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a b s t r a c t

We study the onset of coalescence between two slender structures quasi-statically withdrawn from a
liquid bath. When partially immersed, they interact with each other through the capillary force induced
by their menisci. As they are removed from the bath, their dry length increases and they become easier
to bend until the capillary force is strong enough to trigger contact. Surprisingly, the structures snap to
contact from a finite distance at a critical dry length. The transition to coalescence is thus subcritical
and exhibits a large hysteresis loop between two stable states. An analytical coalescence criterion
is derived and agrees well with experimental data for rods and lamellae. This simple elastocapillary
model is a first step to better understand the elastocapillary coalescence of slender structures in fluid
capture systems.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

The aggregation of elastic structures by capillary forces is a
ommon phenomenon in both natural and man-made systems [1,
]. It can be observed when wet hairs [3–5] or tarsal setae of
rthropods [6,7] aggregate into bundles, during nectar feeding
y some small animals [8–11] or during the spontaneous in-
rop spooling of spider capture thread [12], to name a few. In
echnology, the capillary attraction between slender structures
ay lead to disastrous damages in photo-resist lithography [13–
6]. Recently, this capillary attraction has been used to develop
omplex self-assembling structures, such as helical clusters of
anopillars, at scales where conventional manufacturing strate-
ies are hardly applicable [17–21]. Although the configuration
here the free ends of the structures are in contact has been
ell characterized [3–5], as well as the evaporation effect on
ggregation [22,23] or the imbibition and fluid transport dynam-
cs in those structures [24–26], the necessary conditions for the
oalescence of slender structures withdrawn from a liquid bath
re not known to the best of our knowledge.
To study the onset of capillary aggregation of slender struc-

ures, we consider a model system composed of pairs of identical
ods or lamellae quasi-statically withdrawn from a liquid bath
nd analyze under which conditions they coalesce (Fig. 1(a)). The
resence of the structures indeed distorts the air–liquid interface
esulting in an attractive capillary-induced interaction between
oth structures (Fig. 1(d)). Such a mechanism is reminiscent of
he capillary interaction between particles at an air–liquid inter-
ace, known as the ‘‘Cheerios effect’’, that has been at the core of
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many experimental and theoretical studies [27–36] and used to
program particle self-assembly [37,38]. This attractive shear force
leads to the deflection of the structures towards each other and
to a smaller separation distance, that in turn increases the am-
plitude of the shear force. In this work, we aim at describing and
rationalizing the nonlinear fluid–structure coupling in this model
experiment. This study is a first step to better understand the
physics at play when a brush is removed from a paint bucket [39–
41] or in the feeding process of some nectarivores characterized
by brush-like tongues, such as bees [11,42] or bats [43].

The paper is organized as follow. In Section 2, the experimen-
tal setup is described and the results are presented. We show
that the coalescence between the structures occurs through a
snapping transition when they are still at a finite distance from
each other and weakly deformed. In Section 3, we introduce a
theoretical model to rationalize the observations based on the
linear beam equation and the capillary shear force for rods and
lamellae acting as a boundary condition on the beam. This nonlin-
ear coupling reveals a subcritical bifurcation, in agreement with
observations, that depends on dimensionless combinations of
the system parameters. Despite the simplifying assumptions, the
model allows the construction of phase diagrams that accurately
describe our experimental data over a wide range of parameters.
We finally summarize our work and propose some directions for
future work in Section 4.

2. Experiments and results

2.1. Experimental methods

A pair of identical rods and lamellae are clamped vertically
to a linear stage (ZwickiLine Z0.5 from Zwick), at a relative
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a

Fig. 1. (a) Schematic of the experimental set up. Two identical rods or lamellae are clamped vertically to a linear stage at a distance 2d. They are partially immersed
in a liquid bath with a dry length L and a contact angle θY . Because of the capillary force F induced by the menisci, the distance between their free ends at the
ir–liquid interface is 2δ < 2d. The cylindrical rods are made of glass (PET) with a radius R = 50 ± 2 µm (100 ± 2 µm), a Young modulus E = 64 ± 1 GPa

(10 ± 1 GPa), a density ρs = 2500 kg m−3 (1380 kg m−3) and a total length 30 ≤ L0 ≤ 200 mm. The lamellae are made of PET with a thickness 23 ≤ t ≤ 250 µm,
width 10 ≤ W ≤ 30 mm, total length 50 ≤ L0 ≤ 300 mm, Poisson ratio ν = 0.4, E = 5 ± 0.5 GPa and ρs = 1380 kg m−3 . (b) Snapshots of an experiment cycle for
PET rods clamped at a distance 2d = 0.8 mm. Scale bar: 5 mm. (c) Evolution of the distance δ − R as a function of the dry length L for the experiment shown in
panel (b). (d) Fluid interface distortion induced by two PET rods when separated (top) or in contact (bottom). Scale bar: 1 mm. (e) Evolution of (δ − R) as a function
of L for rods made of glass (diamond) and of PET (square) clamped at different distances d. (f) Evolution of δ as a function of L for PET lamellae of various thickness
and clamped at different distances d. The distances d are given in mm and the thicknesses in µm.
distance 2d, see Fig. 1(a). The lamellae are made of Polyethylene
terephthalate (PET) and the rods are made of glass or PET. They
are characterized by a Young modulus E, a density ρs and a
total length L0. The cylindrical rods have a radius R whereas the
lamellae have a thickness t , a width W and a Poisson ratio ν (see
Fig. 1 for the parameter values). Silicon oil with surface tension
γ = 0.021 N m−1, density ρℓ = 960 kg m−3 and viscosity
µ = 10 cSt is used as a model fluid. The viscosity was varied in
few experiments (10 < µ < 1000 cSt) without any noticeable
impact on the results as expected. The fluid container is large
compared to the spatial extension of the menisci to avoid border
effects. For the lamellae, W was chosen large with respect to the
capillary length to limit boundary effects. The width was varied
to ensure that it did not affect the results.

Initially, the rods/lamellae are immersed in silicon oil deep
enough such that they do not coalesce. They are quasi-statically
withdrawn by steps of 1 mm at a speed of 20 mm/min. A picture
is taken at each step by a computer controlled camera (Nikon
D850) until coalescence is reached when L = L+

c . The pair is
then plunged back in the bath until they separate when L = L−

c .
Fig. 1(b) shows snapshots of a whole experiment cycle for rods.
Note that to account for the potential slight deviation from paral-
lelism between both structures, the distance 2d is also measured
at the position L+

c when the pair is completely removed from the
bath and yields small uncertainties on d.

