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Spontaneous mirror symmetry breaking in
reaction–diffusion systems: ambivalent role of the
achiral precursor†

Jean Gillet, * Laurence Rongy and Yannick De Decker

The behaviour of a Frank-like chemical network model featuring autocatalytic production of chiral

enantiomers from achiral reactants is studied numerically in 1D and 2D systems using fluctuating initial

conditions and accounting for diffusion processes. Our results reveal that the achiral substrate

concentration can play an ambivalent role. It is shown that when the achiral reactant concentration is

maintained constant and homogeneous in 1D systems, global homochirality is not systematically

reached when the size of the system or the achiral reactant concentration are increased. However, with

a fixed concentration gradient, coexisting homochiral domains of opposite handedness are no longer

observed and homogeneous homochirality, i.e. the presence of a single stable homochiral domain, is

recovered. In 2D systems, reaching global homochirality is just a matter of time. This time is dramatically

increased when insufficient or excessive amount of achiral reactant is used. An optimal amount of

achiral material is observed to maximise the enantiomer production rates.

1 Introduction

Since the discovery of chirality by Pasteur in the 19th century,1

the emergence of homochirality (i.e., of systems containing a
single enantiomer) has remained an intriguing phenomenon.
The question of the origin of homochirality is especially relevant in
the context of the emergence of life.2 Unravelling the mechanisms
leading to homochirality could explain, for example, why most
amino acids in living systems are found in their left-handed form,
whereas the deoxyribose in DNA is in its right-handed form.

The emergence of such an asymmetry is expected to follow a
general two-stage process. First, a chiral bias is spontaneously
created or introduced in the system and second, an amplification
of this bias allows reaching a homochiral composition.3 In this
context, spontaneous mirror symmetry breaking (SMSB) is the
most commonly accepted scenario for the emergence of homo-
chirality in experimental systems and nature.4 SMSB is thought
to occur whenever the racemic composition of a system
becomes unstable and is spontaneously replaced by a stable,
non-racemic state.

Numerous experiments and theoretical works have been
conducted to understand the mechanisms leading to SMSB

and to design systems where it could be induced and controlled.4–7

SMSB was first observed during crystallisation experiments in the
early 1990s.8 A stirred solution of NaClO3, which precipitates as an
enantiomeric conglomerate, exhibited SMSB where the selection
of the amplified enantiomer was arbitrary. Later, Viedma showed
that the complete deracemisation of a racemic mixture of NaClO3

crystals can be reached by stirring in the presence of glass
beads.9–11 The beads are expected to play a central role in the
observed SMSB: they induce the fragmentation of larger crystals
into smaller ones, which leads to an autocatalytic production of
conglomerates. This so-called ‘‘Viedma ripening’’, was a big step
forward towards the implementation of a reliable resolution
method for crystals and a true proof of concept for the special role
played by non-linearity in chiral symmetry breaking. A few years
later, Viedma et al. extended this procedure to intrinsically
chiral molecules, with the observation of a significant increase
of the enantiomeric excess for a proteinogenic amino acid.12 The
Viedma ripening has found many applications,13 such as
the complete deracemisation of pharmaceutical molecules14,15

or the enantio enrichment in organic reactions based on chiral
or achiral compounds.11,16–18

Soai’s reaction was the first demonstration of SMSB in
chemical reactions and consists in an asymmetric autocatalysis
in organic synthesis.19,20 This reaction corresponds to an
alkylation of aldehydes, during which two achiral reactants
form a chiral product. As the reaction proceeds, the initial
excess of one enantiomer, either created by an external source
or introduced as an initial bias, is amplified.19 An almost
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1050 Bruxelles, Belgium. E-mail: Jean.Gillet@ulb.be, Laurence.Rongy@ulb.be,

Yannick.De.Decker@ulb.be

† Electronic supplementary information (ESI) available: Standard deviation and
significance of the mean values over several simulations. See DOI: https://doi.org/

10.1039/d2cp03102g

Received 7th July 2022,
Accepted 14th October 2022

DOI: 10.1039/d2cp03102g

rsc.li/pccp

PCCP

PAPER

Pu
bl

is
he

d 
on

 1
8 

O
ct

ob
er

 2
02

2.
 D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ity
 o

f 
C

al
if

or
ni

a 
- 

Sa
nt

a 
B

ar
ba

ra
 o

n 
2/

27
/2

02
3 

7:
57

:3
2 

PM
. 

View Article Online
View Journal  | View Issue

https://orcid.org/0000-0003-2888-0209
http://crossmark.crossref.org/dialog/?doi=10.1039/d2cp03102g&domain=pdf&date_stamp=2022-10-22
https://doi.org/10.1039/d2cp03102g
https://doi.org/10.1039/d2cp03102g
https://rsc.li/pccp
https://doi.org/10.1039/d2cp03102g
https://pubs.rsc.org/en/journals/journal/CP
https://pubs.rsc.org/en/journals/journal/CP?issueid=CP024042


This journal is © the Owner Societies 2022 Phys. Chem. Chem. Phys., 2022, 24, 26144–26155 |  26145

homochiral composition can be reached after a few iterations
of the process in a closed batch.

