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The scalings of the Rayleigh-Taylor instability are studied numerically for porous media flows when the
denser fluid lying on top of the less dense one is also much more viscous. We show that, above a critical
value of the viscosity ratio M, a symmetry breaking of the buoyancy-driven fingers is observed as they
extend much further downward than upward. The asymmetry ratio scales asM1=2 while the asymptotic flux
across the initial contact line, quantifying the mixing between the two fluids, scales as M−1=2. A new
fingering mechanism induced by large viscosity contrasts is identified and shows good agreement with
experimentally observed dynamics.
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Rayleigh-Taylor (RT) instability is a buoyancy-driven
instability developing when a denser fluid is accelerated
against a less dense fluid. It favors mixing between the two
fluids and is genuinely observed in inertial confinement
fusion [1–3], plasmas [4], liquid films [5], material defor-
mation [6], oceanography [7], and astrophysics [8,9], to
name a few. Motivated by the interest to control this
mixing, universal scalings, quantifying the interpenetration
of the two fluids as a function of the acceleration or the
density and viscosity differences across the interface, are of
tantamount importance.
Scalings of RT instability for porous media flows have

also attracted much attention recently due to its ubiquity in
applications as diverse as suspension of active particles
[10], granular flows [11], CO2 sequestration [12], geo-
logical flows [13,14], and enhanced oil recovery [15],
among others. Experimental studies on miscible RT con-
vection in porous media have shown that the mean
amplitude and wavelength of fingers scale with t and
t1=2, respectively [16,17]. Theoretical works have further
explored the effect on scalings of convective versus
diffusive mixing modes [18], differential diffusion
[19,20], chemical reactions [21] as well as the validity
of 2D models in describing the flow dynamics [22], the
characterization of diffusive, convective, and shutdown
regimes [23], and the universality of the scalar dissipation
rate [14,24].
In most works, the viscosity is supposed to be equal in

both fluids while, in reality, the viscosities of fluid pairs
with different densities are also typically different. Even
though a viscosity contrast may delay the onset of the RT
instability [25], the up-down symmetry of the growing
fingers was shown numerically to be preserved within the
limited range of viscosity ratios (M ≤ 20) investigated [15].

Despite the fact that an experimental study on the leaching
of extremely viscous oils by a miscible solvent suggests
that new dynamics are observed when large viscosity
contrasts exist [26,27], the influence of viscosity on the
RT instability remains largely unknown.
Through 2D numerical simulations, we show here for

porous media flows that large viscosity contrasts pro-
foundly affect the RT instability as a breaking of sym-
metry of the buoyancy-driven fingers occurs above a
critical value of the viscosity ratio M. The fingers extend
then preferably in the fluid of lower viscosity, which has
an impact on the mixing. We characterize the effect of
viscosity contrast on the RT convection across a wide
range of viscosity ratios (up to M ≈ 3000) and obtain new
scaling relations, characterizing the fingers spreading
around the initial interface of fluids. In particular, we
derive scalings of the spreading rates of fluids and of their
convective mass flux as a function of M. We also
introduce a new fingering mechanism observed at large
viscosity ratios, which enlightens the hitherto unexplained
previous experiments [26].
We consider a 2D, homogeneous, and isotropic porous

medium of dimensional widthW� and height H�. A denser
and more viscous fluid containing a solute in dimensional
concentration c�2 and of density ρ

�
2 and viscosity μ

�
2 overlies

another miscible, less dense, and less viscous fluid with
density ρ�1 (< ρ�2) and viscosity μ�1 (< μ�2) where, without
loss of generality, c�1 ¼ 0. This stratification leads to an RT
instability as the density decreases along the direction of
gravity. For bulk fluids with turbulent mixing, 3D effects
might be important [28]. However, for RT convection in
porous media or Hele-Shaw cells where the magnitude of
flow velocities are small, similar key physics have been
observed in 2D and 3D simulations [15,22].
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We define the scales c�2, v
�
chð¼ K�Δρ�g=μ�1Þ, ϕD�=v�ch,

ϕ2D�=v�2ch, μ�1, Δρ�ð¼ ρ�2 − ρ�1Þ, and μ�1ϕD
�=K� for

concentration, velocity, space, time, viscosity, density,
and pressure, respectively, where K� is the permeability,
g the gravitational acceleration, ϕ the porosity, and D� the
effective diffusion coefficient. Using these scales, the
dimensionless form of the governing equations, under
the Boussinesq approximation, is