2.2. Results

As the slender structures are immersed in a fluid of surface
tension γ and density ρℓ, the air–liquid interface is no longer
flat and menisci form near them (Fig. 1(d)). They extend along
the air–liquid interface over a distance proportional to the radius
R for the rods or to the capillary length ℓc = (γ /ρℓg)1/2 for
the lamellae [44] (g is the gravitational acceleration). The two
menisci being identical, their interaction yields an attractive shear
force whose magnitude decreases when the distance between
them increases [28–30]. Therefore, when the imposed distance
between the elastic objects, d, is large compared to R for rods
and to ℓ for lamellae, there is no significant interaction between
c

2

them and the two structures stay parallel. When d is sufficiently
small, the menisci interaction slightly bends the two structures
so that their distance along the air–liquid interface, 2δ, is smaller
than the imposed distance at the clamped ends, 2d, see Fig. 1(a).

At the beginning of an experiment, the dry length L of the
rods/lamellae is small so that their effective stiffness is large and
they barely bend, i.e. δ ≃ d. As L increases, the structures become
progressively easier to bend and δ decreases. Fig. 1(c) shows the
evolution of δ as a function of L obtained from a conventional
image analysis of the experiment displayed in Fig. 1(b) for rods.
The variation of δ is moderate when L is sufficiently small but
becomes significant when L approaches a critical value, L+

c , at
which a contact between the structures occurs. The transition to
coalescence appears to be discontinuous: at the transition length
L+
c , the gap 2(δ − R) between the structures at the air–liquid
interface jumps from a finite value to 0 as the dry length is
incrementally increased. After coalescence, when the dry length
is decreased, the free ends of the structures remain in contact
until another critical length L−

c < L+
c is reached, exhibiting a large

hysteresis loop, and the gap jumps back to the previous branch
(Fig. 1(c)).

Experiments have been performed with various type of slen-
der structures and some representative variations of δ with L
are shown in Fig. 1(e) for rods and (f) for lamellae. In all cases,
there is a critical length L+

c beyond which coalescence is observed.
Although this qualitative observation is valid for both rods and
lamellae, there is a clear difference between both systems: rods
tend to deflect relatively more than lamellae at the transition
length L+

c . The goal of the model developed in the next section
is to accurately describe this bifurcation to coalescence for both
types of structure, to determine the expression of L+

c as a function
of the system control parameter and to construct a phase diagram
delimiting the coalescence region.

Before developing the theoretical model, let us discuss the
physical ingredients at play to determine the characteristic length
scales. In this system, surface tension is the driving force of
coalescence and elasticity the resisting force. The weight of the
structures should nonetheless also be considered. Indeed, for very
long structures, gravity appears as the dominating resisting force
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o deflection. We thus expect the following characteristic lengths
o play a role:

BC = [B/(γ P)]1/2 , ℓBG = [B/(ρsgS)]1/3 , (1)

where P and S are respectively the perimeter and the area of
the cross section of the structure and B is the bending stiff-
ness (B = πER4/4 for rods and B = Et3W/[12(1 − ν2)] for
amellae). The bendocapillary and bendogravitational lengths, ℓBC
nd ℓBG, correspond, respectively, to the typical length above
hich capillary forces and gravity may bend a slender struc-
ure [3,45]. These characteristic lengths are directly measured
sing calibration experiments for lamellae (Appendix A).

. Model

Since the deflections are small (d/L ≪ 1), we use the linear
eam equation to model the homogeneous rods or lamellae and
onsider the tension induced by surface tension and gravity. The
apillary tension reads Tγ = γ cos θYP , where θY is the contact
ngle. We assume, for simplicity, that all the mass is concentrated
t a distance L from the clamped end and neglect the weight of
he immersed part of the structure so that the tension induced by
ravity is given by Tg = ρsgSL. Using x̄ = x/L and w̄ = w/d, the
imensionless linear beam equation for one of the two structures
eads

¯
′′′′(x̄) − α2 w̄′′(x̄) = 0, (2)

here y = w(x) is the deflection of the structure, prime denotes
derivative with respect to x̄ and α2

= (Tγ + Tg )L2/B =
2 cos θY/ℓ

2
BC + L3/ℓ3BG is the dimensionless tension. Since the

op end of the structure is clamped and the bottom end is free
ith a transverse force acting on it, we have the following set of
oundary conditions (BCs):

w̄(0) = 1, w̄′(0) = 0, w̄′′(1) = 0, (3a)

¯
′′′(1) = α2w̄′(1) −

FL3

Bd
, (3b)

here F is the capillary force (Fig. 1(a)). The solution of Eqs. (2)
nd (3a) reads

¯ (x̄) = 1 − A
αx̄ coshα − sinhα + sinh(α − αx̄)

α coshα − sinhα
, (4)

where A ≥ 0 is a dimensionless deflection coefficient at the
air–liquid interface since

δ/d = w̄(1) = 1 − A, ⇒ Ad = d − δ, (5)

where d − δ is the displacement of the free end. Substituting
Eq. (4) in the last BC (3b), we obtain

Fel ≡ k (d − δ) = −F , k =
B
L3

α3

α − tanhα
, (6)

which is just the balance between the capillary force F and an
elastic force Fel with an effective spring constant k involving the
bending modulus, the length and the tension of the structure.

The expression of the capillary forces F between two identical
rigid rods (R ≪ δ ≪ ℓc) or lamellae (δ ≪ ℓc) has been derived
and compared to experiments in the literature [28,31,34]. They
read as:

FR(δ) = −πγ R2 cos2 θY
[
δ2 − R2]−1/2

, (7a)

FL(δ) = −(γ /2)W cos2 θY (δ/ℓc)
−2 , (7b)

here the subscripts R and L refer respectively to rods and
amellae. The capillary force scales as δ−1 for rods and δ−2 for
amellae and have distinct characteristic lengths, i.e. R for rods
nd ℓ for lamellae. Eqs. (7) are no longer valid when δ ≳ ℓ
c c

3

ince the forces decrease exponentially at large distance [30,32].
evertheless, Eqs. (7) are sufficient for our study because such
arge distances between the two structures are not considered
n the experiments. Indeed, since the capillary forces are expo-
entially small at large distance, coalescence is possible only if
he effective stiffness of the structures is small enough. However,
q. (6) together with the definition of α show that k cannot be
maller than B/L3BG = ρsgS during a given experiment where only
he dry length L is varied. Therefore, when δ ≳ ℓc , the capillary
forces are not strong enough to significantly bend the structures
we use and promote aggregation. Note that, in principle, the
shape of the menisci, and hence the resulting force, change when
the structures deform and get slightly tilted at the interface. This
effect is neglected here. Note also that a 2D description for the
lamellae is possible if W ≳ ℓc so that the influence of the menisci
enerated by the edges is negligible compared to the force (7b)
nduced by the menisci created by the faces.