A diversity of theoretical studies have been conducted in
connection with enantioselective crystallisation21–26 and Soai’s
asymmetric autocatalysis5,27 but also with SMSB in the biological
world.28–31 Their objective is either to propose models that
reproduce the various observations, or to highlight new mechan-
isms behind the emergence of homochirality. These studies
typically rely on a given set of elementary processes,4 whose
dynamics can be studied with kinetic rate equations,32 stochastic
approaches5,27,33 or population balance equations.34,35 Using
this latter method, it has been shown that chemical reactions
and crystal growth might in fact obey similar dynamics.5,25

Models based on chemical reaction networks4,5,36,37 are
often extensions of Frank’s pioneering work.38 They often share
two common ingredients: they incorporate an autocatalytic
production of enantiomers from an achiral substrate, and some
form of mutual antagonism between these enantiomers. This
class of models can, for example, capture the behaviour of the
kinetically controlled absolute asymmetric synthesis in Soai’s
reaction.4,5

SMSB in Frank-like models takes place under far-from-
equilibrium conditions, which are usually obtained by controlling
the concentration of the achiral reactant. In well-stirred systems,
enantiomeric amplification takes place when this concentration
exceeds a critical value, at which the racemic state becomes
unstable. The racemic state is then replaced by non-racemic
compositions through a bifurcation. These bifurcations are often
symmetric, in the sense that both enantiomers are equally likely
to dominate the system’s composition once the bifurcation has
been crossed. The final enantiomeric composition is thus fully
determined by the initial chiral bias.4,5,38–41

New interesting behaviours can be observed when the
evolution equations derived from Frank-like chemical networks are
coupled with diffusion in spatially extended systems. Propagating
fronts are observed in all those systems.33,37,42–45 In a first
stage, reactions govern the dynamics and local enantiomeric
excesses are amplified. This results in systems composed of
coexisting non-racemic domains. As diffusion proceeds, the
local enantiomeric excesses slowly spread across the system
and start to interact. The final stable state is either homoge-
neous, i.e. composed of a single homochiral phase, or hetero-
geneous (made of multiple coexisting homochiral domains).42

In the latter case, homochirality is reached locally but from a
global perspective, the average enantiomeric composition tends
to be racemic for sufficiently large systems. Reaction–
diffusion equations were for example used to study chiral
polymerisation.43–45 In a one-dimensional space, the final state
consisted in co-existing homochiral domains while at higher
dimensions, diffusion is able to create a single homochiral region
very slowly. The addition of advection and turbulence has been
shown to accelerate the process.42 Similarly, local random fluctua-
tions were shown to lead a Frank-like system either to a homo-
chiral solution, or to the coexistence of homochiral phases.33

In this work, we present a novel strategy to control the
dynamics of spontaneous mirror symmetry breaking in spatially

extended systems. We analyse how spatial gradients of achiral
reactants can affect the emergence and the propagation of
homochiral domains. Using a reaction–diffusion approach, we
study the properties of a Frank-like model in one-dimensional
and two-dimensional systems in the presence of such gradients,
to assess how breaking translational invariance affects the
dynamics of enantiomeric symmetry breaking. We do not aim
to provide a detailed explanation for the complex mechanisms at
work in specific experiments, such as in Viedmas deracemization
or Soais reaction. Our goal is rather to identify general features
and parameters of importance that could be used to control the
amplification of enantiomeric excess in future experiments.
The article is structured as follows. Our model and the associated
evolution equations are presented in Section 2. Details regarding
numerical simulations are provided in Section 3. One-
dimensional and two-dimensional dynamics are presented in
Sections 4 and 5, respectively, and discussed in Section 6. We
summarise our findings and discuss future work in Section 7.

2 Model and equations

To investigate the role of the achiral substrate distribution, we use a
Frank-like model similar to the one proposed by Kondepudi.39,40,46

The model can be summarised by the following chemical network,
where the ki s denote the rate constants:

1. Spontaneous production:

2AÐ
k1

k�1
R; 2AÐ

k1

k�1
S (1)

2. Autocatalytic production:

2Aþ RÐ
k2

k�2
2R; 2Aþ SÐ

k2

k�2
2S (2)

3. System removal:

Rþ S �!ks C (3)

The first set of reactions (1) corresponds to a spontaneous
production of a chiral product from two achiral species A. In
Kondepudi’s original model, this reaction involves the production
of a stereogenic center caused by the interaction between two
achiral species A and B. Here, we assume that since the concen-
trations of A and B are maintained constant in Kondepudi’s
model, any distinction between these two species does not affect
the dynamics of the system and we consider a single achiral
species A. This type of reaction can be found in crystallisation
processes where enantiomeric conglomerates form thanks to the
association of achiral sub-units, for example in NaClO3 crystals.
Reactions (2) are autocatalytic productions of the two chiral
species. Polymerisation or crystallisation processes present such
cooperative effects.47 Moreover, autocatalysis is also found in
most processes related to the emergence of living systems.48–51

Autocatalysis alone is not able to lead to SMSB and a
supplementary step is required. The last reaction (3) corre-
sponds to a mutual antagonism between the enantiomers. The
enantiomers react together to form an achiral product C that is
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assumed to be directly removed from the system. This reaction
is equivalent to a heterochiral interaction and is necessary to
decrease racemicity in the system. It is the only reaction that we
consider to be irreversible. Ribo et al. viewed the product C as an
achiral heterodimer RS that can decompose into its enantio-
meric precursors.52 This reversibility was shown to slightly affect
the final enantiomeric composition but not the reaction yield.

