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We study the capillary attraction force between two fibers dynamically withdrawn from a bath. We
propose an experimental method to measure this force and show that its magnitude strongly increases with
the retraction speed by up to a factor of 10 compared to the static case. We show that this remarkable
increase stems from the shape of the dynamical meniscus between the two fibers. We first study the
dynamical meniscus around one fiber and obtain experimental and numerical scaling of its size increase
with the capillary number, which is not captured by the classical Landau-Levich-Derjaguin theory. We then
show that the shape of the deformed air-liquid interface around two fibers can be inferred from the linear
superposition of the interface around a single fiber. These results yield an analytical expression for the
capillary force which compares well with the experimental data. Our study reveals the critical role of the
retraction speed to create stronger capillary interactions, with potential applications in industry or biology.
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Dip coating is a technique consisting in drawing an
object out of a liquid bath to apply a coating layer [1–3]. It
is used in industry to functionalize objects with, e.g.,
antireflective [4], biocompatible [5], hydrophobic [6], or
electrothermal [7] coatings. This process is also used by
some animals, such as bees, bats, or birds, to feed by
dipping their brushlike tongue in nectar [8–10]. When
several objects are dipped simultaneously in a liquid, each
of them deforms the interface, which induces a force acting
on its neighbors [11]. This long-range capillary interaction,
known as the “Cheerios effect” [12–19], is mediated
by the shape of the meniscus surrounding the objects.
Beyond its fundamental interest, the Cheerios effect has
been recently harnessed in the context of particle self-
assembly [17,18,20]. However, the effect of dynamics on
the Cheerios effect, when, e.g., flexible dip-coated struc-
tures are swiftly removed from a bath, remains poorly
investigated.
Dip coating is usually studied with the Landau-Levich-

Derjaguin (LLD) theory which predicts that, for a thin fiber
removed at sufficiently small speed from a bath of
Newtonian liquid, the thickness of the film deposited on
the fiber is given by [21–24]

t ¼ 1.34RCa2=3; ð1Þ

whereR is the fiber radius, Ca ¼ μV=γ the capillary number,
μ the viscosity, γ the surface tension of the liquid, and V the
withdrawal speed. This relation has been obtained in a
regime where the Reynolds number Re ¼ ρVR=μ and the
Bond number Bo ¼ R2=l2

c are small (lc ¼
ffiffiffiffiffiffiffiffiffiffiffiffi

γ=ρlg
p

is the
capillary length, ρl the liquid density, and g the gravitational

acceleration). This relation was proved successful for
Ca up to roughly 0.03 [see Supplemental Material [25],
Fig. S2(b)] and has been extended to larger Ca, Bo, and
Re [24,26–34] and to different liquids such as partially
wetting [35], suspension [36,37], non-Newtonian [38–40],
polymer [41,42], and surfactant [43–45] solutions (see also
the recent review [46]). The LLDmodel essentially assumes
that the thin lubricated film deposited on the fiber connects
to the static meniscus.
In this Letter, we rationalize the capillary menisci-

mediated interaction between two fibers as they are
dynamically withdrawn from a liquid bath. Building on
our previous work studying the coalescence of two static
partially immersed fibers [11], we develop an original
measurement technique, based on the deflection of elastic
fibers, to experimentally access the dynamical capillary
force. We show that it may be one order of magnitude larger
than the static force computed in Ref. [13]. To understand
this large increase of force, we analyze the dynamical
meniscus around two fibers pulled out of a bath and show
that it can be reconstructed from the static meniscus around
a single fiber. We then draw analogy from the static case to
derive an expression of the capillary interaction accounting
for the large force measured.
The experiments are performed with two identical fibers