Substituting the expressions (7) of the forces in the equilib-
ium equation (6) and using Eq. (5) to eliminate δ, we obtain an
quation for A for both rods and lamellae:

d̄R
√
d̄ 2
R (1 − A)2 − 1 ≡ HR(A, d̄R) = ΛR ≡ Λ/R, (8a)

2Ad̄ 3
L (1 − A)2 ≡ HL(A, d̄L) = ΛL ≡ Λ/ℓc, (8b)

Λ =

[
L3 cos2 θY

2ℓ2BC

][
α − tanhα

α3

]
, (8c)

¯R =
d
R
, d̄L =

d
ℓc

, α2
=

L2

ℓ2BC
cos θY +

L3

ℓ3BG
, (8d)

here Λ is a rescaled dry length. The functions HR and HL are
hown in Fig. 2 as a function of A for given values of d̄R and d̄L
ogether with the total rescaled energy of the system for rods (ŪR)
nd lamellae (ŪL) (Appendices B, C)

¯R =
A2

2
+

ΛR

d̄ 2
R

ln
[
d̄R(1 − A) +

√
d̄ 2
R (1 − A)2 − 1

]
, (9a)

ŪL =
A2

2
−

ΛL

2d̄ 3
L (1 − A)

. (9b)

he function HR vanishes at A = 0 and A = 1 − d̄−1
R and has a

aximum value, Λc
R, at an intermediate value Ac

R, see Fig. 2(a)–(c).
hen ΛR < Λc

R, Eq. (8a) admits two solutions for A (Fig. 2(a)).
he largest one corresponds to a local maximum of the energy
nd is unstable. The energy is also characterized by two local
inima. We thus expect bistability between an open state given
y the smallest solution of Eq. (8a) and a contact state with
= 1 − d̄−1

R , i.e. δ = R. When ΛR approaches Λc
R, by increasing

he dry length L, both solutions of Eq. (8a) get closer until they
erge when ΛR = Λc

R (Fig. 2(b)). When ΛR is infinitesimally
arger than Λc

R, Eq. (8a) does not have any solution and the energy
s characterized by only one local minimum at A = 1 − d̄−1

R
Fig. 2(c)). The deflection A then jumps from Ac

R, corresponding to
n open state, to contact. There is thus a discontinuous, subcritical
ransition to coalescence. The function HL is similar to HR since it
anishes at A = 0 and at A = 1 and has a maximum value Λc

L
t an intermediate value Ac

L , see Fig. 2(d)–(f). Therefore, a similar
easoning applies to lamellae.

The position and value of the maximum of the functions HR
in the limit d̄R ≫ 1) and HL given by Eqs. (8a) and (8b) are

c
R =

1
2
, Λc

R =
d̄ 2
R

4
−

1
2
, Ac

L =
1
3
, Λc

L =
8d̄ 3

L

27
, (10)

here terms of order d̄−2
R have been omitted for rods. The ex-

ressions for Ac
i show that rods deflect to half their initial distance

before snapping into contact whereas lamellae deflect to only one
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Fig. 2. (a)–(c) Evolution of HR(A, d̄R), defined by Eq. (8a) (blue curve), and of the total energy ŪR(A, d̄R, ΛR), defined by Eq. (9a) (orange curve), as a function of the
eflection parameter A for d̄R = 10. When ΛR < Λc

R ≃ 24.5, Eq. (8a) admits two solutions corresponding to local extrema of Ū . The smallest is stable and describes
n open state. When ΛR > Λc

R , there is no solution to Eq. (8a) and A = 1− d̄−1
R (contact state). (d)–(f) Corresponding situation for lamellae for d̄L = 1 with HL(A, d̄L)

and ŪL(A, d̄L, ΛL) given respectively by Eqs. (8b) and (9b). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 3. Coalescence phase diagrams for rods (a) and lamellae (b) where d̄R =

/R ≥ 1 and d̄L = d/ℓc ≥ 0 respectively. The symbols represent experimental
ata corresponding to the largest dry length reached in each experiment before
oalescence occurs. The curves Λc

R and Λc
L given by Eqs. (10) are shown together

with the maximum value of ΛR and ΛL given by Eqs. (16). The thicknesses t
are given in µm and the widths W in mm.

third of this distance. The curve Λc
i (d̄i) thus delimits the region

where coalescence occurs in the phase diagram spanned by the
parameters d̄i and Λi with i = R or L. Fig. 3 shows a good
agreement between the theoretical expressions (10) and the data
 t

4

except when the distance between rods becomes comparable to
their radius. In this regime, Eq. (7a) underestimates the capillary
force between rods [34] and coalescence occurs with a dry length
smaller than predicted here.

To draw the bifurcation diagrams, we use ΛR and ΛL as bifur-
cation parameters and

ηR =
δ − R
d − R

= 1 −
A

1 − d̄−1
R

, ηL =
δ

d
= 1 − A, (11)

s order parameters. The diagrams may be obtained by solving
qs. (8a) and (8b) to get A, and thus the order parameters, as a
unction of ΛR and ΛL respectively for a given distance d between
he structures. It is however possible to obtain simple analytical
xpressions near the bifurcation point by expanding the functions
R and HL around their maximum

i ≃ Λc
i +

1
2

∂2Hi

∂A2

⏐⏐⏐
A=Aci

(A − Ac
i )

2, i = R, L. (12)

Eqs. (8a) and (8b) can then be solved to obtain A and the order
parameters (11) as a function of Λi:

2ηR ≃ 1 ±

√
1 −

4ΛR

d̄ 2
R

,
3ηL

2
≃ 1 ±

√
1
3

−
9ΛL

8d̄ 3
L

, (13)

ig. 4 shows that these simple asymptotic expressions enable us
o obtain a collapse of the bifurcation data when the order param-
ters ηR and ηL are plotted as a function of the new bifurcation
arameters ΛR/d̄ 2

R and ΛL/d̄ 3
L respectively.

