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Control of chemically driven convective dissolution
by differential diffusion effects
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Chemically driven convective dissolution can occur upon reaction of a dissolving species
in a host phase when the chemical reaction destabilizes an otherwise stable density
stratification. An A + B → C reaction is known to trigger such convection when, upon
dissolution into the host solution, A reacts with B present in the solution to produce a
sufficiently denser product C. We study numerically the effect of differential diffusion on
such a chemically driven convective dynamics. We show that below the reaction front either
double-diffusive or diffusive-layer convection can arise, modifying the local Rayleigh-
Taylor instability. When B diffuses faster than C, the density profile contains a local
maximum at the reaction front, followed by a local minimum below it. A double-diffusive
instability can develop below the reaction front, accelerating the convective dynamics
and thereby enhancing the dissolution rate of A into the host phase. Conversely, when
B diffuses slower than C, the density profile exhibits a local maximum below the reaction
front and diffusive-layer convection modes stabilize the dynamics compared to the equal
diffusivity case. When B and C diffuse at equal rates but faster than A, the convective
dynamics is accelerated with respect to the equal diffusivity case.

DOI: 10.1103/PhysRevFluids.6.053504

I. INTRODUCTION

When, upon dissolution of a species into a host phase, the density increases monotonically along
the gravity field, the situation is stable with respect to buoyancy-driven convection, and transport
is governed by diffusion. Chemical reactions in the host phase can nevertheless induce convection
in such systems by creating unstable nonmonotonic density profiles with a local maximum in the
gravity field [1–10]. A classical Rayleigh-Taylor instability then occurs locally where a denser zone
lies on top of a less dense one. This so-called chemically driven convective dissolution (CDCD)
can be of significant relevance for various technological applications, where it is desirable to either
promote or hinder convection [1–4,11].

In particular, an A + B → C reaction is known to induce CDCD when the sole dissolution of
species A in the host phase creates a stable density profile but its subsequent reaction with B initially
present in the host solution produces locally a sufficiently denser solution of product C [9]. While
the nonreactive dynamics is controlled by diffusion alone, convective fingering can be triggered
above a critical value of the difference between B and C contributions to the solution density and
the dissolution rate of species A into the host phase can be enhanced [9]. More generally, any solid
dissolving in a liquid from below or most gases except CO2 dissolving in a liquid from the top give

*Present address: Universidad Politécnica de Madrid, ETSI Caminos, Canales y Puertos, Madrid, Spain;
mamta.jotkar@upm.es

†Anne.De.Wit@ulb.be
‡Laurence.Rongy@ulb.be

2469-990X/2021/6(5)/053504(15) 053504-1 ©2021 American Physical Society

https://orcid.org/0000-0003-1812-0652
https://orcid.org/0000-0002-3231-0906
https://orcid.org/0000-0002-3556-7045
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevFluids.6.053504&domain=pdf&date_stamp=2021-05-27
https://doi.org/10.1103/PhysRevFluids.6.053504


M. JOTKAR, A. DE WIT, AND L. RONGY

rise to situations that are prone to be destabilized by CDCD. The alkaline oxidation of glucose by
oxygen with methylene blue as catalyst and indicator, also referred to as the “blue bottle reaction,”
is another example [2–4].

While few studies have considered CDCD, there exists a vast literature on convective disso-
lution with nonreactive unstable density profiles in relevance to CO2 capture and sequestration
techniques [12]. In that case, the dissolving species (CO2) increases the density of the host
phase (e.g., brine) upon dissolution from above, which eventually gives rise to a buoyancy-
driven fingering instability referred to as dissolution-driven convection [13–19]. This convective
instability can be further intensified with the help of chemical reactions [5–8,20–31]. More
specifically, an A + B → C reaction can accelerate or slow down dissolution-driven convection
depending on the relative contribution to density of each of the species present in the host solution
[7,22,23,25,29–31].

