavy dynamics.

Fig. 3 illustrates the temporal evolution of the local concen-
trations of A and C at a representative point for four distinct
cases. It shows that no oscillations are observed in pure chemo-
Marangoni-driven dynamics, when the reaction solely
decreases the surface tension (DM = �500, DR = 0). As for the
two antagonistic cases described previously (regions I and III),
the system can exhibit differences in the oscillation patterns,
with the emergence of a bimodal behavior in Region III,
illustrated in Fig. 3 for DM = �500, DR = �5 and detailed in
Section 3.2.2. As the reactors are closed, oscillations eventually

start to dampen due to the consumption of the reactants and
accumulation of the product.

3.2 Controlling oscillations

Fig. 4 showcases the oscillatory behavior observed for various
DM and DR in region III. In this paper, a dynamical regime is
defined as oscillatory when at least two successive minima are
present in the temporal evolution of the variables. No oscillatory
dynamics are observed in pure-Marangoni or pure-buoyancy
systems. A competition between the flows is hence required for
oscillations to emerge, in contrast to what was observed in region
I. Sustained oscillations are defined as oscillations with quasi-
constant amplitudes throughout time (see DM =�500, DR =�5 in
Fig. 3), while oscillations with rapidly decreasing amplitude over
time are referred to as damped oscillations (see DM = �500, DR =
�0.5 in Fig. 3). We note that over very long times, all oscillations
are eventually damped since the system is a closed one with no
inflow of the reactants (and outflow of the products) that would
maintain it out of equilibrium.

Sustained oscillations can be observed in an optimal range
of DM and DR values. However, when one of the convective
effects is predominant, the oscillations start to dampen, and
eventually go extinct (see Movies SM2.a and b in the ESI†). This
is highlighted in Fig. 4 where sustained oscillations occur for
DR values sandwiched between regions of damped oscillations
at fixed DM. The same is observed at fixed DR when DM is
varied. This is in strong contrast with region I where, at fixed
DR, increasing DM allows to maintain sustained oscillations in
the system, provided that DM is above a critical value (Fig. 6 in
ref. 31). DM and DR represent thus key parameters to control
the dynamics of the system.

Fig. 3 Local time series of the concentrations a and c at a representative
point of the system (x0 � 30, 3Lz/4) (Lz = 20 and Lx = 256). The blue and
orange curves represent the evolution of species A and C, respectively.
The dashed curves represent a typical system in region I, the dotted curves
represent a purely chemo-Marangoni system in region III, the curves with
triangles represent a typical sustained oscillatory system of region III and
the continuous curves represent a typical damped oscillatory system of
region III.

Fig. 4 Classification of the dynamical regimes characterizing region III (where
the reaction decreases the surface tension, DM o 0, and increases the density,
DR o 0) of the parametric space diagram (DM, DR) (Lz = 20 and Lx = 256).
Oscillations with quasi-constant amplitudes throughout time are defined as
sustained, whereas oscillations with rapidly decreasing amplitude over time are
referred to as damped oscillations. The blue dotted polygon includes the
systems in which new convective rolls emerge in time, and the purple dashed
polygon includes the systems presenting a bimodal behavior. We note that for
higher |DM|, the oscillations are damped and eventually disappear.
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The phenomenology described above suggests that oscilla-
tions are also critically sensitive to the system length (Lx) and
the height (Lz). We therefore explore the influence of DM, DR, Lz

and Lx on the occurrence of oscillatory instabilities as well as on
the type of oscillatory behavior (either sustained or damped),
the oscillation period and frequency, and the fluid velocities.

3.2.1 Role of DM. It was shown that, in the antagonistic
mechanism characterizing region I, DM plays a key role in the
onset of oscillatory dynamics. When the reaction increases the
surface tension sufficiently (DM 4 DMcrit 4 0), the system can
undergo oscillatory instabilities.