. Discussion and conclusion

The characteristic length Λ given by Eq. (8c) appears as the pa-
ameter containing the physics at play in the coalescence process.
uring a given experiment, all the parameters are fixed except L
hich increases. Since Λ increases monotonically with L, there

s an unambiguous relationship between both quantities. This
ength scale is composed of two factors written between square
rackets in Eq. (8c). The first one does not contain the tension
oefficient α and scales as L3. It compares the beam stiffness
∼ B/L3) to the surface tension γ . The second one depends on

he dimensionless tension α which is a function of L. The relation
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Fig. 4. Experimental bifurcation data for glass rods (a) and PET lamellae with
t = 250 µm (c). (b)–(d) Rescaling of the data according to the asymptotic master
urves given by Eqs. (13). The initial gap d is given in mm.

between Λ and L is thus intricate as illustrated in Fig. 5(a).
Nevertheless, this relation simplifies in some asymptotic limits
according to the value of α:

Λ =
α≪1

L3 cos2 θY

6ℓ2BC
, Λ =

α≫1

L3 cos2 θY

2α2 ℓ2BC
. (14)

The first limit α ≪ 1 corresponds to L ≪ min(ℓBG, ℓBC ). In this
egime where tension is negligible, the expression of L+

c may be
xplicitly derived from Λi = Λc

i with Λc
i given in Eqs. (10)

L+

c ]
3

=
3B

2πγ cos2 θY

[
d2

2R2 − 1
]

, [L+

c ]
3

=
8(B/W )d3

9γ cos2 θYℓ2c
, (15)

here the first equality stands for rods and the second for lamel-
ae. For given slender structures, these expressions show that L+

c
s small enough to have α ≪ 1 when d is small enough. Fig. 5(b)
hows indeed a good agreement between theory and experiments
hen the structures are close enough. In our experiments, signif-

cant deviation from the theory without tension occurs only for
amellae.

The second limit α ≫ 1 corresponds to L ≫ max(ℓBG, ℓBC ) so
hat α2

≃ (L/ℓBG)3. Therefore, Eq. (14) shows that Λ saturates to
constant value Λm for long structures

m
=

ℓ3BG cos
2 θY

2ℓ2BC
=

γ cos2 θY

ρsg
P
2S

, (16)

here we used Eq. (1) and P/(2S) is equal to R−1 for rods and
−1 for lamellae. Eq. (16) results from the interplay between the
orizontal capillary shear force promoting coalescence and the
ertical gravitational force hindering aggregation. A necessary
ondition to observe coalescence is thus Λm

i > Λc
i . Using Eqs. (10)

nd (16), we obtain

2 <
4γ cos2 θY

ρsg
, d3 <

27γ cos2 θYℓ
2
c

8ρsg t
, (17)

or rods and lamellae respectively. These expressions give the
aximum imposed distance d beyond which coalescence is not
ossible. The upper limits Λm

R = Λm/R and Λm
L = Λm/ℓc are

hown as horizontal dashed lines in Fig. 3. These limits have
5

Fig. 5. (a) Evolution of Λ̄ = 2Λ/(ℓBC cos2 θY ) as a function of L/ℓBC for θY = 0.
When ℓBG/ℓBC ≪ 1, Λ̄ grows like (L/ℓBC )3 before to saturate at Λ̄m

= (ℓBG/ℓBC )3
when L ≳ ℓBC . When ℓBG/ℓBC ≫ 1/

√
cos θY , there is an intermediate regime

where Λ̄ ≃ (L/ℓBC )/ cos θY when ℓBC/
√
cos θY ≪ L ≪ cos θY ℓ3BG/ℓ

2
BC . (b)

oalescence phase diagrams for rods and lamellae where ΛR and ΛL , defined
y Eqs. (8), are computed with α = 0, i.e. when tension is neglected. The
olorbar indicates the value of α for each data point. A good agreement between
xperiments and theory (Eqs. (10)) is achieved only when α ≲ 1 as expected.
n this case, the expression of L+

c is given by Eqs. (15). (For interpretation of
he references to color in this figure legend, the reader is referred to the web
ersion of this article.)

lmost been reached in the experiments. This justifies the use
f Eqs. (7) neglecting the exponential tail of the capillary force.
ndeed, this tail can only be probed by increasing the imposed
istance d between the structures which is already close to the
imits (17) in our experiments.

Finally, if ℓBG/ℓBC ≫ 1/
√
cos θY , Eq. (8d) shows that α can be

much larger than 1 with α2
≃ (L/ℓBC )2 cos θY when 1/

√
cos θY ≪

L/ℓBC ≪ (ℓBG/ℓBC )3 cos θY . Therefore, in this case, there is an
ntermediate regime before the saturation of Λ where 2Λ =

cos θY , see Fig. 5(a). In our experiments, ℓBG < ℓBC and such a
egime is not observed (see Table A.1).

The fully analytical model developed here is based on the
inear beam theory, as the maximum deflection d is very small
ompared to the dry length L in the experiments. In Appendix D,
e derive a model based on the nonlinear beam theory to deter-
ine the domain of validity of the linear model presented above.
e show that the linear theory is always essentially valid. Small
ifferences between the linear and nonlinear theories occur only
n the case of very soft and small structures.

The length L−
c at which the two structures separate when

e-immersed in the liquid bath cannot be derived within this
ramework. Indeed, for both rods and lamellae, the contact state
s stable for all values of the dry length in this theory since
t always corresponds to a local minimum of the total energy.
his problem comes from the transverse capillary force computed
rom the interaction between vertical structures. A contact state is
hus associated to a contact zone extending over all the structure
ength which overestimates the capillary force. The dry length
−
c < L+

c , for which two structures in contact detach is actually
nown and corresponds to the dry length of the equilibrium
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hape of capillary aggregated pair of lamellae [3,46] and fibers [5].
his length depends on the total length of the structures, which
nables or not tangential contact at the free end, as studied in
ef. [46].
This work is a first step toward understanding the elasto-

apillary coalescence of slender structures in fluid capture by
rush-like systems. A complete understanding requires to study
he influence of an array of fibers and/or the retraction speed
n the coalescence as the structures are withdrawn from a bath.
reliminary results indicate that the retraction speed significantly
mpacts the coalescence process. On one hand, the surface energy,
nd hence the capillary force, is increased by the formation of
Landau–Levich film around the structures. On the other hand,

f the structures are removed too swiftly from the bath, they
ave not enough time to get into contact. Rationalizing these
ntagonistic effects would contribute to better understand the
oalescence process in such a system and its impact on the
mount of fluid captured.
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Appendix A. Characteristic length scales

Determining ℓBC

As reported in Ref. [47], estimating the bendocapillary length
ℓBC for lamellae using each parameter involved in Eq. (1) of the
main text produces large errors. Therefore, we directly measure
this length scale with the following calibration experiment.