Assuming that we have an ideal system, the reaction–diffusion
equations for the concentrations of species R and S, respectively
denoted as r0 and s0, read

@r0

@t 0
¼ k1a

02 � k�1r
0 þ k2a

02r0 � k�2r
02 � ksr

0s0 þDr02r0 (4)

@s0

@t 0
¼ k1a

02 � k�1s
0 þ k2a

02s0 � k�2s
02 � ksr

0s0 þDr02s: (5)

In the above equations, D stands for the diffusion coefficients of R
and S, which we consider to be identical and constant. Reactions
(1) and (2) are seen as elementary steps in our model, so that the
relation

k1

k�1
¼ k2

k�2
¼ e (6)

must be satisfied. The ratio e scales like the inverse of a concen-
tration, which allows us to define non-dimensional concentra-
tions a = a0e, r = r0e and s = s0e. We also introduce rescaled time
units t = t0/t with t = e2/k2, and rescaled space coordinates (x, y) =

(x0/Lc, y0/Lc), where Lc ¼
ffiffiffiffiffiffi
Dt
p

. This leads to the non-dimensional
evolution equations

@r

@t
¼ aa2 � arþ a2r� r2 � brsþr2r (7)

@s

@t
¼ aa2 � asþ a2s� s2 � brsþr2s (8)

where a = k1e/k2 and b = kse/k2.
In the homogeneous limit (r2r = r2s = 0), three chemically

acceptable steady states (rs, ss) exist: two non-racemic steady
states (rs a ss) and a single racemic steady state (rs = ss). The
stability of these states is controlled by the amount of achiral
compound. The system undergoes a pitchfork bifurcation, for
which the critical value of the control parameter a is given by:

acrit ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
abþ 2a

ffiffiffi
b
p
þ a

b� 1

s
(9)

when a o acrit, the racemic steady state is stable and no
enantiomeric excess can be amplified. As soon as a 4 acrit,
the racemic state becomes unstable and two non-racemic
branches correspond to stable steady states. This can be seen
in Fig. 1, in which we plot the enantiomeric excess (EE),

EE ð%Þ ¼ r� s

rþ s

� �
� 100%; (10)

which is a typical measure of the enantiomeric composition of
a system. In this study, we consider that homochirality is
reached when EE (%) Z 99.0% or EE (%) r �99.0%.

We observe from expression (9) that b must necessarily
be 41. In terms of the original parameters, this condition
translates as k�2 o ks, which is common for the type of chemical
network considered here.40,41 This condition is necessary, but
not sufficient, to observe homochirality. From a chemical per-
spective, it means that the mutual antagonism must be pre-
dominant compared to the reverse reaction of the autocatalytic
production of enantiomers.

3 Numerical simulations

Eqn (7) and (8) were numerically integrated with a fourth-order
Runge–Kutta scheme and finite differences were used for
spatial discretisation. One-dimensional and two-dimensional
systems were investigated. For the latter, we used a square
system such that the length Lx and the width Ly are equal (Lx =
Ly = L). In both cases, we imposed no-flux boundary conditions
for the concentrations r and s at all boundaries. The initial
conditions for r and s in each cell were independently sampled
from a Gaussian distribution centered on a prescribed value rd

0

and sd
0, respectively, such that rd

0 = sd
0 and whose standard

deviation was rd
0/100 (sd

0/100). Such initial conditions are equiva-
lent to a globally racemic mixture with local fluctuations. The
global EE was always close or equal to 0, despite local fluctua-
tions. We consider that this scenario of a fluctuating local
enantiomeric composition is more likely to be representative of
reality, since a homogeneous enantiomeric excess across a
macroscopic system is highly improbable, as suggested by
Hochberg and Zorzano.33 More generally, perfect racemic mixing
is very unlikely if not impossible for any finite-size molecular
system.

The solutions of eqn (7) and (8) were found to converge upon
decreasing the temporal (dt) and spatial (dx, dy) step sizes.
Typical values that were used are dt = 5.0 � 10�8 and dx = dy =
5.0 � 10�4. Inspired by Kondepudi’s original work, we chose to

Fig. 1 Bifurcation diagram showing the homogeneous steady states of
eqn (7) and (8), here expressed in terms of the enantiomeric excess, EE.
Solid lines stand for stable steady states and dashed lines for unstable state.
Parameters are a = 50, b = 250, so that the bifurcation takes place at a
critical value acrit E 7.53. Note that EE (%) Z 99.0% or EE (%) r �99.0% are
reached for concentrations larger than a E 11.0.
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work with a = 50 and b = 250. Such values provide enantiomeric
amplification within reasonable time scales and correspond to
a critical value acrit E 7.5. In most cases, concentration values
for a were chosen such that the system is far beyond this
bifurcation point. The initial concentrations are such that
1.0 o rd o10.0 (1.0 o sd o 10.0). No significant influence on
the dynamics is observed in this range of values.