Even though oscillatory behaviors are not observed in the
pure chemo-Marangoni case studied here [Fig. 4 when DR = 0],
DM represents an important parameter for the control of the
oscillatory properties when both buoyancy- and Marangoni-
driven contributions are at play. As shown in Fig. 5, illustrating
the evolution in time of the stream function for different values
of DM at constant DR, an increase in |DM| allows the apparition
of oscillations and increases their amplitude. DM also controls
the frequency of these spatio-temporal oscillations: as |DM|
increases, a maximum frequency is reached, due to a more
rapid Marangoni convective motion. A further increase in |DM|
causes the strengthening of Marangoni-driven convective rolls,
subsequently weakening the flow competition and thus the
oscillation’s frequency (Fig. 5).

By increasing |DM| we can thus modulate the dynamical
regime, following the sequence no-oscillations - damped -

sustained - damped - no-oscillations. This transition scenario
is different from the one observed in region I (Fig. 6 in ref. 31),
where sustained oscillations are not damped by an increase in DM.

3.2.2 Role of DR. The local values of the stream function at
a representative point are reported as a function of time in
Fig. 6 for different values of DR (with DM fixed). It can be seen
how increasing |DR| first induces the onset of oscillatory
behaviors and eventually leads to their dampening. As we have
shown by varying DM, we can modulate the type of dynamical
regimes by tuning |DR| (Fig. 4). For instance, beyond a certain

value of |DR|, the system can exhibit bimodal oscillations. The
changes in the dynamics when varying DR can be related to the
extent of the buoyancy-driven fingers rich in the reaction
product.

On the one hand, increasing |DR| strengthens the buoyancy-
driven flows and, in turn, the length of the fingers emerging
close to the surface [Fig. 1b since t = 40] increases up to a value
of |DR| beyond which they can reach the bottom of the reactor.

On the other hand, the larger the |DR|, the larger the
amount of denser product C located at the reactor’s bottom
boundary. At a certain value of |DR|, both effects start interact-
ing, leading to a new set of convective rolls.

The apparition of these rolls is emphasized in Fig. 7 (right),
displaying the vertical velocity fields for DM = �300, DR = �4 at
specific times and illustrating the interaction of the fingers
with the product located at the bottom. The system evolves over
time with the emergence of fingers created at the surface and
reaching the bottom of the reactor. The product C pushed
toward the reactor’s bottom due to the main buoyancy-driven
convection roll is also spread laterally along the bottom bound-
ary, enabling its interaction with the fingers. This interaction is
followed by the emergence of a new counter-rotating convective
roll (red arrow at t = 90).

As the system evolves, the new convective roll grows (t = 120)
and utterly merges with the initial buoyancy-driven convection
roll (t = 130). As a result, the Marangoni-driven return flow
(black circle at t = 90) is split into two distinct rolls (t = 150),
responsible of the second extremum in the bimodal oscillatory
cycle. Fig. 7 (left) illustrates the case where new convective rolls
are absent, leading to unimodal oscillatory dynamics.

It can be noted that convective rolls are also formed at the
bottom of the reactor for high |DM| and lower |DR| (cf. Fig. SF1
in the ESI†), but no bimodal oscillations are observed in this
case, as the initial buoyancy-driven convective roll is located far
from the new roll and there is no interaction between them.

3.2.3 Role of Lz. For the chemohydrodynamic mechanism
described in region I (reactions increasing the surface tension

Fig. 5 Local time series evolution of the stream function (c) at a repre-
sentative point of the system (x0 � 30, 3Lz/4) at constant DR = �3 for four
different values of DM with Lz = 20 and Lx = 256.

Fig. 6 Local time series evolution of the hydrodynamic field (c) at a
representative point of the system (x0 � 30, 3Lz/4) at constant DM =
�300 for different values of DR with Lz = 20 and Lx = 256.
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and decreasing the density), it was found that Lz can control the
buoyancy-driven convection, the relative timescales of the antag-
onistic Marangoni-driven and reaction–diffusion/buoyancy-
driven flows and, as a consequence, the critical threshold of
DM beyond which oscillations can be observed.30,31

Similarly, in region III (reactions decreasing the surface tension
and increasing the density), for low Lz values, no oscillations are
observed, as surface-driven flows dominate the system dynamics
(Fig. 8). A progressive increase in the height of the system con-
tributes to counterbalance Marangoni-driven convection emerging
at the surface by increasing the space available to the buoyancy-
driven contribution needed to trigger spatio-temporal oscillations.