We clamp two identical parallel lamellae at a distance 2d,
deposit a droplet of silicon oil on one of the lamellae and bring
them into contact. As the PET sheets used for this study are
relatively stiff, folding them to form a loop with a self-contacting
tail, as proposed in Ref. [47], would require meter-long lamellae
and is therefore hardly applicable. The clamping distance is varied
for a given pair of lamellae and the length L at which lamellae join
in tangential contact is measured, see Fig. A.6(a)–(b).

To determine ℓBC , we compute theoretically the evolution of L
as a function of d. As L is large compared to the clamping distance
(d/L ≪ 1) and smaller than ℓBG, we use a linear beam equation
and neglect gravity to describe the shape of the lamellae. The
equation to solve reduces to w(4)(x) = 0, where y = w(x) is the
deflection of one of the two lamellae, with the BCs: w(0) = d,
w′(0) = w(L) = w′(L) = 0, see Fig. A.6(a). The solution reads as
w(x) = d(L − x)2(L + 2x)/L3. The length L is fixed thanks to an
additional BC obtained as follow.

Considering a small virtual displacement dx of the tangential
contact point at x = L, the variation of bending energy may

2
be written as dEB = Bκc dx, where κc is the curvature at the

6

Fig. A.6. Experimental determination of the characteristic lengths ℓBC and ℓBG .
(a) Sticking length L of two PET lamellae (t = 100 µm) for various gaps d.
Dashed lines correspond to the linear beam theory. Scale bar: 10 mm. (b) L as a
function of d for lamellae of various thickness t (µm). Fitting the experimental
points with Eq. (A.1) (solid curves) yields the bendocapillary length ℓBC for each
thickness. (c) Lamellae of various length L deflected by their own weight. Dashed
lines correspond to the numerical solution of Eq. (A.2a). Scale bar: 10 mm.
(d) Deflection ratio ∆y/∆x as a function of (L/ℓBG)3 for lamellae of various
thicknesses. Adjusting the experimental data to the numerical master curve
obtained from Eqs. (A.2), yields the bendogravitational length ℓBG .

contact point [47]. The variation of interfacial energy reads dES =

2γ cos θYWdx, where θY is the contact angle of the liquid on the
surface (equal to zero in our case). Equating both energy varia-
tions yields the curvature at the contact point κc =

√
cos θY/ℓBC

(P ≃ 2W ). Imposing w′′(L) = κc , with w(x) derived above, we
obtain L as a function of d and the bendocapillary length ℓBC :

=

(
6ℓBCd

√
cos θY

)1/2

. (A.1)

The length ℓBC is then adjusted so that Eq. (A.1) fits the mea-
ured dry lengths for each thickness considered, see Fig. A.6(b).
ig. A.6(a) shows that the resulting theoretical shape agrees well
ith the lamella shape.

etermining ℓBG

We perform the following experiments to measure ℓBG [48].
amellae of various lengths L are clamped horizontally at one
nd and are deflected by their own weight, see Fig. A.6(c). As the
eflections are a priori large, we turn to the nonlinear elastica
escription of the lamella deformation. Using the arclength s and
, the local angle between the tangent to the lamella and the
orizontal axis, to parametrize the lamella, we have:

d2θ
ds̄2

=
L3

ℓ3BG
(s̄ − 1) cos θ, θ (0) = θ ′(1) = 0, (A.2a)

∆x =

∫ 1

0
cos θ (s̄) ds̄, ∆y =

∫ 1

0
sin θ (s̄) ds̄, (A.2b)

here s̄ = s/L. This equation is integrated using a shooting
method and the resulting deflection of the free end, ∆x and ∆y,
is computed as a function of L/ℓ . The bendogravitational length
BG
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f our lamellae is obtained by adjusting the data to the numerical
aster curve, see Fig. A.6(d).
In the case of rods, such calibration tests are not performed,

s their mechanical and geometrical properties are well charac-
erized and guaranteed by the suppliers (Hildenberg for the glass
ods, Goodfellow for the PET rods).

Table A.1 gives the values of ℓBC and ℓBG for structures consid-
red in this work.

ppendix B. Capillary force and total energy: rods

apillary force

The authors in Ref. [28] computed the difference of surface en-
rgy between a configuration where two vertical and cylindrical
ods of radius R are at an infinite distance and a configuration
here the two symmetry axes of the rods are at a finite distance
δ. The following expression is valid provided R and δ are small
nough compared to the capillary length (ℓc = (γ /ρℓg)1/2) and
Y close enough to π/2:

US = −2πγ R cos θY (hc − h∞), (B.1a)

∞ = R cos θY ln
[

4
γe(1 + sin θY )R/ℓc

]
, (B.1b)

hc = R cos θY

[
τ1 + 2 ln

[
1 − exp(−2τ1)

γea/ℓc

]]
, (B.1c)

τ1 = ln

[
a
R

+

√
1 +

a2

R2

]
, a =

√
δ2 − R2, (B.1d)

here γe ≃ 1.781 (ln γe is the Euler–Mascheroni constant).
This expression can be written in a simpler form by writing

¯c = hc/(R cos θY ) as

¯c = τ1 + 2 ln
[
1 − exp(−2τ1)

a/R

]
− 2 ln(γeR/ℓc). (B.2)

sing the definition (B.1d) of τ1 and a, we get

¯c = − ln

(
δ

R
+

√
δ2

R2 − 1

)
− 2 ln

(
γeR
2ℓc

)
. (B.3)

herefore, the surface energy can be written as

US

2πγ R2 cos2 θY
= ln

[
δ

R
+

√
δ2

R2 − 1

]
+ C, (B.4a)