of length L and radius R clamped vertically to a linear stage
at a distance 2d and immersed in a silicone oil bath; see
Fig. 1(a) and Ref. [25]. The first step of the experiment
consists in determining the dry length Ls of the fibers at
which the attraction force created by the static meniscus can
bend the two fibers enough to trigger their coalescence.
Following the procedure described in Ref. [11], the fibers
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are quasistatically removed from the bath to determine Ls.
The fibers are then shortened at a length L < Ls, such that
the static capillary attraction is not strong enough to induce
their coalescence. The shortened fibers are then dynami-
cally withdrawn out of the bath at constant speed V. The
deformation of the air-liquid interface increases with V,
and, as a result, the distance δ between the fiber free
ends decreases. For a threshold speed V ¼ Vc, the two
fibers coalesce [Fig. 1(a) and Movie 1 in Supplemental
Material [25] ]. Once Vc is found for a given L, the fibers
are shortened again, and the subsequent threshold retraction
speed is determined. This shortening process is repeated
until the fibers are too short to coalesce at any retraction
speed considered (Re≲ 10−2 and Ca≲ 0.5). Shortening the
fibers ensure that, when coalescence occurs, the immersed
part of both fibers is sufficiently small to neglect any
viscous drag acting on the structures. This iterative process
yields the critical speed Vc at which two fibers of length L
coalesce. Figure 1(b) shows that L decreases as V
increases, demonstrating that the Cheerios effect between
the two fibers is enhanced by their dynamical withdrawal.

As shown in Ref. [11] for the quasistatic case, coales-
cence occurs when the lateral force due to capillarity,
Fs ¼ γπR2=δ, equals the elastic force, Fel ¼ 3Bδ=L3,
required to bend the fibers over a distance δ ¼ d=2. As
seen in Fig. 1(c), the relation Fsðd=2Þ ¼ Felðd=2Þ is
recovered at Ca ¼ 0. This suggests to plot Bd=L3 as a
function of the capillary number Ca to estimate the
dynamic capillary force F. Figure 1(d) shows that F
decreases as d=R increases, like in the static case, but
increases up to one order of magnitude when Ca increases
at fixed d=R. Hence, dynamic withdrawal of immersed
objects increases notably their capillary interaction com-
pared to the static case.
The interaction between the fibers is mediated

by the meniscus created around them [11,13,19]. To get
some insights into the deformation of the air-liquid inter-
face as the fibers are withdrawn from the bath, the
dynamical meniscus around a single fiber is first analyzed.
Figures 2(a) and 2(b) show that it grows significantly
with the withdrawal speed. However, Fig. 2(c) shows that
rescaling the menisci height by 1þ ζðCaÞ leads to a
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FIG. 1. (a) Experimental setup. Two parallel glass fibers
separated by a distance 2d and clamped at one end are removed
from a fluid bath at a speed V (E ¼ 64� 1 GPa). Above a critical
velocity Vc, the fibers coalesce. (b) Length L of the fibers as a
function of Vc. Squares, R ¼ 100 μm; circles, R ¼ 50 μm;
diamonds, R ¼ 160 μm. Face color represents d=R given by
the color bar; edge color corresponds to the fluid properties;
black, silicon oil V1000 (μ ¼ 0.96 Pa s); red, silicon oil V100
(μ ¼ 0.096 Pa s); gray, glycerol (μ ¼ 1.3 Pa s). γ ¼ 0.021 Nm−1
for silicon and 0.063 Nm−1 for glycerol. (c) At V ¼ 0 m=s, the
scaling for L ¼ Ls obtained in Ref. [11] is recovered (solid
curve). (d) Estimation of the dynamic capillary force Bd=L3 as a
function of Ca.

FIG. 2. (a) Snapshots of a glass fiber (R ¼ 50 μm) withdrawn
from silicon oil (μ ¼ 0.96 Pa s) at various retraction speeds
(V ¼ 0, 16, 128, 512 mm=min). Scale bar: 1 mm. (b) Meniscus
shape as a function of the rescaled radial distance r=lc at various
V (mm/min). The agreement with the theoretical model proposed
in Ref. [24] is good up to V ¼ 256 mm=min (Ca ≃ 0.2).
(c) Collapse of the dynamical meniscus profiles onto the static
meniscus shape when their height are properly rescaled by 1þ ζ.
V ¼ 2n mm=min with 1 ≤ n ≤ 9. The gray shaded area indicates
the region where the collapse is not satisfactory for the largest
retraction speed. (d) Evolution of the scaling factor ζ as a function
of Ca. ζexp and ζnum correspond to the experimental and
numerical profiles, respectively [25].
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collapse of the profiles onto the static meniscus which, in
turn, is well approximated by the modified Bessel function
of the second kind of zeroth-order K0 [12,19,47,48]. The
collapse is satisfactory provided r≳ 4R for the investigated
retraction speeds. A similar collapse is obtained for the
theoretical profiles computed with the model proposed in
Ref. [24] (see Supplemental Material [25]). The quantity ζ
scales as Ca4=5 for both the experimental and numerical
profiles yet with a slightly different prefactor [Fig. 2(d)].
This increase of the vertical elevation of the meniscus is
related to the film thickening [25]. Indeed, the meniscus
height, far enough from the fiber, is proportional to the fiber
radius, i.e., z ≃ RK0ðr=lcÞ, which is effectively increased
by the deposited film. For the values of Ca considered here,
t increases faster than Ca2=3 [25], leading to a larger
exponent for ζ, i.e., 4=5.
To analyze the dynamical meniscus created by two