4 One-dimensional systems
4.1 Homogeneous achiral reactant concentration

Numerical integrations using homogeneous initial conditions
for the concentration r and s and a homogeneous distribution of
a lead to the same results as in the well-stirred limit: the steady
state is homogeneous and fully determined by the initial enan-
tiomeric excess and the value of a. However, when fluctuating
initial conditions are introduced, multiple profiles can be
obtained, as shown in Fig. 2. We discuss the properties of these
profiles below.

4.1.1 Spatial profiles. The graphs in Fig. 2 correspond to
typical profiles obtained for relatively long times. These profiles
are still subject to very slow temporal variations but the overall
profile shape does not change anymore, as already pointed out
in previous works.42 We can, thus, safely assume that the

profiles seen in Fig. 2 qualitatively correspond to the asympto-
tic solutions.

These profiles are consistent with those found in the
literature33,37,42–45 and illustrate the two types of situations that
can be observed: (i) a homogeneous state where the EE is constant
in space (Fig. 2a), or (ii) a heterogeneous steady state characterised
by the coexistence of multiple homochiral domains (Fig. 2b–d).
Some initial conditions thus lead to globally homochiral systems,
while others give rise to local homochirality. Only global homo-
chirality can lead to an average EE that is Z99% or r�99%. Note
that in the remainder of this study, the random initial conditions
(IC) associated to the steady profiles (a) and (b) (Fig. 2a and b),
for L = 0.5, will be denoted as IC I and IC II, respectively. These
initial conditions will be reused to investigate the influence of the
different parameters of interest on the final enantiomeric
composition.

4.1.2 Global homochirality. Because of the stochastic char-
acter of the initial conditions, isolated numerical simulations
such as those presented in Fig. 2 do not allow to draw general
conclusions on the role played by the model’s parameters on
the probability to reach global homochirality. We thus per-
formed multiple simulations starting from different fluctuating
initial conditions, and computed this probability at different
concentrations of the achiral reactant a, and at different sizes L.
The resulting statistics are reported in Fig. 3.

Fig. 2 Illustration of various steady profiles obtained for different system sizes: (a and b) L = 0.5, (c) L = 1.0, (d) L = 5.0. Solid black lines represent the
randomly generated initial distributions of the enantiomeric excess whereas solid red lines stand for the steady distributions. Profile (a) is characterised by
a homogeneous steady profile whereas profiles (b–d) are heterogeneous profiles. The initial profiles from (a and b) are respectively denoted as IC I and IC
II. The steady profiles are obtained after a total simulation time ttot = 0.2 and the parameters are: a = 75.0, rd

0 = 10.0, sd
0 = 10.0.
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First, we recall that in the homogeneous limit with no diffu-
sion, a homochiral composition is observed when a 4 acrit (cf.
eqn (9)). In the presence of diffusion and local initial inhomo-
geneities, we observe that the greatest probability to obtain a
homogeneous homochiral composition is reached near the bifur-
cation point. This probability decreases with increasing values of
the control parameter a and tends to zero for large values of this
parameter. Second, we see that for a given concentration a, the
system size dramatically influences the percentage of simulations
resulting in global homochirality. The probability to observe a
final homogeneous homochiral state decreases as the size L
increases. This can be directly correlated with the increasing
probability to have a greater number of domains when the system
size is large, as can already be seen in Fig. 2.

We can conclude from these trends that the achiral reactant
plays an ambivalent role in the emergence of homochirality in a
spatially extended system: a certain amount is required to
witness homochirality, but excessive quantities reduce the
chance of obtaining global homochirality because of the coex-
istence of domains of opposite handedness.

4.1.3 Time scales. The average time required to reach
homogeneous final states, when observed, is calculated from
the fraction of simulations that ended in global homochirality
and is plotted in Fig. 4 as a function of the achiral reactant
concentration for three system sizes. We remind that we keep
a 4 acrit. We observe that the average times are typically larger
for larger systems. The three curves exhibit a minimum,
suggesting once more an ambiguous role of a. Insufficient or
excessive amounts of achiral reactant delay the emergence of a
single homogeneous homochiral state.

As we will discuss later, the achiral reagent concentration
affects the mechanisms of local enantiomeric excess amplification,

thereby influencing the probability of observing global homochir-
ality as well as time scales.

4.2 Concentration gradient of achiral reactant

We now impose a time-independent constant gradient of a in
the system:

aðxÞ ¼ a0 þ ðaL � a0Þ
x

L
; (11)

where a0 = a(0) and aL = a(L). The presence of this profile
modifies the structure of the model, even in the limit
where r and s are homogeneously distributed in the system.

Fig. 3 Evolution of the percentage of simulations exhibiting homochirality as a function of the control parameter a at various system sizes L, increasing
from right to left. Each point is calculated from 100 simulations. The vertical red dashed line corresponds to the critical value acrit and the other lines are
guides for the eye. Simulation parameters: ttot = 0.5, rd

0 = 1.0, sd
0 = 1.0.