∇ · v ¼ 0; ð1Þ

μðcÞv ¼ −∇p − ρðcÞk̂; ð2Þ

ct ¼ −v · ∇cþ∇2c; ð3Þ

where c is the concentration of the solute ruling density and
viscosity, v ¼ ðu; wÞ is the Darcy velocity vector, p is the
pressure, and k̂ is the unit vector in the z direction (positive
upward).
The dimensionless height and width of the numerical

domain become Ra and Ra=A, respectively, where
Ra ¼ v�chH

�=ϕD� is the Rayleigh number and A ¼
H�=W� is the aspect ratio of the domain. The initial
position of the miscible interface is at z ¼ 0 such that
−Rad ≤ z ≤ Rau where Rad ¼ 3Ra=4 and Rau ¼ Ra=4 are
the initial dimensionless heights of the bottom and top
fluids, respectively [29]. The horizontal axis is defined as
0 ≤ x ≤ Ra=A. Following previous works [15,25,33], we
adopt linear and exponential relations for the concentration
dependence of the density and viscosity as ρðcÞ ¼ c and
μðcÞ ¼ exp ðRcÞ, respectively, where R ¼ lnðMÞ is the log-
viscosity ratio with M ¼ μ�2=μ

�
1 being the ratio of

viscosities.
The governing equations can be expressed in terms of the

stream function ½ðu; wÞ ¼ ð−ψ z;ψxÞ� as

∇2ψ ¼ −∇c · ½R∇ψ þ e−Rcî�; ð4Þ

ct ¼½∇ψ × ∇c� · ĵþ∇2c; ð5Þ

where î and ĵ are the unit normal vectors in the x direction
and in the direction perpendicular to the xz plane, respec-
tively. The initial conditions are ½c;ψ �ðx; z; t ¼ 0Þ ¼
½HðzÞ; 0� where H is the Heaviside step function. No-flow
and periodic boundary conditions are applied in the z and x
directions, respectively.
To integrate the governing equations, we employ a

hybridization of pseudospectral and compact finite differ-
ence methods. In this regard, the z and x derivatives are
estimated using 4th and 6th-order compact finite difference
[30] and fast Hartley transform [31], respectively. Time
stepping is performed using the third-order semi-implicit
Adam-Bashforth Adam-Moulton method. To achieve
numerical stability at each time step for large viscosity
contrasts, an under-relaxation scheme is employed [29].

The code was parallelized using OpenMP. For
104 ≤ Ra ≤ 2 × 105, the number of grid points are between
∼25 × 104 and ∼2 × 107. The time step satisfies both the
CFL condition (with a coefficient of 0.4) and the numerical
accuracy limitations imposed by diffusive terms. The code
was tested against the results of Ref. [15] with good
agreement.
Figure 1(a) shows snapshots of the concentration field

for Ra ¼ 2 × 105 and different values of M, up to ∼3000,
corresponding to a log-viscosity ratio R ¼ 8. As previously
reported [15], for small values of R (≤ 3) and in the absence
of vertical throughflow, upward and downward fingers
grow at the same rate, and an up-down symmetry of the
growing fingers is observed. This symmetry, however,
breaks at greater viscosity ratios, the downward fingers
becoming more prominent as R increases. At extremely
large viscosity ratios (R ¼ 8), the fingering becomes almost
one-sided as the upward fingers grow at a much smaller rate
than the downward fingers. Figure 1(a) also reveals that, as
the viscosity increases, the rate of fluid mixing is sup-
pressed and the wavelength of the growing fingers
increases. This weakening effect was also observed for
the onset of convection in porous media [25,33].
To understand why convection is mitigated and

why the fingering asymptotes toward one side as R
increases, we analyze the vorticity field, written in
2D as ω ¼ cx=μþ Rðwcx − uczÞ. The vorticity field can
be decomposed into density and viscosity counter-
parts as ωðρÞ ¼ cx=μ½¼ ρx=μ� and ωðμÞ ¼ Rðwcx − uczÞ
½¼ ðwμx − uμzÞ=μ�, respectively. The density component
of vorticity ωðρÞ, which is the main driving force behind the

(a)

(b)

FIG. 1. (a) Concentration field at the time shown on the panel
for Ra ¼ 2 × 105 at different log-viscosity ratios R. As R
increases, the up-down symmetry of fingering breaks. The dashed
green line shows the initial location of the interface. (b) Density
component of the vorticity field ωðρÞ, its viscosity component
ωðμÞ, and the overall vorticity field ω for R ¼ 8.
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growth of the fingers, is inversely proportional to the local
value of viscosity. In other words, as the viscosity of the
mixing layer increases, the driving force for buoyancy-
driven convection is weakened, and therefore, the growth
of convective fingers is delayed (stabilization effect of
viscosity) [33].
To gain insight into the observed asymmetry at high