withdrawn fibers, two identical clamped fibers are pulled
out of a liquid bath. They are sufficiently short to not
significantly deflect during their withdrawal. The shape of
the air-liquid interface is measured in a stationary regime
for various R, d, γ, and μ [Figs. 3(a) and 3(b)]. For the range
of d considered here and Ca≲ 0.2 [25], the profile
of the dynamical meniscus around two fibers, zd;2, is given
in good approximation by zd;2ðx; yÞ ¼ zd;1ðx − d; yÞ þ
zd;1ðxþ d; yÞ, where zd;1 is the profile of the dynamical
meniscus around a single fiber centered at x ¼ y ¼ 0 [see
Fig. 3(c) and Ref. [25] ]. Since Fig. 2 shows that
zd;1 ¼ ð1þ ζÞzs;1, where zs;1 is the profile of the static
meniscus around a single fiber, the height of the liquid
bridge h ¼ z2;dð0; 0Þ can, thus, be expressed as

h ¼ hsð1þ ζÞ; ζ ≃ 12.2Ca4=5; ð2aÞ

hs ¼ 2RK0ðd=lcÞ ≃ 2R ln½2lc=ðγedÞ�; ð2bÞ

where hs is the height of the liquid bridge between two
fibers at Ca ¼ 0 [Fig. 3(a)] and where the second expres-
sion in Eq. (2b) is obtained from the expansion of K0 for
d ≪ lc with γe ≃ 1.781 the exponential of the Euler-
Mascheroni constant. Figure 3(d) shows that the relative
variation of the measured bridge height, Δh=hs, varies in
good approximation as ζ, as expected from Eq. (2a). Note
that the data in Fig. 3(d) have been rescaled by powers of
R=d (see Supplemental Material [25] for the data without
this rescaling). Indeed, for a given system, there is a critical
retraction speed beyond which a liquid column is entrained
between both fibers and the dynamical meniscus is no
longer stationary [see vertical dashed lines in Fig. 3(d)
and Movie 2 in Supplemental Material [25] ]. This
happens when the coating film thickness on each fiber
t ∼ RCa2=3 reaches a fraction of the distance d, i.e., when
ðR=dÞ3=2Ca ≃ 0.02. Right below this threshold, for
0.01≲ CaðR=dÞ3=2 ≲ 0.02, the dynamical meniscus is still
stationary but may no longer be obtained by linear

superposition, because h drastically increases, inducing a
noticeable change of slope in Fig. 3(d) [25]. To capture this
change of slope and obtain a good collapse of the data, Ca
needs to be rescaled by ðR=dÞ3=2 and, accordingly, Δh=hs
by ½ðR=dÞ3=2�4=5 ¼ ðR=dÞ6=5. Note also that the measured
static liquid bridge height hs, displayed in Fig. 3(e), is well
described by Eq. (2b).
We now rationalize the dynamical force acting on two