C = ln
(

γeR
(1 + sin θY )ℓc

)
. (B.4b)

The capillary force is given by 2F = −∂(US)/∂δ:

F (δ) = −πγ R2 cos2 θY
[
δ2 − R2]−1/2

. (B.5)

his expression coincides with Eq. (7a) of the main text.

otal energy

The total energy, UR, of half the system is given by

R = UB + UT +
US

2
,

=
B
2

∫ L

0
[w′′(x)]2 dx +

T
2

∫ L

0
[w′(x)]2 dx +

US

2
. (B.6)

Using the expression of w given by Eq. (4) of the main text, and
the expression (B.4) of US (with δ = d(1 − A)), we get

UR(A) =
BA2d2 α3(−α + coshα sinhα)

4L3 (−α coshα + sinhα)2

7

Table A.1
Bendocapillary and bendogravitational lengths of lamellae and rods used in this
work. The values for rods have been computed using Eq. (1) of the main text
and error propagation. The thickness and radius are given in µm and ℓBC and
ℓBG are given in mm.
Lamellae Rods

t ℓBC ℓBG R ℓBC ℓBG

23 16 ± 2 25 ± 2 50 218 ± 6 118 ± 2
75 118 ± 4 58 ± 3 100 244 ± 14 123 ± 4
100 153 ± 10 73 ± 3
250 557 ± 12 120 ± 10

+
TA2d2

8L
α [2α(2 + cosh 2α) − 3 sinh 2α]

(−α coshα + sinhα)2

+ πγ R2 cos2 θY (ln g(A) + C) , (B.7)

g(A) = d̄R(1 − A) +

√
d̄ 2
R (1 − A)2 − 1, d̄R =

d
R
.

The tension T can be eliminated in favor of α by using its defini-
tion, namely α2

= TL2/B (see below Eq. (2) of the main text). The
expression of the energy reduces to

UR(A) =
BA2d2

2L3
α3

α − tanhα
+ πγ R2 cos2 θY (ln g(A) + C) . (B.8)

Defining the rescaled energy as

ŪR =
UR − πγ R2 cos2 θY C

β
, β =

Bd2

L3
α3

α − tanhα
, (B.9)

we have

ŪR(A) =
A2

2
+

ΛR

d̄ 2
R

ln
[
d̄R(1 − A) +

√
d̄ 2
R (1 − A)2 − 1

]
, (B.10)

where ΛR is defined by Eq. (8) of the main text. We thus recover
Eq. (9a) of the main text. The selected value of A is the one that
minimizes the energy which is obtained from the equation

∂ŪR

∂A
= 0 = A −

ΛR

d̄R
√
d̄ 2
R (1 − A)2 − 1

. (B.11)

We recover Eq. (8a) of the main text.

Appendix C. Capillary force and total energy: lamellae

Action and Lagrangian of the system

The surface energy in the region 0 ≤ x < δ of the system
depicted in Fig. C.7 reads

US = γ ℓW , (C.1)

where ℓ is the length of the air–liquid interface in this region. The
gravitational energy reads

UG =
ρℓ g W

2

∫ δ

0
h(x)2 dx. (C.2)

herefore the dimensionless action is given by

¯ = ℓ̄ +
1
2

∫ δ̄

0
h̄(x̄)2 dx̄, (C.3)

where S̄ = S/(γ ℓcW ) and all lengths have been rescaled by the
capillary length ℓc .

The action can now be written as the integral of a Lagrangian:

S̄ =

∫ δ̄

0
L(h̄, h̄′) dx̄, L =

[
1 + h̄′ 2]1/2

+
h̄2

2
, (C.4)

where h̄′
= dh̄/dx.
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Fig. C.7. Schematic of the system composed of two lamellae separated by a
distance 2δ.

Equation for the interface

The equation for the interface is obtained from the Euler–
agrange equation:

∂L
∂h

−
d
dx̄

(
∂L
∂h′

)
= 0. (C.5)

We have

h̄ =
h̄′′[

1 + h̄′ 2
] 3
2
, h̄′(0) = 0, h̄′(δ̄) = cot θY , (C.6)

hich is the standard equation giving the shape of a meniscus
nd expresses the balance between the hydrostatic and Laplace
ressures [44, p. 44–45].

urface energy

By definition, the Hamiltonian reads

= h̄′
∂L

∂ h̄′
− L. (C.7)

sing Eq. (C.4), we get

= −
[
1 + h̄′ 2]−1/2

−
h̄2

2
. (C.8)

ince the Lagrangian does not depend explicitly on x̄, the Hamil-
onian is a constant. Therefore, the energy reads

¯ S =

∫ δ̄

0
H dx̄ = δ̄ H(ȳ), 0 ≤ y ≤ δ̄. (C.9)

If we choose ȳ = 0 and use the first BC in Eq. (C.6), we get

ŪS = −δ̄

(
1 +

h̄2(0)
2

)
. (C.10)

The energy, Ū0, when both lamellae are infinitely separated is
obtained by setting h̄(0) = 0, so that Ū0 = −δ̄. So finally, the
relevant energy, ŪS − Ū0, is given by

ŪS = −
δ̄ h̄2(0)

2
⇒ F̄ = −

∂ŪS

∂δ̄
, (C.11)

here we keep the same notation for the energy for simplicity.
ote that there is no factor 1/2 in the expression of the force
ecause the energy is computed for half of the system (in contrast
o rods).
8

hape of the air–liquid interface

Eq. (C.11) requires h̄(0) to be known to compute the capillary
orce. Therefore, we need to compute h̄(x̄) by solving Eq. (C.6).
e start by computing the meniscus profile when the interface

s almost planar (linear problem with θY ≃ π/2 and δ arbitrary).
We then address the nonlinear problem. However, the expression
of the energy, and hence the force, cannot be obtained explicitly.
Therefore, we derive the asymptotic expression of the energy
valid when δ ≪ ℓc and θY arbitrary and propose an approxi-
ate expression of the energy matching both the linear solution
nd the asymptotic one. The comparison between the energy
btained by solving numerically the nonlinear problem and the
pproximate expression shows a good agreement.

inear problem. Here, we assume that the contact angle is close
o π/2 so that the interface is almost planar and h̄′