Fig. 4 Average time required to reach global homochirality as a function
of the concentration of achiral reactant. The achiral reactant is homo-
geneously distributed. The average time is derived from the fraction of
simulations in Fig. 3 that resulted in global homochirality. Dashed lines are
only visual aids. Simulation parameters: rd

0 = 1.0, sd
0 = 1.0.
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Considering r2r = r2s = 0 in eqn (7) and (8), integrating over x
and dividing by L leads to

dr

dt
¼ ðaþ rÞd� ar� r2 � brs (12)

ds

dt
¼ ðaþ sÞd� as� s2 � brs; (13)

introducing a new parameter

d ¼ 1

3
ðaL2 þ aLa0 þ a0

2Þ: (14)

d depends on the boundary conditions a0 and aL and plays the
same role as a2 in the homogeneous limit of eqn (7) and (8).
We can thus conclude that the concentrations of A at the
boundaries can be used as control parameters, since beyond
a certain critical value of d corresponding to a pitchfork
bifurcation, the stable racemic composition becomes unstable
and the system evolves towards two possible non-racemic
steady states. The structure of eqn (12) and (13) being similar
to that of eqn (7) and (8) with d playing the role of a2, the critical
value of d can be directly derived from relations (9) and (14).
Given the form of d, multiple combinations of a0 and aL can
lead to SMSB, as long as the condition dcrit

Z (acrit)2 is fullfilled.
4.2.1 Spatial profiles. We now turn to the properties of

spatially-extended systems. We first note that in contrast to the
case of homogeneously distributed a, simulations carried out
with a linear profile of a systematically lead to global homo-
chirality, for all (fluctuating) initial conditions tested. An exam-
ple of the dynamics leading to such homochirality is given in
Fig. 5, for a system starting with initial condition IC II.

Local homochirality quickly appears on the right side of the
system, where the concentration a is the largest. This results in
the rapid appearance of two homochiral domains of opposite
handedness, in a way similar to what can be seen for systems
with homogeneous distributions of A (see Fig. 2b). In the present
case, however, the coexistence of several domains is not a stable
situation. As time goes by, the domain which is closest to the
maximum value amax = aL (here the R-rich domain with an EE of
almost 100%) expands and invades the domain of opposite
chirality. The final result is the complete disappearance of the
S-rich domain and the formation of a single homogeneous
domain, which corresponds to global homochirality.

To better understand how an inhomogeneous profile of a
can lead to such effects, we study the dynamics of an anti-
symmetric initial condition where two equal domains of oppo-
site handedness coexist (see Fig. 6a and b). We compare the
system’s response for profiles of a of opposite slopes. One can
see that the domain in which the concentration of a is larger
always invades the other one, which can result in homochiral
system whose EE is close to �100%, depending on the sign of
the slope.

The evolution of the concentration profiles are shown in
Fig. 6c and d for a positive gradient of a. In that case, the
concentration of enantiomer S increases everywhere by reaction
and diffusion, leading to a final stable state dominated by this
enantiomer whose local concentration depends on the local

value of a. Because a controls the rate of production of
enantiomers, the S-rich region produces S more rapidly than
the R-rich region produces R and therefore invades the R-rich
region by diffusion. A similar argument holds in reverse when
the slope of a changes sign.

4.2.2 Time scales. A linear profile of a qualitatively affects
the properties of the model in the sense that it allows for
systematic global homochirality. In this Section, we analyse
how such a profile affects the time needed to reach global
homochirality.

To compare different profiles, we introduce the slope p =
(aL � a0)/aL). Fig. 7a compares the average time required to
attain global homochirality for linear profiles of a with different
slopes p a 0, for the same system size L = 0.10. We note that
when A is inhomogeneously distributed, minima are also
observed but appear to be shifted with increasing average
values of a, defined as aavg ¼ 1L

Ð
aðxÞdx. This situation is thus

similar to what is observed for constant a (p = 0), where the
average time is also minimum for a given value of aavg, denoted
as amin,p=0

avg . We notice that, when aavg o 100, the higher the
slope, the lower the average time at a given aavg. On the other
hand, when aavg Z 100 and aavg 4 amin,p

avg , the trend is reversed
and the effect of aavg on the average time is stronger. We witness
once more a variable role of the precursor concentration a.

A similar trend is observed for the average enantiomer produc-
tion rate. We define this quantity as the average enantiomer
concentration at the steady state, divided by the average time
required to obtain it. We observe in Fig. 7b that the production
rate increases with aavg. When aavg o 160, the highest rates are
obtained with the steepest profiles (p = 100%). This effect is
reversed for aavg 4 160 where the profile p = 75% provides the
highest production rate for high value of aavg 4 300. Regardless of
the value of p, the production rate does not change significantly
beyond aavg = 100. From these observations, it appears that the
concentration gradients always offer high production rates since
the final state is systematically homochiral. These rates can be
maximised by choosing the optimal combination of aavg and p.