The diffusion coefficients of the chemical species can also play an important role in controlling
the dynamics. The various reaction-diffusion density profiles that can develop after the dissolution
of a species A in a host phase containing B when the solutes of an A + B → C reaction diffuse at
different rates have been theoretically classified for both cases where the nonreactive counterpart is
stable and unstable [6].

The unstable case has received far more attention. For such systems, differential diffusivity
effects have been evidenced experimentally [21,25] and investigated theoretically [8,30,32–34].
It was shown that, when the species diffuse at different rates, additional dynamics occur below
the reaction front. Specifically, a double-diffusive (DD) instability can develop when a less dense
solution of a slow-diffusing solute locally overlies a denser solution of a fast-diffusing solute.
Diffusive-layer convection (DLC) with two separate zones of convection and antennae-shaped
fingers occurs when a less dense solution containing a fast-diffusing solute is layered over a denser
solution of a slow-diffusing solute [30,33,34]. Theoretical studies have shown that differential
diffusion affects the growth rate in the linear regime [8] and the onset time of dissolution-driven
convection can be reduced or increased [32,34], as can the dissolution flux of A [34].

The role of differential diffusion has been much less investigated for CDCD. It has been shown
theoretically that double-diffusive mechanisms can further destabilize chemically driven convection
when B diffuses faster than C [8,32,33]. However, several open questions remain.

More precisely, the impact of differential diffusion on the nonlinear convective dynamics, the
temporal evolution of the dissolution flux of species A into the host phase, its asymptotic value, and
the onset time for convection are not yet known. The case where B and C diffuse at equal rates but
different from that of A also remains to be investigated.

Following this motivation, we numerically study the effect of differential diffusion on CDCD. We
focus here on initially stable density stratifications where the dissolving phase A is introduced from
above and decreases the density of the host phase. Upon dissolution into the host phase, A then reacts
with B to produce C via an A + B → C reaction. We study the effect of varying the diffusivities
of B and C on the nonlinear chemically driven convective dynamics and on the dissolution flux of
species A.

The article is organized as follows. We explain the numerical model in Sec. II and classify the
density profiles in Sec. III. We analyze the case where B diffuses faster than C in Sec. IV, followed
by the case of B diffusing slower than C in Sec. V. The case where B and C diffuse at the same
rate but different from that of A is presented in Sec. VI. In Sec. VII, we quantify the onset time and
asymptotic flux of dissolving A. The highlights of this work are discussed in Sec. VIII.

II. PROBLEM FORMULATION

Following previous theoretical works [7,9,31], we consider a homogeneous, isotropic porous
medium where two partially miscible phases are initially separated by a horizontal interface. The
gravitational field g acts along the vertical z′. The contact line between the two phases is oriented
along the horizontal x′ axis at z′ = 0. Phase A dissolves into the host phase containing a reactant B
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with an initial concentration B0. Upon dissolution, A reacts with B via a bimolecular A + B → C
reaction to generate C. Here we will consider that all the species contribute to the density of the
host phase and diffuse at different rates. The scenario where A decreases the density of the host
solution when dissolving from above is analogous to the one where A increases the density when
introduced from below [9]. Both these situations correspond, in the absence of reactions, to stable
density stratifications where density increases along the gravity field. The host phase extends from
x′ = 0 to x′ = L′ in the horizontal x′ direction and from z′ = 0 to z′ = H ′ in the vertical z′ direction
(primes denote dimensional quantities).

The solute concentrations, time, spatial coordinates, and velocity are nondimensionalized using
the solubility A0 of A in the host solution, the chemical reaction time scale, the diffusive length scale
based on the diffusivity of species A, and the Darcy velocity scale [9].