≪ 1. Eq. (C.6)
ecomes

¯ = h̄′′, h̄′(0) = 0, h̄′(δ̄) = cot θY . (C.12)

he solution reads

¯(x̄) =
cot θY
sinh δ̄

cosh(x̄). (C.13)

The energy is obtained from Eq. (C.11) and reads

ŪS = −
δ̄ cot2 θY

2 sinh2 δ̄
. (C.14)

Nonlinear problem: equations. By definition, h̄′
= tan θ where

θ (s̄) is the local angle between the tangent to the interface and
the horizontal x-axis and s̄ is the arc length varying between 0
and ℓ̄. We also have dx̄/ds̄ = cos θ and dh̄/ds̄ = sin θ . Therefore,
q. (C.6) becomes

¯ =
dθ
ds̄

, θ (0) = 0, θ (ℓ̄) = π/2 − θY , (C.15)

Deriving both sides with respect to s̄, we finally have

d2θ
ds̄2

= sin θ (s̄), θ (0) = 0, θ (ℓ̄) = π/2 − θY , (C.16a)

x̄(s̄) =

∫ s̄

0
cos θ (s̄′) ds̄′, h̄(s̄) =

∫ s̄

0
sin θ (s̄′) ds̄′ + θ ′(0), (C.16b)

ŪS = −
δ̄ [θ ′(0)]2

2
, (C.16c)

here we used Eq. (C.15) in the two last equations. The equation
or θ is, up to a sign, the equation of a simple pendulum.

onlinear problem: solution. Eq. (C.16a) can be solved exactly

(s̄) = 2 arccos [q sn(s̄ + s̄0, q)] , (C.17)

The function sn is a Jacobi elliptic function with a period 4K (q)
where K is an elliptic function of the first kind [49, p. 549]. The
quantities q and s̄0 are two constants of integration which are
fixed by the BCs. The standard interval of possible values of q is
0 ≤ q < 1. However, using the BC θ (0) = 0, Eq. (C.17) yields
q sn(s̄0, q) = 1. Because −1 ≤ sn ≤ 1, this last equation requires
q ≥ 1. Therefore, we use the following property [49, p. 563]

q sn(x, q) = sn(qx, q−1). (C.18)

Setting k = q−1, so that k < 1, Eq. (C.17) can be written as

θ (s̄) = 2 arccos
[
sn
(
k−1(s̄ + s̄0), k

)]
, (C.19)

Now, using θ (0) = 0, we get sn
(
k−1s̄0, k

)
= 1 and thus k−1s̄0 =

(2n + 1)K (k). Because sn is periodic, we can consider n = 0 and

θ (s̄) = 2 arccos
[
sn
(
k−1s̄ + K (k), k

)]
. (C.20)
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he parameter k is fixed by the BC θ (ℓ̄) = π/2 − θY , where ℓ̄ is
the unknown length of the interface. We also have

θ ′(s̄) = 2k−1dn
(
k−1s̄ + K (k), k

)
, (C.21)

where dn is another Jacobi elliptic function with the property
dn(K (k), k) = (1 − k2)1/2. Therefore

θ ′(0) = 2k−1 (1 − k2)1/2. (C.22)

Finally, the energy is obtained by combining Eqs. (C.22) and
(C.16c) and using the last BC in Eq. (C.16a):

ŪS = 2δ̄
(
1 − k−2) , (C.23a)

2 arccos
[
sn
(
k−1ℓ̄ + K (k), k

)]
= π/2 − θY , (C.23b)

δ̄ =

∫ ℓ̄

0
cos θ (s̄) ds̄. (C.23c)

Knowing δ̄ and θY together Eq. (C.20), Eqs. (C.23b) and (C.23c) fix
ℓ̄ and k as well as the energy (C.23a).

Even if the nonlinear problem is solved rather easily, we do
not obtain explicit expressions for the energy and capillary force.
We thus follow another route and accept to lose some accuracy
to obtain an explicit expression for the force.

Nonlinear problem: asymptotic solution. Here, we consider δ̄ ≪

1, so that ℓ̄ ≪ 1, but θY arbitrary (in contrast with the linear
problem). We define a new spatial variable r = s̄/ℓ̄ so that
Eq. (C.16a) becomes

d2θ
dr2

= ϵ sin θ (r), θ (0) = 0, θ (1) = π/2 − θY , (C.24)

where ϵ = ℓ̄ 2
≪ 1. We now expand θ in power of ϵ:

θ = θ0 + ϵθ1 + ϵ2θ2 + · · · (C.25)

To keep the calculation short and simple, we limit it to the leading
order. It can be shown that the next order is quite negligible even
for ℓ̄ = 0.5. At the leading order, we get

d2θ0
dr2

= 0, θ0(0) = 0, θ0(1) = π/2 − θY . (C.26)

The solution is

θ0(s̄) = (π/2 − θY ) s̄/ℓ̄. (C.27)

We thus get a solution with a constant curvature, i.e. an arc of
circle. Using Eq. (C.16c), the energy reads

ŪS = −
δ̄ [θ ′(0)]2

2
= −

δ̄ (π/2 − θY )2

2ℓ̄2
. (C.28)

We need to relate ℓ̄ to δ̄ to get the final expression:

δ̄ =

∫ ℓ̄

0
cos θ0(s̄) ds̄ =

∫ ℓ̄

0
cos

(
(π/2 − θY ) s̄

ℓ̄

)
ds̄. (C.29)

We thus obtain

ℓ̄ = δ̄
(π/2 − θY )

cos θY
. (C.30)

Finally, using Eqs. (C.28) and (C.30), the energy reads

ŪS = −
cos2 θY

2δ̄
. (C.31)

Approximate expression for ŪS . In summary, we have obtained
two simple expressions (C.14) and (C.31) for the energy,

ŪS = −
δ̄ cot2 θY

2 sinh2 δ̄
, θY ≃

π

2
, (C.32a)

¯ S = −
cos2 θY

, δ̄ ≪ 1. (C.32b)

2δ̄

9

Fig. C.8. Evolution of the rescaled energy ŪS = US/(γ ℓcW ) obtained by solving
numerically Eqs. (C.23) as a function of the rescaled half distance between the
lamellae δ̄ = δ/ℓc (solid curves). These numerical data agree well with the
approximate expression (C.33) (dashed curves).