Fig. 5 Space-time plot of the enantiomeric excess, starting from IC II with
a fixed concentration gradient of achiral substrate concentration a. Simu-
lation parameters: ttot = 0.02, L = 0.5, a0 = 0, aL = 150, rd

0 = 10.0, sd
0 = 10.0.
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Fig. 6 Effect of linear profiles of a of opposite slopes on a stable antisymmetric initial configuration composed of two equal homochiral domains of
equal size. Evolution of EE as a function of time for (a) a0 = 0, aL = 200; (b) a0 = 200, aL = 0. Evolution of the concentration profiles of r (c) and s (d) when
a0 = 0 and aL = 200. The responses are shown at different times. The arrows indicate increasing time.

Fig. 7 Evolution of (a) the time required to reach global homochirality and (b) the enantiomer production rate as a function of the average concentration
of achiral reactant. Each point is obtained from a sample of five hundred simulations. The results with error bars representing the standard deviation are
given in the ESI.† The various colours are associated to the various slopes intensities according to the parameter p. Dashed lines are guides to the eye.
Simulation parameters: rd

0 = 1.0, sd
0 = 1.0, L = 0.1.
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To summarise, imposing inhomogeneous profiles of the
achiral reactant A confirms the ambivalent role played by this
species in 1-dimensional systems. The biggest advantage is the
suppression of the coexistence of homochiral domains. The use of
the gradient therefore opens the way to homogeneous homochiral
states which can be obtained on improvable time scales, by
controlling the average concentration of achiral species and its
spatial distribution. We now turn to the case of 2-dimensional
systems.

5 Two-dimensional systems

In one-dimensional systems, homogeneous homochirality is not
systematically obtained and homochiral domains can coexist. It
is no longer the case with an additional dimension and homo-
chiral domains are not able to coexist anymore. Numerical
integrations in 2D using fluctuating initial conditions and a
homogeneous distribution of a were first performed. An example
of observed dynamics is featured in Fig. 8 where the distribution
of the enantiomeric excess in space is shown at different times.
First, small-scale domains merge to form larger regions. As time
goes by, these regions evolve into homochiral regions. After a
certain time, a large S-region covers the majority of the system,
surrounding two smaller R-domains, and progressively invades
these domains to ultimately result in a homogeneous homo-
chiral state S, in this case. The disappearance of coexistence is
primarily due to curvature effects in the propagation front, which
are ubiquitous in two-dimensional systems. The homochiral

domains in contact will compete with each other and because
the inner front is shorter than the outer one, the interface
separating them propagates in the direction of the curvature.42

Systematic global homochirality is also observed when numerical
simulations are performed using a concentration gradient of
achiral reactant parallel to the x axis such that:

aðx; yÞ ¼ a0 þ ðaL � a0Þ
x

L
; (15)

where a0 = a(0,y) and aL = a(L,y).‡ Thus, we can conclude that
homochirality is just a matter of time in 2D, whether using
homogeneous or linear concentrations profiles of a. In Fig. 9a,
the mean time required to reach global homochirality is plotted as
a function of the average concentration of achiral reactant. When
the average concentration of achiral reactant remains at relatively
low levels (aavg o 65), the average time decreases when increasing
aavg but the effect of p is negligible. Minima are observed regard-
less of the value of p, as in 1D (cf. Fig. 7a). This highlights again
the ambivalent role played by the achiral reactant concentration.
As observed in 1D, past a certain threshold, the time scales for
global homochirality increase with aavg and when p becomes
higher (in 2D, aavg 4 65).

To better measure this apparently counterproductive effect,
the production rate of enantiomers is plotted as a function of
the average concentration in Fig. 9b. Optima of production are
observed for each value of p but the concentration gradients are

Fig. 8 Evolution of the EE profiles at different times in a two-dimensional system, starting from fluctuating initial conditions with a homogeneous
concentration of achiral substrate concentration a. Simulation parameters: t1 = 6.00 � 10�3, t2 = 6.00 � 10�2, t3 = 1.50 � 10�1, t4 = 6.00 � 10�1, t5 =
9.00 � 10�1, t6 = 1.50, t7 = 1.95, t8 = 2.40, L = 0.10, a = 150, rd

0 = 1.0, sd
0 = 1.0.

‡ Considering the limit where r and s are homogeneously distributed in the
system, such profiles provide the same equations as eqn (12) and (13).
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more efficient at low average concentrations (aavg r 65). In
other words, if the amount of achiral reactant is limited, it
seems preferable to distribute it using linear profiles. However,
the efficiency gain is minimal. If concentration is further
increased, the uniform distribution is more efficient. The
maximum production rate is obtained using a homogeneous
profile of the achiral reactant at aavg = 100 (see Table 1).

6 Discussion

Results from the previous two sections have repeatedly high-
lighted an ambivalent role of the achiral reactant. Even if the
effect of the concentration a is not trivial, 1D and 2D results
suggest that the same mechanism is involved.

6.1 Homogeneous achiral reactant concentration

Diffusion is a slow process and needs time to settle. In the early
stages, the local enantiomeric excesses are rapidly amplified.
The amount of enantiomers produced in each spatial element
is limited by the achiral reactant concentration. Adjacent cells
that share the same dominant enantiomer will merge to form
domains, otherwise they will compete for dominance. In 1D
systems, the ultimate result can therefore be co-existing homo-
chiral domains of opposite handedness (Fig. 2).