The dimensionless reaction-diffusion-convection equations for the concentrations of species A,
B, and C are

∂A

∂t
+ (u · ∇)A = ∇2A − AB, (1a)

∂B

∂t
+ (u · ∇)B = δB∇2B − AB, (1b)

∂C

∂t
+ (u · ∇)C = δC∇2C + AB, (1c)

where u = (u, v) is the two-dimensional velocity field, δB = DB/DA, and δC = DC/DA, with
DA, DB, and DC the diffusivities of species A, B, and C, respectively.

The evolution equation for the velocity field in porous media is Darcy’s law

∇p = −u + ρez, (2)

with p the dimensionless pressure and ez the unit vector along the gravity field. A linear equation of
state is used for the dimensionless density ρ of the host solution

ρ = RAA + RBB + RCC, (3)

where the Rayleigh numbers Ri (i = A, B,C) are defined as

Ri = αiA0gκ

φν
√

DAqA0
, (4)

with αi = 1
ρ0

∂ρ ′
∂c′

i
the solutal expansion coefficient of species i, ρ0 the dimensional density of the

solvent, κ the permeability, q the kinetic constant of the reaction, and ν the kinematic viscosity of
the solvent. The Rayleigh number Ri quantifies the contribution to density of species i [9]. It is to
be noted that this definition is different from the classical one used in the literature [18]. We chose
here this particular definition of Rayleigh numbers in order to make our results independent of the
domain height H .

Most studies on convective dissolution have considered the cases where all species increase the
density (Ri > 0). Here, we analyze the case RA < 0 and RB,C > 0 such that A decreases the density
of the host phase while B and C increase it. In the absence of reactions, the density stratification is
stable and exhibits a diffusive profile when A dissolves from the top.

Periodic boundary conditions are imposed at the lateral sides, no vertical flow and no flux
conditions are used for A, B, and C at the bottom while, at the top interface, no vertical flow and
no flux conditions are used for B and C along with A = 1 (assuming local chemical equilibrium
between the dissolving phase and the host phase at the interface). We use the following initial
conditions:

A(x, z = 0, t = 0) = 1 + ε · rand(x); A(x, z > 0, t = 0) = 0, (5a)

B(x, z, t = 0) = β, (5b)

C(x, z, t = 0) = 0, (5c)
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FIG. 1. Classification of the RD density profiles ρ(z) in the (RB/RC, δB/δC) space for RA = −1 and RC > 0
with horizontal dashed black lines on the density profiles representing the location of the reaction front: regimes
NM (nonmonotonic with maximum at the reaction front), M (monotonically increasing), RT-DD indicated by
the red region (maximum at the reaction front followed by a minimum below), and RT-DLC indicated by the
green region (maximum below the reaction front). Adapted from Ref. [6]. The equal diffusivity cases [9] with
C denser than B (indicated by the blue solid line) and C less dense than B (indicated by the pink solid line)
are similar to regimes NM and M, respectively. Note that the profiles are sketched for β = 1 but a similar
classification can be made for different β as well.

where β = B0/A0 is the ratio of the initial concentration B0 of B and the solubility A0. Perturbations
with amplitude ε = 10−3 are introduced in Eq. (5a) to trigger the instability while rand(x) varies
randomly between −1 and 1 [35,36].

The problem depends on six parameters: δB, δC , RA, RB, RC , and β. We concentrate here on dif-
ferential diffusivity effects and vary δB, δC , RB, and RC for RA = −1 and β = 1. The computational
domain width used is L = 3072, while a height H = 2048 is used when RC = 1.5 and H = 4096
when RC = 2. Further details on the numerics can be found in Refs. [7,37].

III. CLASSIFICATION OF THE DENSITY PROFILES

To understand the potential effect of differential diffusion on the CDCD dynamics, we first
classify the reaction-diffusion (RD) density profiles ρ(z, t ) in the (RB/RC , δB/δC) parameter space
(see Fig. 1). The profiles obtained by numerical integration of RD equations (Eq. (1)) with u = 0
are shown at a given time. The exact time is not important as the qualitative features of the RD
profiles remain the same over time.