Fig. 8 represents the oscillatory dynamics observed at fixed
Lx and DR for various sets of DM and Lz values. The pattern of the
dynamical regimes accessible to the system and the route from
non-oscillatory to oscillatory conditions is similar to the one
observed in the (DM, DR) parametric space diagram represented
in Fig. 4. This general arrangement remains qualitatively pre-
served for variable values of DR, though by decreasing |DR|, the
|DM|min value for which oscillations occur also decreases.

The influence of Lz on the system dynamics is further
illustrated in Fig. 9, showcasing the oscillation period, t, as a
function of Lz, for various DM at fixed DR. The period is defined
as the dimensionless time interval between global maxima
(or minima) of successive oscillations. As mentioned above,
below a minimal threshold Lz, no oscillatory dynamics emerge.
Then the period increases with Lz up to a maximum value
beyond which a sharp decrease occurs (due to a change of
regime, as explained below), followed by a second increase.

The new convective rolls, described in the previous section,
form when a critical maximum value of Lz is reached. Beyond
that value, oscillations are bimodal and damped accompanied
by a sharp decrease in the period. As Lz is further increased
(with DM and DR fixed) the period grows again.

Notably, although beyond a certain critical maximum Lz only
damped oscillations are observed, the oscillatory phenomenon

Fig. 7 Snapshots of the spatio-temporal evolution of the vertical velocity (v) fields with increasing dimensionless time for (left) unimodal oscillations at
DM = �300 and DR = �1.5, (right) bimodal oscillations at DM = �300 and DR = �4. The red arrows represent the newly merged convective rolls and the
black circles highlight the separation of a convective roll. The red/blue zones represent the zones of maximum/minimum vertical velocity. The snapshots
are displayed in a semi-system (from Lx = 0 to Lx/2) since the system is symmetric around x = Lx/2. The complete spatio-temporal evolutions of the
vertical velocity and of the concentration field are displayed in Movies SM3.a, b and SM3.c, d, respectively, in the ESI.†

Fig. 8 Classification of dynamical regimes in the parametric space dia-
gram (DM, Lz) with DR = �5 and Lx = 256. The purple and black dashed
lines represent the critical minimum Lz beyond which oscillatory dynamics
occur, and the critical maximum Lz beyond which bimodal oscillations are
observed, respectively. By further increasing Lz, the bimodal oscillations
remain damped.
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persists despite a further increase of Lz (Fig. 8). This constitutes
a major difference with the previously studied dynamics of
region I, in which Budroni et al. highlighted a maximum Lz

value beyond which oscillations are suppressed (see Fig. 10 in
ref. 31).

The trends t(Lz) for different values of DM are similar,
though the critical height at which the maximum/minimum
oscillation periods occur varies. In fact, systems presenting
stronger Marangoni-driven flows at the surface need to be
counterbalanced by stronger downward flows, which is inten-
sified (at fixed DR) by higher values of Lz.

Our analysis confirms that, according to what we observed
for region I, varying Lz has a similar effect as varying DR, since
both parameters control the intensity of buoyancy-driven flows
and the characteristic size of related convective rolls. Further-
more, by increasing the height of the system, we shift the

apparition of the bimodal oscillatory regime toward larger
|DR| by increasing the space between the fingers located at
the top of the system and the denser product accumulated at
the bottom of the system.

3.2.4 Role of Lx. Spatiotemporal oscillations of region I
were shown to be essentially independent of the length of the
system, since the core of the underlying mechanism is localized
at the center of the reactor (cf. Fig. 1a).31

On the other hand, chemo-Marangoni-buoyancy scenarios
of region III occur when the fingered product C is pushed
toward the center of the system by the return flow, which extent
and morphology are strongly affected by the position of the
lateral borders.

This suggests that Lx can play a critical role in the develop-
ment and control of spatio-temporal oscillations. Indeed,
we found a minimum length, Lmin

x , (which value depends upon
DM and DR, e.g. Lmin

x is located between 100 and 128 for DR =
�5 and DM = �500) below which the oscillatory instability does
not develop.