When a is sufficiently low, the concentrations r and s remain
at a relatively low level in the early stages. This leaves the
opportunity for diffusion to homogenise more easily the initial
local enantiomeric excesses and allow the system to ultimately
reach global homochirality. However, the characteristic diffu-
sion time tc depends upon the size of the system as tc B L2/D,
which explains the influence of the system size on the dynamics
observed in 1D (Fig. 3).

As a increases, higher level of concentrations r and s are
reached after a few iterations. This more efficient amplification
reduces the time window for the homogenisation process to
take place. A direct consequence is that initial inhomogeneities
are more likely to remain and be amplified. When homochiral
domains are formed and come in contact, diffusion is not
able to homogenise the system due to the ‘‘System removal’’
reaction (eqn (3)). As soon as enantiomers are transported in a
neighbour domain of opposite handedness, these are directly
eliminated by the opposite enantiomer due to the 1–1 stoichio-
metry of the reaction. The fraction of dominating enantiomer is
quickly regenerated thanks to an inexhaustible source of
achiral reactant. Hence, multiple stable homochiral domains
can emerge from the initial heterogeneous distribution of EE.
In 1D, the absence of inhomogeneities in the distribution of a
guarantees equal steady concentration levels in each cell and
thus, stability of the domains (Fig. 2). In 2D, the coexistence of
domains cannot persist in the long term due to curvature
effects. Unless a perfectly straight interface is formed between
two homochiral domains, curvature effects will always favour
the progressive propagation of a domain at the expense of
others, which ultimately results in global homochirality (Fig. 8).

This effect of a on the amplification of initial local enantio-
meric excess can also explain the presence of a minimum in the
curves for the time needed to reach homochirality in 1D and 2D
as a function of a (Fig. 4 and p = 0 in Fig. 9a). An increase of its

Fig. 9 Two-dimensional results. Evolution of (a) the time required to reach global homochirality and (b) the enantiomer production rate as a function of
the average concentration of achiral reactant. Each point is obtained from a sample of 100 simulations. The various colours are associated to the various
slopes intensities according to the parameter p. Simulation parameters: rd

0 = 1.0, sd
0 = 1.0, L = 0.1.

Table 1 Achiral reactant concentration profiles maximising the produc-
tions rates in two-dimensional systems

aavg p (%) Production rate

25 100 2.63 � 104

50 100 3.41 � 105

65 100 5.14 � 105

75 57.1 7.43 � 105

85 0 1.03 � 106

100 0 1.39 � 106
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value accelerates the overall dynamics. However, when local
concentrations exceed a certain value, the amplification pro-
cess becomes too rapid and the initial inhomogeneities are
amplified rather than being homogenised. Thus, more homo-
chiral regions are susceptible to emerge and coexist for longer
time, delaying thereby the eventual global homogenisation.

The position of the minima can be evaluated by comparing

the diffusive and kinetic time scales, respectively denoted t
0
diff and

t
0
kin. By assuming that the scales of these competing processes are

equal, t
0
kin ¼ t

0
diff at the minimum, we can estimate the value of a

where the homogenisation process and the amplification process

are balanced. We consider t
0
kin to be primarily governed by

autocatalytic production reactions such that t
0
kin ¼ 1=k2a

02. On
the other hand, the diffusive time scale must depend on a certain
length but it seems unlikely that it is sensitive to the total size of
the system (see Fig. 4, where the length of the system does not
influence the position of the minimum significantly). Therefore,
we make the hypothesis that there exists a certain typical length,

l
0

H
associated with the process of homogenisation of the initial

enantiomeric excesses.
The diffusive time scale is thus given by t

0
diff ¼ l

02
H=D. The

conversion of kinetic and diffusive time scales to dimensionless
quantities gives, for the position of the minimum,

amin ¼ 1

lH
: (16)

Although we have no exact value for lH, we suggest that this
length might be related to the interaction between enantiomer
production reaction (eqn (1)) and mutual antagonism (eqn (3)).
Based on those time scales, we can construct a diffusive length

scale lh0 ¼
ffiffiffiffiffiffiffiffi
Dt1
p

, with t1 = e/k1 or l
0

H
¼

ffiffiffiffiffiffiffiffi
Dts
p

with ts = e/ks.

The former gives l
0

H
¼ 1=

ffiffiffi
a
p

and the latter lh ¼ 1=
ffiffiffi
b
p

. Replacing

in eqn (16), we obtain an amin value comprised between (7) and
(16). Such values provide a first approximation of the same
order of magnitude as the values of the minima observed in 1D
or 2D (Fig. 4 and 9).

6.2 Concentration gradient of achiral reactant

The presence of a linear profile of achiral reactant was shown to
suppress any possible coexistence in 1D. The combination of an
inhomogeneous distribution of a and its continuous supply
contributes to the destabilisation of interfaces between homo-
chiral domains. The early-time homochiral region that benefits
from the highest local concentration a will grow, propagate, and
invade the whole system. The result is a single final homochiral
state. The introduction of the concentration gradient helps to
better understand that establishing a homogeneous homochiral
profile is a two-step process, as illustrated in Fig. 10. At first, the
local enantiomeric excesses are rapidly amplified and homochiral
domains appear throughout the system, depending on the local
fluctuations. This process is governed by the local kinetics of the
system. Then, as amplification proceeds, a slower diffusion-
controlled regime takes over. Consequently, the time evolution
of the global EE consists of two stages, a reaction-controlled one

and a diffusion-controlled one as shown in Fig. 10, where we
compare the evolution of the average EE in time with or without
diffusion of the two enantiomers.