We recall that, in the absence of reactions, the density profiles are monotonically increasing
along gravity because the dissolving species A decreases the density of the host solution (RA < 0).
In the presence of an A + B → C reaction, the density profile can remain monotonically increasing
or become nonmonotonic (Fig. 1). In an equal diffusivity scenario, the density profile exhibits a
local maximum at the reaction front when the product C is denser than reactant B (RB/RC < 1,
blue line in Fig. 1). When the difference �RCB = RC − RB in the contribution of C and B to the
solution density is above a certain critical value, a region of denser solution locally overlies a less
dense one, which triggers a Rayleigh-Taylor (RT) instability [9]. For β = 1 chosen here, this critical
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value is �RCB = 0.35. Note that �RCB was used to classify the density profiles for equal diffusion
coefficients in Ref. [9], whereas we classify the dynamics here as a function of RB/RC to demonstrate
the effect of δB/δC [6].

When B diffuses sufficiently faster than C, it creates a local depletion below the reaction front so
that the density profiles exhibit a local maximum at the reaction front followed by a local minimum
below it. In that case, it gives rise to a region with a less dense solution locally lying on top of a
denser one with the bottom part of the solution containing the fast-diffusing solute B. This promotes
double-diffusive convection that couples with the local RT instability (red region in Fig. 1: RT-DD
dynamics when δB/δC > max[1, RB/RC]).

Conversely, when B diffuses slower than C, the local maximum can occur below the reaction
front because of the presence of fast-diffusing C in this region. Between the reaction front and the
position where the density is maximum, a less dense solution of fast-diffusing C locally overlies
a denser solution of the slow-diffusing B leading to diffusive-layer convection influencing the RT
instability (green region in Fig. 1: RT-DLC mechanism when δB/δC < min[1, RB/RC]).

In summary, four distinct regimes can be identified based on the RD density profiles. The
dynamics in regime NM with nonmonotonic density profiles and regime M with monotonically
increasing density profiles are qualitatively similar to the equal diffusivity scenarios when C is
denser than B and when C is equally dense or less dense than B, respectively. Here, we concentrate
therefore on the red (RT-DD) and green (RT-DLC) regimes of Fig. 1 where differential diffusion
leads to additional convective dynamics below the reaction front. In the following sections, we
study the nonlinear convective dynamics for specific cases in the RT-DD and RT-DLC regions.

IV. ACCELERATED CONVECTIVE DYNAMICS

We first study the nonlinear convective dynamics in the red (RT-DD) regime of Fig. 1 when B
diffuses faster than C.

Let us first consider a case where C is equally dense as B (RB/RC = 1). If δB = δC , the density
profile is monotonically increasing along gravity and the situation is stable (qualitatively similar to
the pink line M in Fig. 1). However, if B diffuses faster than C, a nonmonotonic density profile
develops because of differential diffusion with a maximum at the reaction front followed by a
minimum below it. At the reaction front, B is readily consumed by the reaction to produce the
slow-diffusing solute C. The extremum triggers a local RT instability while the stratification of the
slow-diffusing C above the fast-diffusing B promotes DD convection that works cooperatively with
the local RT instability. The density fields at different times are shown for δB/δC = 3 (red RT-DD
regime of Fig. 1) in the top line of Fig. 2 with RB = RC = 1. The zone above the reaction front is
stable as the density increases along the gravity field (see the density profile enclosed in the first
panel). However, after an initial diffusive transient (not shown here), a fingering instability with a
uniform wavelength is triggered below the reaction front. Thereafter, the fingers merge, increasing
the wavelength, and then gradually sink towards the bottom, after which an asymptotic limit is
reached.