fibers during their withdrawal [Fig. 1(d)]. We follow the
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FIG. 3. (a) Snapshots of two glass fibers (R ¼ 100 μm) with-
drawn from silicon oil (μ ¼ 0.96 Pa s) at V ¼ 0, 32,
256 mm=min. Scale bar: 1 mm. (b) Meniscus profiles as V
increases (0, 8, 32, 64, 128 mm=min). (c) Comparison between
the dynamical meniscus around two fibers (R ¼ 50 μm) sepa-
rated by a distance 2d ¼ 0.88 mm and withdrawn at V ¼
16 mm=min (Ca ¼ 0.012, orange curve) and the meniscus (solid
blue curve) obtained by summing the dynamical meniscus around
a single fiber withdrawn at the same speed (dashed blue curve).
(d) Evolution of Δh=hs as a function of Ca. All data collapse on
the same power law as the one obtained in Fig. 2(d):
Δh=hs ¼ 12.2Ca4=5. An increase of slope is observed when
d ≃ 20RCa2=3. The vertical dashed lines correspond to the
threshold above which a liquid film is entrained. (e) Height of
the static bridge as a function of the fibers distance. The solid
curve corresponds to Eq. (2b) and the dashed curve to its
logarithmic approximation valid for d=lc ≪ 1. See Fig. 1 for
the symbol and color code.
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approach developed in Ref. [13] to compute the shape of
the meniscus around two static fibers and the resulting
capillary force. Note that this approach is, a priori, valid
only for small meniscus slopes (θY ≃ π=2). However,
Eq. (2b) coincides with the expression of hs obtained with
this approach, and Fig. 3(e) shows that it gives a good
description of the data even for θY ¼ 0. In addition, we
have shown that the capillary force obtained in Ref. [13]
gives a good description of the coalescence of two static
fibers when θY ¼ 0 [11]. In the following, we thus use
θY ¼ 0. In this case, the difference of surface energy, US,
between a configuration where two vertical fibers of radius
R are at an infinite distance and the one where they are at a
distance 2d [Fig. 1(a)] reads as

US ¼ −2πγRðHd −H∞Þ; ð3Þ

where Hd and H∞ are the mean elevations of the (static)
meniscus contact line on each fiber when they are,
respectively, at a distance 2d or at infinity. When
d ≫ R, this difference is given by [11,13]

Hd −H∞ ¼ R ln½lc=ð2dγeÞ� ¼ hs=2 − 2R ln 2; ð4Þ

where we used the logarithmic approximation of hs; see
Eq. (2b). The static capillary force is given by
2Fs ¼ −∂US=∂d:

FsðdÞ ¼
π

2
γR

∂hs
∂d

¼ −
πγR2

d
: ð5Þ

In both the static and the dynamical cases, the capillary
force is mediated by the meniscus; therefore, we assume
that the interaction energy (3) and the method to derive the
capillary force still apply with the static meniscus replaced
by the dynamical one. We, thus, obtain

FðdÞ ¼ π

2
γR

∂h
∂d

¼ ð1þ ζÞFsðdÞ; ζ ≃ 12.2Ca4=5: ð6Þ

Figure 4 shows that the relative variation of the dynami-
cal capillary force, ΔF=Fs, computed from the raw data
reported in Fig. 1(d), varies in good approximation as ζ in
agreement with Eq. (6). Note that the data in Fig. 4 have
been again rescaled by powers of R=d to capture the
observed change of slope. The physical mechanism
behind this change of slope is similar as in Fig. 3(d),
but, since the fibers bend toward each other by typically
half their initial distance before coalescing as they are
withdrawn [11,25], the change of slope is expected to occur
at ðR=dÞ3=2Ca ≃ 0.01=23=2 ≃ 4 × 10−3, which agrees with
the onset of slope change in Fig. 4.
Equation (6) shows that dynamical interaction between

two fibers withdrawn from a liquid bath at a finite speed
is equivalent to the static interaction with an effective
surface tension increasing with the capillary number, i.e.,

γeff ¼ γð1þ ζÞ. It appears, thus, that the potential hydro-
dynamic effects in the bath are negligible, as in the case of
fiber sedimentation [49]. Consequently, all the analysis
performed for the static case can be easily reproduced [11].
For example, neglecting tension in the fibers and assuming
d ≫ R to keep the algebra simple here, the critical fiber
length beyond which coalescence occurs during the with-
drawal at finite speed is given by