Minima are observed for the time needed to reach global
homochirality regardless of the value of the slope p. However,
linear profiles with increasing values of aavg monotonously
increase the production rate of enantiomers in 1D (Fig. 7),
while in 2D maxima are observed in the production rate for all
values of the slope p (Fig. 9). Furthermore, the slope has a
variable effect on the time scales depending on aavg. As long as
aavg o 100 in 1D or aavg o 65 in 2D, p does not have a
significant effect. On the other hand, when aavg 4 100 in 1D,
larger p values are better whereas in 2D, when aavg 4 65, a slope
p = 0 offers the smallest time scales possible.

To understand such results, we must remember that high
local concentrations can either be reached using uniform or
linear concentrations profiles. However, for a given value aavg,
linear profiles will automatically imply higher local concen-
tration levels than uniform profiles. Thus, an excessive increase
of a(x) through increasingly intense gradients allows the inho-
mogeneties to subsist longer, which slows down the evolution
to a final homogeneous homochiral state. This explains the
mixed role of the slope p at 1D and 2D, as well as the shifts in
the minima observed for time scales (Fig. 9a). A compromise
must therefore be found for the way in which the precursor is
distributed. Once more, the interplay between inhomogeneities
and achiral reactant concentration appears crucial.

7 Conclusion

Spontaneous mirror symmetry breaking (SMSB) is one of the
most curious features observed in both nature and experi-
mental systems. Numerous theoretical works have been con-
ducted in order to understand the general underlying
mechanisms or to explore new systems where SMSB can be
induced and controlled.4,5,47,53 Chemical models exhibiting
homochirality have been constructed since the 50s. At that

Fig. 10 Illustration of the effect of diffusion processes on the evolution in
time of the average enantiomeric excess. Simulation parameters: ttot = 0.1,
a0 = 0, aL = 200, rd

0 = 10.0, sd
0 = 10.0, L = 1.0.
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time, Frank proposed a description of a minimal system con-
taining all the necessary ingredients to observe SMSB.38 This
model has been extensively studied and used as a basis for the
construction of more complex models.5,36,37,47 In particular, the
behaviour in space of Frank-like models have been studied
using various approaches. Our work aims to complete the
studies where reaction–diffusion equations were solved for
models exhibiting homochirality.42–44

In this study, we have shown that inhomogeneities in the
initial distribution of enantiomers can have a tremendous
influence on the behaviour of a Frank-like model undergoing
reaction–diffusion processes. A direct consequence is that the
achiral precursor can play an ambivalent role.

In one dimension, simulations do not systematically reach
global homochirality. Various steady profiles of enantiomeric
excesses (EE) and concentrations can be obtained, resulting
either in homogeneous or heterogeneous homochirality, where
multiple mirror homochiral domains co-exist, as already
pointed out in literature.42 In addition to this observation, we
have shown the strong dependence of the final enantiomeric
composition on the achiral reactant concentration and on the
system size. We have also shown that systematic global homo-
chirality can be restored when constant concentration gradi-
ents of achiral reactant are introduced. However, no control on
the final spatial distribution of the enantiomeric composition
appears to be possible.

In two dimensions, homochiral domains do not longer co-
exist and global homochirality is always reached. The situation
changes due to the presence of curvature effects. Unless a
perfectly straight interface is formed between two homochiral
domains, curvature effects will always favour the propagation of
a domain at the expense of others, which ultimately results in
global homochirality. However, the time needed to reach
homochirality can dramatically be influenced by the concen-
tration of achiral reactant. Insufficient or excessive concentra-
tions turn out to be counter-productive. This is also true when
we consider the amount of enantiomer produced. Once more,
we have a demonstration of the ambivalent influence of the
achiral reactant concentration on the dynamics of SMSB.

Through these different results, we have highlighted the
importance of the spatial distribution of the achiral reactant and
the initial enantiomeric excess during SMSB in reaction–diffusion
systems. Parallels can be drawn with some experimental results
regarding SMSB. Steendam et al. have performed the synthesis of
an enantiopure compound from achiral material by combining a
reversible organic reaction with Viedma ripening.54 It has been
shown that increasing concentrations of achiral precursor can
slow down the SMSB process. They suggested that at low concen-
tration of achiral reactant, fewer crystals have to be deracemised
and deracemisation thus proceeds faster. Our work does not
claim to explain such results but provides insights regarding
some observed features. For instance, the data on the various
optima of achiral reactant concentration regarding the enantio-
mer production rate might guide future experimental works.

At this point, the achiral reactant has been considered
constant in time. Future works will investigate the effect of

variable achiral reactant concentration on SMSB in spatially
extended systems. Moreover, we have assumed that both enantio-
mers diffuse at the same rate but recent experimental reports on
chirality differentiation55–57 by diffusion might challenge this
assumption, which we will investigate in a subsequent work.
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