When C is denser than B (RB/RC < 1), the equal diffusivity scenario exhibits nonmonotonic
density profiles (blue line NM in Fig. 1) that become unstable above the critical difference �RCB =
0.35 (for β = 1 chosen here) [9]. The density fields for RB = 1, δB/δC = 3 are shown for RC = 1.5
and RC = 2 in the middle and bottom line of Fig. 2, respectively. Both cases are above �RCB = 0.35
such that they are already unstable for equal diffusion coefficients. If now B diffuses faster than
C, the RT-DD interplay is promoted, similar to the dynamics when RB = RC = 1. However, the
dynamics depends on the relative value of the density at the interface and in the bulk. For equal
diffusion coefficients, the interface value of the density is equal to that far away in the bulk when
the difference �RCB = RC − RB is equal to −RA/β [9]. This value cannot be computed analytically
for δB/δC �= 1, but we estimate that this happens here between RC = 1.5 and 2. The interface value
of density is indeed smaller than its bulk value for RC = 1.5 but larger than its bulk value for RC = 2.
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FIG. 2. Density ρ fields at times t = 5000, 10000, 20000, and 30000 from left to right in the RT-DD
regime indicated in red in Fig. 1 with δC = 1, δB = 3, RB = 1 for RC = 1 (top), RC = 1.5 (middle), and RC = 2
(bottom). Typical 1D RD density profiles are enclosed in the first panel. Density scales between its minimum
(blue) and maximum (red) values in each line.

As a consequence, the RT dynamics is stronger for the latter. This explains why fingers extend on
a larger vertical zone for RC = 2 than for RC = 1.5 at similar times (Fig. 2). Thus, for a given
diffusivity ratio δB/δC = 3, when C is denser than B, DD effects are at play but, when RB/RC is
decreased, the overall dynamics becomes dominated by the RT instability.

Figure 3 shows the concentration fields of A, B, and C and the reaction rate AB corresponding to
the density field shown in the top line of Fig. 2 for RB = 1 and RC = 1 at t = 30000. The fingering
pattern is mainly due to the denser product C sinking towards the bottom and being replaced by the
fast-diffusing B from the bulk, while the dissolving species A is readily consumed by the reaction

FIG. 3. Concentration fields of A, B, and C and the distribution of the reaction rate AB corresponding to
the density field shown in the top line of Fig. 2 at t = 30000. Concentration and reaction rate scale between
their minimum (blue) and maximum (red) values.
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FIG. 4. Temporal evolution of the dissolution flux J for different δB, δC indicated in the inset for the desta-
bilizing RT-DD cases with δB/δC = 3, RB = 1, and (a) RC = 1.5; (b) RC = 2. Solid black curves correspond to
the cases with equal diffusion coefficients.

as soon as it enters the host phase. The reaction rate AB is maximum along the tips of the fingers
formed by A.

With an objective of determining the efficiency of a given convective dissolution process, we
compute the dissolution flux J , defined as

J = − 1

L

∫ L

0

∂A

∂z

∣∣∣∣
z=0

dx, (6)

where L is the domain width.
Figure 4 shows the temporal evolution of the dissolution flux J for different absolute values of

diffusion coefficients (δB, δC) with δB/δC = 3. One curve represents the average over 15 realizations
with different initial noise of a given amplitude in Eq. (5a). The lighter areas around the curves rep-
resent the variability due to the random noise on the initial condition. Initially, the flux J decreases
as 1/

√
t in the diffusive regime. Soon after the onset of the fingering instability, J increases above

the diffusive trend, features one or two peaks, and eventually fluctuates around an asymptotic value
J∗. Qualitatively, this behavior is similar to the nonreactive scenario with RA > 0 [16] and to the
reactive ones for equal diffusion coefficients with RA > 0 [7,31] or RA < 0 [9].