L3 ¼ L3
s

1þ ζ
¼ 3Bd2

4πγR2
ð1þ ζÞ−1; ð7Þ

where Ls is the corresponding length in the static case.
Hence, L is reduced by 25% compared to Ls at Ca ≃ 0.065
and by 50% at Ca ≃ 0.5.
In the case of partially wetting liquids (θY > 0), the

increase in force is even more spectacular. For example, in
the extreme case where θY ¼ π=2, the interaction force
vanishes in the static case, as the air-liquid interface is not
deformed by the fibers. At finite retraction speed, however,
the viscous entrainment along the fibers leads to the
deformation of the interface and to a new dynamic contact
angle, leading to a finite capillary force [50,51].
In summary, we have studied experimentally and theo-

retically the withdrawal of two fibers out of a liquid bath.
To account for the steep increase of the capillary attractive
force, we first showed that the shape of the dynamical
meniscus around one fiber can be obtained by scaling the
shape of the static meniscus by a factor depending on Ca.
We then experimentally demonstrated that the air-liquid
interface between two withdrawn fibers is in good approxi-
mation described by the linear superposition of the inter-
face around one fiber. With these ingredients, we derived
analytical expressions for the evolution of the attraction
force with Ca and the critical fiber length beyond which
two fibers coalesce at a given Ca. A natural prolongation of
this work is to consider an array of fibers to study potential
collective effects on the onset of coalescence and on the
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FIG. 4. Evolution of ΔF=Fs as a function of Ca. All data
collapse on the same power law as the one obtained in Fig. 2(d):
ΔF=Fs ¼ 12.2Ca4=5. An increase of slope is observed when
d ≃ 50RCa2=3. See Fig. 1 for the symbol and color code.
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shape of the coalesced states, i.e., single or multiple
coalesced bundle of fibers. Indeed, recent experiments
show that retraction speed strongly influence the coalesced
shape [52,53]. The influence of coalescence on the amount
of fluid stored in an array of fibers is also of interest to
optimize fluid capture with potential applications to ration-
alize the nectar feeding by some passerine birds charac-
terized by a brushlike tongue [10,54]. Finally, we note that
the retraction speed appears to be an interesting parameter
to fine-tune the capillary interaction force between
slender structures. It may open new possibilities for the
capillary self-assembly of particles and fibers at fluid
interfaces [20,55].

The authors acknowledge support by the Fund for
Scientific Research (F.R.S.-FNRS) under Research Grant
No. J.0017.21 (CDR “FASTER”) and by the Federation
Wallonia-Brussels (FWB) (Concerted Research Actions
“Capture”). This project has received funding from the
European Union’s Horizon 2020 research and innovation
programme under the Marie Sklodowska-Curie Grant
Agreements No. 101027862 and No. 101102728. This
project also has received the support of ULB incentives
measures, available thanks to the FWB, to foster partici-
pation to European Union projects.

H. B. and E. S. contributed equally to this work.

*hadrien.bense@ulb.be
†emmanuel.siefert@ulb.be
‡fabian.brau@ulb.be

[1] K. J. Ruschak, Annu. Rev. Fluid Mech. 17, 65 (1985).
[2] S. J. Weinstein and K. J. Ruschak, Annu. Rev. Fluid Mech.

36, 29 (2004).
[3] P. M. Schweizer and S. F. Kistler, Liquid Film Coating:

Scientific Principles and their Technological Implications
(Springer Science & Business Media, New York, 2012).

[4] A. Jonsson, A. Roos, and E. K. Jonson, Sol. Energy Mater
Sol. Cells 94, 992 (2010).

[5] E. Mohseni, E. Zalnezhad, and A. R. Bushroa, Int. J. Adhes.
Adhes. 48, 238 (2014).

[6] C. Kapridaki and P. Maravelaki-Kalaitzaki, Progr. Org.
Coating 76, 400 (2013).

[7] D. Janas and K. K. Koziol, Nanoscale 6, 3037 (2014).
[8] A. Lechantre, A. Draux, H.-A. B. Hua, D. Michez, P.

Damman, and F. Brau, Proc. Natl. Acad. Sci. U.S.A.
118, e2025513118 (2021).

[9] C. J. Harper, S. M. Swartz, and E. L. Brainerd, Proc. Natl.
Acad. Sci. U.S.A. 110, 8852 (2013).

[10] R. J. Mitchell and D. C. Paton, Oecologia 83, 238 (1990).
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Fluids 7, 1221 (1995).
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