values of R, we plot the density and viscosity contributions
of the vorticity field, along with its overall value for
Ra ¼ 2 × 105 and R ¼ 8 in Fig. 1(b). It is seen that the
vorticity field for downward plumes is determined mainly
by the transverse density gradients in ωðρÞ. However, since
ωðρÞ is inversely proportional to viscosity, its strength is
weakened as R increases. For upward plumes, the density
and viscosity components of the vorticity act in opposite
directions [compare the blue and red colors in the contours
of Fig. 1(b)]. At small values of R (not shown here), ωðρÞ is
dominant and ωðμÞ acts weakly in the opposite direction
toward its stabilization. However, as R increases, the
strength of ωðμÞ becomes more comparable to ωðρÞ, and
as seen in Fig. 1(b), the overall vorticity field is signifi-
cantly suppressed around the rising plumes.
The upward and downward spreading lengths can be,

respectively, defined as Lu ¼ 3
R Rau
0 zð1 − c̄Þdz= R Rau

0 ð1 −
c̄Þdz and Ld ¼ 3

R
0
-Rad

zc̄dz=
R
0
-Rad

c̄dz, where c̄ is the
transverse average of the concentration [15]. Lu (Ld)
quantifies the penetration length of the bottom (top) fluid
into the top (bottom) one. The temporal evolution of L=Ra
for Ra ¼ 105 and R ¼ 6 is given in Fig. 2(a). Initially, the
interface is uniform, and diffusion is the dominant transport
mechanism such that Lu;dif ¼ Ld;dif ¼ 3

ffiffiffiffiffi
πt

p
=2. Once

buoyancy-driven convection sets in, both upward and
downward spreading lengths begin to increase and asymp-
tote toward a growth regime proportional to t with slopes
Uu and Ud, respectively [15].
Figure 2(b) shows the asymptotic spreading rates, Uu

and Ud versus M for various values of Ra. At large

Rayleigh numbers where the boundaries have no impact
on the mixing, the spreading rates are independent of Ra
[14,34]. Figure 2(b) also shows that, at small viscosity
ratios, Uu ≈Ud ∼M−2=3, as there is an up-down symmetry
of fingering [15]. At larger values of M, however, the
fingering becomes asymmetric with Uu still scaling as
M−2=3, while Ud switches from an M−2=3 trend at low M
values to anM−1=6 scaling above a critical value ofM (Mc).
This bifurcation in scaling is clearly seen in Fig. 2(c) giving
the asymmetry ratio η ¼ Ud=Uu versus M. At smaller
values of M, η ≈ 1, but above a critical value (Mc ≈ 20), it
increases monotonically as M1=2 (¼ M−1=6=M−2=3).
Scalings of the convective mass flux, characterizing the

long-term mixing of fluids [14], have been investigated for
Rayleigh-Bénard convection [35,36], partially miscible
systems [12,37], and fluid pairs with nonmonotonic density
profile [38–40]. For partially miscible systems with a solute
diffusing into the domain through one of the boundaries
(e.g., CO2-water systems), the mass flux can be obtained
easily using the cumulative mass of the diffusing species in
the host phase [14,35,37]. However, for miscible systems
like the one described in this work, it is challenging to
calculate the convective mass flux because the system is
closed (i.e., there is no mass being added over time) [14].
Here, we compute the convective mass flux based on the
time evolution of the average concentration within either
the upper or the lower domain on the sides of the initial
contact line.
Taking the average of Eq. (3) in the upper domain,

we can write hciþt ¼ h−v · ∇cþ∇2ciþ where
h� � �iþ ¼ A=ðRaRauÞ

R Rau
0

R Ra=A
0 � � � dxdz. Applying the

boundary conditions gives us F ¼ −Rauhciþt where
F ¼ ðA=RaÞ R Ra=A

0 ðwc − czÞz¼0dx is the average dimen-
sionless convective flux at the initial position of the
interface between the two fluids (z ¼ 0) [29]. Similarly,
we can define h� � �i− ¼ A=ðRaRadÞ