Note that the equal diffusivity δB = δC = 1 cases indicated by the solid black curves are different
when RC = 1.5 and RC = 2. The latter develops stronger convective motions since the product C
is denser and the RT instability is stronger. When B diffuses faster than C, the RT-DD interplay
causes an earlier departure of J from the diffusive regime, followed by an earlier occurrence of
the peaks and J reaches the asymptotic regime sooner. The overall dynamics is accelerated due
to the fast-diffusing solute B being more readily available at the reaction front for consumption
by the reaction. When RC = 2, the asymptotic values J∗ are, however, slightly lower than those
for δB = δC = 1. This can be explained by the fact that, when RC increases, the interface value of
the density increases and the local RT instability becomes stronger. It seems that, for such a case,
increasing the diffusivity ratio only acts to weaken this instability. For a given δB/δC = 3, various
absolute values of diffusivities δB and δC also impact the temporal evolution of the flux J (Fig. 4).
The larger δB and δC , the most efficient the double diffusive effect and the larger the asymptotic
flux J∗.

The space-time plots of density at location z = 128 below the interface are shown in Fig. 5 for
RB = 1 with RC = 1.5 (left) and RC = 2 (right), where the middle line corresponds to the equal
diffusivity δB = δC = 1 cases. We chose the location z = 128 such that it is sufficiently below the
stable boundary layer to follow the convective dynamics. The accelerated dynamics with stronger
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FIG. 5. Space-time plots of the density computed at z = 128 below the interface for RB = 1 with RC = 1.5
(left) and RC = 2 (right). Destabilizing RT-DD cases with δB/δC = 3 (top) and stabilizing RT-DLC cases with
δB/δC = 1/3 (bottom) are compared to the equal diffusivity δB = δC = 1 cases (middle).

convective motion due to the RT-DD mechanism can be seen here in the top line when B diffuses
faster than C.

V. STABILIZING CONVECTIVE DYNAMICS

Let us now consider the green regime (RT-DLC) of Fig. 1, when B diffuses slower than C and
RB/RC > δB/δC .

The density profiles contain a local maximum below the reaction front. A less dense solution
of the fast-diffusing solute C overlies a denser solution of the slow-diffusing B. This promotes
DLC below the reaction front that couples with the local RT instability generated by the unstable
decreasing density profile below the maximum. The density fields for RC = 1.5 (top) and 2 (bottom)
with δB/δC = 1/3 and RB = 1 are shown in Fig. 6. For both cases, we observe two distinct zones:
the part above the reaction front dominated by diffusion and the one below it where fingers are
formed. The interface between the two zones remains flat up to large times and the fingers do not
interact with each other significantly. At the reaction front where C is generated by the reaction,
the slow-diffusing solute B from the bulk is scarcely available for consumption by the reaction. For
RC = 1.5 in the top line of Fig. 6, the fingers formed remain localized due to the weak RT instability
and small intensity of the local maximum in density. Eventually, they merge but continue to be
localized. For RC = 2, in the bottom line of Fig. 6, the RT instability is stronger causing the fingers to
merge gradually and move towards the bottom relatively faster. Fingers feature the classical antenna
sides typical of DLC modes [38]. As explained in the previous section, the space-time plots of
density at location z = 128 below the interface are shown in Fig. 5 for RB = 1 with RC = 1.5 (left)
and RC = 2 (right). The weak convective motion due to the RT-DLC mechanism can be seen here
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FIG. 6. Density ρ fields at times t = 5000, 10000, 20000, and 30000 from left to right in the RT-DLC
regime indicated in green in Fig. 1 with δC = 1, δB = 1/3, RB = 1 for RC = 1.5 (top) and RC = 2 (bottom).
Typical 1D RD density profiles are enclosed in the first panel. Density scales between its minimum (blue) and
maximum (red) values in each line.

in the bottom line. The formation of the fingering pattern is delayed significantly compared to the
RT-DD and equal diffusivity cases.

Figure 7 shows the temporal evolution of the dissolution flux of A for different absolute values of
diffusion coefficients (δB, δC) with δB/δC = 1/3. We observe that, when B diffuses slower than C for
RC = 1.5, the flux J continues to follow the diffusive scaling whereas, for RC = 2, the onset of the
convective instability is delayed significantly in most cases. Once again, for a given δB/δC = 1/3,
various absolute values of diffusion coefficients δB and δC also impact the temporal evolution of
the flux J . The smaller the values of δB and δC for a fixed ratio, the stronger the RT instability.