Since cot θY ≃ cos θY when θY ≃ π/2, and δ̄/ sinh2 δ̄ ≃ 1/δ̄ when
δ̄ ≪ 1, we propose the following expression for the energy:

US

γ ℓcW
≡ ŪS = −

δ̄ cos2 θY

2 sinh2 δ̄
. (C.33)

Fig. C.8 shows that Eq. (C.33) agrees well with the energy ob-
tained by solving numerically Eqs. (C.23).

The force is obtained from F̄ = −∂ŪS/∂δ̄:

F
γW

≡ F̄ (δ̄) = −
cos2 θY

2
[2δ̄ coth δ̄ − 1]

sinh2 δ̄
, (C.34)

where δ̄ = δ/ℓc . In our experiments, δ ≪ ℓc and, in this limit, the
expression of the force reduces to

F = −
γ W
2

cos2 θY (δ/ℓc)−2, (C.35)

which coincide with Eq. (7b) of the main text.

Total energy

The total energy, UL, of half the system is given by

UL = UB + UT + US,

=
B
2

∫ L

0
[w′′(x)]2 dx +

T
2

∫ L

0
[w′(x)]2 dx + US . (C.36)

Using the expression of w given by Eq. (4) of the main text and
the expression (C.33) of US (with δ̄ = d̄L(1 − A)), we get

UL(A) =
BA2d2

2L3
α3

α − tanhα
−

γ ℓcW cos2 θY [d̄L(1 − A)]
2 sinh2

[d̄L(1 − A)]
. (C.37)

Now, we define a rescaled energy

ŪL =
UL

β
, β =

Bd2

L3
α3

α − tanhα
, (C.38)

so that

ŪL(A) =
A2

2
−

ΛL(1 − A)
2d̄L sinh2

[d̄L(1 − A)]
. (C.39)

In the limit δ̄ = d̄L(1 − A) ≪ 1 (i.e. δ ≪ ℓc), the energy reduces
to

ŪL =
A2

−
ΛL

3
, (C.40)
2 2d̄L (1 − A)
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Fig. C.9. Evolution of Ac
R − 1/2 (a) and R/L+

c (b), computed with the nonlinear
model Eqs. (D.1)–(D.5) for rods with θY = 0, as a function of ℓBG/ℓBC and R/ℓBC .
The distance d between the rods is chosen to be the largest distance at which
coalescence is possible. The yellow star and the orange cross refer respectively
to the glass and PET fibers used in the experiments. The black disk and the
white square correspond to the states shown in panels (c) and (d) respectively.
Shape of one of the two rods at the limit of snapping for ℓBG/ℓBC = 1 and
R/ℓBC = 10−2 (c) and for ℓBG/ℓBC = 80 and R/ℓBC = 0.3 (d).

and we recover Eq. (9b) of the main text. The selected value of A
is the one that minimize the energy which is obtained from the
equation

∂ŪL

∂A
= 0 = A −

ΛL

2d̄ 3
L (1 − A)2

. (C.41)

We recover Eq. (8b) of the main text.

Appendix D. Nonlinear beam model

The theory presented in this article is based on the linear
beam equation. It may be extended to take into account potential
large deformations of the structures. In this case, the elastica
description of the slender structures can be used:

d2θ
ds̄2

= α2 sin θ + F̄ cos θ, θ (0) = θ ′(1) = 0, (D.1)

where s̄ = s/L is the rescaled arclength, α is the dimensionless
tension defined by Eq. (8d) and F̄ = −FL2/B is the dimensionless
capillary force (7). Within this curvilinear framework, δ is given
10
by:

δ̄ ≡ δ/L =

∫ 1

0
sin θ (s̄) ds̄ + d̄, (D.2)

where d̄ = d/L. Solving numerically Eq. (D.1) for given values
of α and F̄ , yields the deflection δ̄ as a function of these two
parameters; i.e. δ̄ = δ̄(α, F̄ ). However, as the capillary force
is a function of δ̄, we must impose that the value of F̄ used
to solve Eq. (D.1) is equal to the value of the capillary force
(7) evaluated at δ̄ obtained from Eq. (D.2). In the following, we
illustrate this consistency procedure for rods only. Assuming δ ≫

R for simplicity, the consistency relation reads as

F̄ δ̄(α, F̄ ) =
RL cos2 θY

2L2BC
. (D.3)

The function F̄ δ̄ presents a maximum for an intermediate value
f F̄ . Indeed, when F̄ → 0, it vanishes because δ̄ → d̄, and when F̄
s sufficiently large, δ̄ tends to 0. In between these two zeros, F̄ δ̄

ust pass through a maximum when F̄ varies, that we note M .
herefore, the consistency relation (D.3) has a solution provided

(α(L)) ≡ max
F̄

[F̄ δ̄(α(L), F̄ )] ≥
RL cos2 θY

2L2BC
. (D.4)

Following the same reasoning as in the linear case, no solution
means that the only equilibrium state corresponds to contact
between both rods. Hence, the critical dry length L+

c reads as

+

c =
2L2BC

R cos2 θY
M(α(L+

c )), (D.5)

with α2(L+
c ) = (L+

c )
2/L2BC cos θY + (L+

c )
3/L3BG. This relationship is

ranscendental and must be solved numerically to be compared
o the linear theory. It appears to be a generalization of the linear
odel, see Eq. (8). Indeed, when θ ≪ 1, Eq. (D.1) reduces to

d2θ
ds̄2

= α2θ + F̄ , θ (0) = θ ′(1) = 0. (D.6)

Solving this equation, we get,

δ̄ = d̄ − F̄
(

α − tanhα

α3

)
. (D.7)

The maximum of the function F̄ δ̄ may then be easily computed
and Eq. (D.5) is found to be identical to the equality between
Eqs. (8) and (10), i.e. ΛR = Λc

R.
Fig. C.9(a) shows Ac

R−1/2 computed from the nonlinear model
Eqs. (D.1)–(D.5). This quantity, which vanishes for a linear theory
(see Eq. (10)), is a measure of the importance of the nonlinear
effects which appear to be significant only when ℓBG ≳ 10 ℓBC
and R ≳ ℓBC . This region corresponds to very soft and small
ods with a moderate aspect ratio. Indeed, using for example
s = 1000 kg/m3 and γ = 0.021 N/m, ℓBG = 10 ℓBC and R = ℓBC

correspond to E ≃ 2500 Pa and R ≃ 65 µm. In addition, Fig. C.9(b)
shows that in this region L+

c is only few times larger than R.
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