Fig. 10 shows the temporal evolution of the stream function
at a specific position (x0 � 30, 3Lz/4) for different systems
lengths. We can appreciate how, as long as Lx 4 Lmin

x , oscilla-
tory systems behave identically at shorter times and differenti-
ate from each another only when the influence of the lateral
borders can be felt at the considered position. Indeed, when the
product C reaches the lateral boundaries, it is reflected back
toward the center of the system, diminishing the intensity of
the original flow and increasing the oscillation period, as
reported in Fig. 10. Since the numerical simulations are per-
formed in closed systems, these oscillations are slowly dam-
pening due to the accumulation of the product C in the system.
We note that this dampening of oscillations arises from the
closed nature of our system and is distinct from that defined in
Fig. 4, which is intrinsic to the dynamics.

4 Conclusions

In this work, we have presented a new mechanism for the
emergence of oscillatory dynamics in simple bimolecular reac-
tions when chemically driven antagonistic Marangoni- and
buoyancy-driven convection are at play. In contrast to a previously
observed antagonistic scenario (region I), spatio-temporal oscilla-
tions cannot be driven by pure Marangoni- or buoyancy-driven
flows. Key to the emergence of these behaviors is the competition
of both contributions to the flow. Oscillations develop in the form
of fingers of product C sinking from the surface of the reactor and
pushed to its center by a lateral return flow.

By varying key parameters, it is possible to control the
oscillatory regimes, shifting from damped to sustained oscilla-
tions. As one convective effect becomes dominant over the
other, a quenching of oscillations is observed.

We have showed that varying |DM| (thus modulating the
changes in surface tension due to the reaction), not only
controls the onset of oscillatory dynamics, but also their
characteristic amplitude and the oscillations frequency.

Fig. 9 Characterization of the oscillation period, t, as a function of the
system height, Lz, for different values of DM at a fixed value of DR = �5.
Filled symbols correspond to systems presenting damped oscillations and
empty symbols correspond to sustained oscillations.

Fig. 10 Local time series of the hydrodynamic field (c) at a representative
point of the system (x0 � 30, 3Lz/4) at constant DR = �5, DM = �500 and
Lz = 20 for four different Lx. For this set of parameters, the onset of
oscillatory dynamics occurs for values of Lx located between 100 and 128.
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A particularly interesting feature, so far unseen in the A + B - C
systems, has been observed by increasing the buoyancy contribu-
tion |DR|. The latter has two distinct roles: larger |DR| values
strengthen the buoyancy-driven flows, thus the extent of the fingers
of product formed close to the surface, and increase the amount of
product C located at the reactor’s bottom boundary. When the
fingers start to interact with the product accumulated at the bottom
of the reactor, a new convective motion opposed to the initial one is
created and bimodal oscillations develop. Further increasing the
magnitude of this parameter does not induce any period doubling
sequence to chaos.

The variation of the height of the system Lz shows a similar
impact on the dynamics as the variation of DR, since both
parameters control the importance of buoyancy-driven convec-
tion. We have highlighted the existence of critical minimum
and maximum values of the reactor’s height needed for oscil-
latory instabilities.

Finally, the length of the system Lx has also been character-
ized as a critical parameter, as the system needs to be long
enough (Lmin

x ) to observe the development of the wavy dynamics.
This work proposes a further step in the way of designing

chemical self-induced oscillations in simple reactions, here
exploiting chemohydrodynamics. This approach can considerably
enlarge the number of chemical systems where complex behaviors
can be induced or controlled if undesired. In particular, we have
shown that the antagonistic coupling between orthogonally
oriented surface- and buoyancy-driven flows can be identified as
a general source of oscillatory instabilities that, similar to classical
chemical oscillators, relies on a fast activation phase (here played
by the chemically driven Marangoni flows) and a slow oppositely-
oriented relaxation phase (here the buoyancy contribution).

In this first minimal approach, we have considered condi-
tions that allow for spatio-temporal pulsations symmetric with
respect to the reactor center. From the perspective of an
experimental implementation and validation of these phenom-
ena, our theoretical framework should consider general reac-
tants with different properties (like diffusivities, densities, etc.),
which can result in more complex and asymmetric traveling
structures. However, our preliminary results in this direction
suggest that the main features and trends found for the
symmetric scenarios are preserved.
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