FIG. 7. Temporal evolution of the dissolution flux J for different diffusivities indicated in the inset for
the stabilizing RT-DLC cases with δB/δC = 1/3, RB = 1, and (a) RC = 1.5; (b) RC = 2. Solid black curves
correspond to the cases with equal diffusion coefficients.
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FIG. 8. RD density profiles for different diffusion coefficients (δB, δC) indicated in the inset for the
stabilizing RT-DLC cases δB/δC = 1/3 with RB = 1 and (left) RC = 1.5; (right) RC = 2.

To corroborate this point, we have plotted RD density profiles for different diffusion coefficients
(δB, δC ) for a given δB/δC = 1/3 in Fig. 8. When the diffusion coefficients are smaller, the density
profiles exhibit steeper slopes below the local maximum that, in turn, strengthen the RT instability
for a given ratio δB/δC = 1/3.

Thus we have shown that when B diffuses slower than C the dynamics is substantially stabilized
compared to the equal diffusivity case, through RT-DLC interplay.

VI. CONVECTIVE DYNAMICS WHEN B AND C DIFFUSE AT THE SAME RATE

Let us now consider the cases where B and C diffuse at the same rate but differently from A.
We recall that, for δB/δC = 1, the density profiles are nonmonotonic when C is denser than B,

with the local maximum occurring at the reaction front (blue NM line in Fig. 1). Figure 9 shows the

FIG. 9. RD density profiles for different diffusion coefficients (δB, δC) indicated in the inset for δB/δC = 1
with RB = 1 for RC = 1.5 (solid curves) and RC = 2 (dashed curves).
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FIG. 10. Temporal evolution of the dissolution flux J when B and C diffuse at equal rates δB/δC = 1 for
different values of the diffusivities indicated in the inset with RB = 1 and (a) RC = 1.5; (b) RC = 2.

RD density profiles for different diffusion coefficients (δB, δC) such that δB/δC = 1. When B and C
diffuse at an equal rate but faster than A (δB = δC > 1) the slope below the local maximum becomes
less steep. Consequently, this weakens the local RT instability. Figure 10 shows the dissolution
fluxes for RB = 1 with RC = 1.5 and 2 and various values of δB = δC . For both cases, when B and
C diffuse at the same rate but faster than A, the dynamics is less unstable with smaller asymptotic
fluxes J∗ and later departure of flux J from the diffusive trend. On the other hand, when B and C
diffuse at an equal rate but slower than A (δB = δC < 1), the density profile exhibits a steeper slope
below the local maximum (Fig. 9) and the local RT instability becomes stronger as seen by the
earlier departure of flux from the diffusive limit and higher values of J∗ (Fig. 10).

This shows that, even when B and C diffuse at the same rate but different from the rate of A, the
dissolution flux can be altered.

VII. ONSET TIMES AND ASYMPTOTIC FLUXES

To further quantify the effect of differential diffusion on chemically driven convective dissolu-
tion, we now study the onset time for convection and the asymptotic flux for different values of δB

and δC .
The onset time t0 for convection is defined here based on the magnitude of the velocity field

U 2(t ) = ∫ H
0

∫ L
0 [u2(x, z, t ) + v2(x, z, t )]dx dz. Initially, U 2 decreases up to a minimum value. At

the onset time t0, it begins to grow due to the convective instability [7]. Figure 11 shows the onset
times t0 for all the diffusivities studied here when C is denser than B, i.e., for RB = 1 with RC = 1.5
and 2. The equal diffusivity cases are indicated by the horizontal dashed lines. The values of t0 can
be reduced up to two orders of magnitude for δB/δC > 1 (red RT-DD regime in Fig. 1) compared to
the equal diffusivity scenario thanks to the RT-DD interplay. On the other hand, when δB/δC < 1,
the onset times t0 can be up to two orders of magnitude larger. We also observe that, for a given ratio
of δB/δC , the absolute values of the diffusion coefficients δB and δC also impact the onset times t0.