R
0
-Rad

R Ra=A
0 …dxdz for
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FIG. 2. (a) Normalized spreading length L=Ra versus t=Ra for Ra ¼ 105 and R ¼ 6. The blue dashed curve shows the spreading rate
for the pure diffusive case. After an initial diffusive regime, the spreading lengths asymptote toward a linear growth in time, with the
upward Uu and downward Ud spreading rates, respectively. (b) Asymptotic upward and downward spreading rates as a function of the
viscosity ratio M for various values of Ra. As M increases, the difference between Uu and Ud becomes more pronounced.
(c) Asymmetry ratio η ¼ Ud=Uu versus the viscosity ratio M.
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the lower domain to get F ¼ Radhci−t . Using either of these
expressions for flux leads to the same result due to the
conservation of mass.
Figure 3(a) features the temporal evolution of the

dimensionless convective flux F for Ra ¼ 105 and
R ¼ 6. After a transient diffusive decrease, F increases
due to the enhanced mixing caused by convection and,
eventually, reaches a quasi-steady-state regime in which the
mass flux is nearly constant around the value FQSS [14].
Figure 3(b) shows FQSS as a function of Ra for various
values of M. When Ra is large enough so that the top and
bottom boundaries have no effect on the mixing, FQSS
becomes independent of Ra in agreement with classical
scaling of convection [41]. Figure 3(c) shows that the
asymptotic value of the flux F∞

QSS scales approximately as
M−1=2 over the whole range of viscosity ratios scanned
here. For viscosity ratiosM beyond the limit investigated in
this study, we speculate that similar dynamics to the case of
R ¼ 8 would be observed, but over longer periods of time
and with greater wavelengths. In this regard, the previous
experimental observations of a fluid system with M ≈ 107

support this hypothesis [27]. Moreover, with insight from
the analysis of critical Rayleigh number Rac for Rayleigh-
Bénard convection [33], we anticipate that there is a certain
value of M, beyond which, Rac surpasses Ra, and thus, the
interfacial mixing is governed by diffusion.
A new dynamic observed during the RT convection of

fluid pairs with large viscosity contrasts is the appearance
of secondary fingers. Figure 4(a) shows a snapshot of the
concentration field for Ra ¼ 2 × 105 and R ¼ 8. The
enlarged frame shows that new small downward fingers
begin to grow within the upward plumes because the
upward spreading rate of fingers becomes so small at large
viscosity ratios that the characteristic time of convection
becomes comparable to that of diffusion. Since the upward
velocities are minimal, a diffusive layer is formed below the
edges of the fingers, which becomes unstable over time due
to adverse density stratification. As a result, secondary
downward fingers grow and then slide down on the edge of

the upward plumes. This observation is in agreement with
experimental results of the RT convection between toluene
and a viscous oil with a large viscosity ratio, as shown in
Fig. 4(b) [26].
To summarize, we have shown that a viscosity contrast

between two miscible fluids can drastically influence their
mixing properties when an RT instability destabilizes their
stratification. Strikingly, the buoyancy-driven fingers expe-
rience a symmetry breaking when the viscosity ratio M
becomes larger than a critical value Mc of about 20
(Rc ≈ 3). The asymptotic growth rate of the upward
growing plumes Uu scales as M−2=3 throughout the 3
orders of magnitude of M scanned while the downward
mixing rate Ud slows down from a M−2=3 to a M−1=6

scaling across Mc. The asymmetry ratio η ¼ Ud=Uu is
more or less equal to 1 below Mc and bifurcates toward an
M1=2 scaling above it. The asymmetry of the upward and
downward fingers observed in this work is analogous to
spike-bubble asymmetry in turbulent RT mixing of fluids at

(a) (b) (c)

FIG. 3. (a) Convective mass flux as a function of rescaled time for Ra ¼ 105 and R ¼ 6. After an initial diffusive regime, the flux
reaches a quasi-steady-state regime. (b) Quasi-steady-state flux, FQSS, versus Ra for various values of R. As Ra increases, FQSS
asymptotes toward a constant value, (F∞

QSS). (c) Asymptotic flux F∞
QSS versus viscosity ratio M for large Ra.

(a)

(b)

FIG. 4. (a) Concentration field for Ra ¼ 2 × 105 and R ¼ 8.
Secondary fingers are observed within the upward plumes.
(b) Snapshot of a Hele-Shaw experiment for the RT convection
of an extremely viscous oil above toluene with R ≈ 10.7 [26]
(used with permission).
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large density ratios [42]. Our results reveal that the presence
of a large density difference is not necessary for symmetry
breaking of buoyancy-driven fingers in RT convection and
this asymmetry can also be caused by large viscosity
contrast of the fluids, even at the limit of Boussinesq
approximation. The asymptotic convective flux scales like
M−1=2 showing that an increase in the viscosity contrast
acts against the quality of mixing. Moreover, a new
mechanism, caused by a local instability of the diffusive
boundary layer, triggers secondary fingers within the tips of
upward plumes that are blocked by the viscosity contrast, in
agreement with experiments. Our results pave the way for
more realistic scalings of mixing between two fluids of
different density and viscosity, as is genuinely the case in
many applications. They also suggest that the quality of
mixing between two fluids can be controlled via a careful
choice of their relative viscosities.
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