We now quantify the asymptotic flux J∗ as a function of δB/δC in Fig. 12. For a given RB = 1,
the values of J∗ are larger than that for the equal diffusivity case when B diffuses faster than C
(δB/δC > 1) with RC = 1.5. However, we note that, for RC = 2, the J∗ values are slightly lower. As
discussed earlier, this might be due to the relative values of the densities at the interface and far away
in the bulk. When B diffuses slower than C (δB/δC < 1), the values of J∗ are lower than the equal
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FIG. 11. Onset time t0 for different diffusivity ratios δB/δC and RB = 1 when (a) RC = 1.5 and (b) RC = 2.
Dashed lines represent the equal diffusivity cases. For a given ratio δB/δC , various combinations of absolute
values of diffusion coefficients (δB, δC) are used. The letters S and D refer to stabilizing RT-DLC and
destabilizing RT-DD cases, respectively. NM stands for nonmonotonic as in Fig. 1.

diffusion cases for both RC = 1.5 and 2. Here again, we observe that, for a given ratio of diffusivity
δB/δC , changing the absolute values of the diffusion coefficients δB and δC also alters the J∗ values.

To summarize, we have shown that differential diffusion has a significant impact on the storage
rates directly related to the dissolution flux of A. The dynamics can be accelerated with the help
of the RT-DD interplay when B diffuses faster than C and slowed down via RT-DLC mechanisms
when B diffuses slower than C.

FIG. 12. Asymptotic flux J∗ for different diffusivity ratios δB/δC and RB = 1 when (a) RC = 1.5 and
(b) RC = 2. Same conventions are used as in Fig. 11.
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VIII. CONCLUSION

We have numerically studied the role of differential diffusion on chemically driven convective
dissolution (CDCD) dynamics when the dissolving species A introduced from above decreases
the density of the host phase upon dissolution. This case is analogous to dissolution from below
of a species A that would increase the density upon dissolution. In the absence of reactions, the
situation is buoyantly stable and diffusion is the only transport mechanism. By modifying the
density profile in the host solution, an A + B → C reaction can induce buoyancy-driven convective
fingering beyond a certain critical difference in the density contribution between C and B [9]. We
have investigated here the role of differential diffusion of the solutes A, B, and C on CDCD.

When B diffuses faster than C, the density profiles contain a local maximum at the reaction front,
followed by a local minimum below it. This gives rise to a RT-DD interplay, where double-diffusive
convection reinforces the Rayleigh-Taylor instability. This contributes to the reduction of the onset
times for convection up to two orders of magnitude and a larger dissolution flux in general.

On the other hand, when B diffuses slower than C, the density profiles contain a local maximum
below the reaction front which leads to two distinct zones: the diffusion-dominated one above the
reaction front and RT-DLC fingering below. The interface between the two zones remains flat up to
very large times inhibiting the interaction between fingers. In some cases, the dissolution flux even
continues to follow the diffusive scaling. This has a stabilizing effect with lower asymptotic fluxes
and up to two orders of magnitude increase in the onset times.

When B and C diffuse at the same rate but faster (slower) than A, the dynamics can be accelerated
(slowed down). Although the morphology of the convective patterns is determined by the relative
ratio of δB/δC and RB/RC , we observe that, for a given ratio δB/δC , the absolute values of diffusion
coefficients also impact the values of onset times and asymptotic fluxes.

In conclusion, differential diffusion can alter the dynamics of chemically driven convective dis-
solution, modify the dissolution rate and even induce convection in otherwise stable situations. Our
results are relevant for various geological applications or engineering setups that involve nonreactive
stable density stratifications where transport can be enhanced by reaction-induced convection.
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