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The relaxation dynamics of a bent rod immersed in a fluid is studied experimentally for
various rod materials and sizes and fluid viscosities. One extremity of the rod is clamped
while its free end is displaced from its equilibrium position by a controlled distance. For
large bending stiffness or low viscosity, the dynamics is underdamped and the rod oscillates
around its equilibrium position with a well-defined frequency and a damped amplitude. In
contrast, for low bending stiffness or large viscosity, the dynamics is overdamped and
the rod relaxes to its equilibrium position without oscillating. We show the existence of
two overdamped regimes where the relaxation dynamics is characterized by two different
polynomial decays showing that the viscous force is not proportional to the rod velocity.
The system is modeled using the dynamical beam equation supplemented by the viscous
force experienced by a rigid cylinder moving at a constant speed in a fluid. In spite of
this approximation, the model describes the dynamics in good approximation and provides
a simple explanation for the existence of two overdamped regimes which originate from
a change of the viscous force behavior as the Reynolds number varies. The model is then
used to characterize the overdamped relaxation dynamics of the papillae of the bee tongues
observed during nectar feeding. We show that the papillae relaxation is not complete when
the sugar concentration exceeds 30% which impacts the amount of nectar collected per lap
and yields an optimal concentration around 55% for the energy intake rate.

DOI: 10.1103/PhysRevFluids.6.114102

I. INTRODUCTION

As shown in countless studies, the deflection and vibration of slender structures have found
applications in various aspects of nanotechnology, their most widespread use being probably the
design of cantilevers in atomic force microscopy [1,2]. The high sensitivity of the resonance
frequency of oscillating thin plates or rods to minute modifications of their structure allows the
design of new generations of devices used for chemical detection [3–7], photothermal spectroscopy
[8], biological sensors and assays [9–13], or for measuring various physical quantities such as
density or viscosity [14] to name a few (for a recent review, see [15]). In some cases, these devices
operate in a viscous environment and an accurate description of the fluid-structure coupling is
necessary to optimize the sensing capabilities of these nanosensors and microsensors. In all these
studies, the theoretical models typically assume that the amplitude of vibration of the beam is far
smaller than any length scale in the beam geometry and approximate the hydrodynamic force acting
along the deforming elastic beam by the one given by the two-dimensional flow generated by
a corresponding rigid cylinder of identical cross section and oscillation amplitude [16–21]. This
approximation has been validated by both numerical simulations of the full three-dimensional flow
and experiments [18,22].
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The periodic motion of a thin flexible structure in a fluid arises also in a large number of
biophysical problems. For example, the locomotion of some micro-organisms, such as spermatozoa
or flagellar bacteria, has been studied by considering the periodic forcing of a flexible flagellum
confined in a plane to estimate the fluid forces and the swimming speed [23–30]. The nonplanar
motion of flagella observed in the locomotion of many micro-organisms has been described through
rotating elastica. As the applied torque increases the profile of the filament changes from gently bent
to a helical shape leading to a significant increase of the propulsive force [31–34]. The rotation of
helical flexible filaments has also been studied to determine under which conditions a propulsion
is possible since this structure may experience a buckling instability [35–40]. The main challenge
in modeling these fluid-structure interaction problems arises from the need to couple the structural
mechanics of the flagellum with an accurate description of the hydrodynamic loading induced by
the fluid. This coupling is generally achieved by using the resistive force theory which neglects
hydrodynamic interactions between flows induced by different parts of the elastic beam [26,28] or
the Stokeslet and slender body theories which both rely on the linearity of the Stokes equations for
flows at low Reynolds numbers [28,41,42].

In all these aforementioned cases, the slender structure is forced through a periodic motion either
to reach a resonance frequency in sensor devices or to induce a propulsion for the locomotion of
micro-organisms. The relaxation dynamics of a bent flexible filament immersed in a fluid has re-
ceived less attention whereas the relaxation of a filament at a fluid interface has been recently studied
[43]. Such a system could, however, meet applications in biology. Indeed, bats, hummingbirds, and
some insects feed by dipping periodically in the flower nectar their tongue decorated with flexible
microstructures [44–50]. For instance, the drinking cycle of bees involves the periodic protraction
and retraction of their tongue covered by elongated papillae forming a hairy structure. During
the tongue protraction, the hairy structure, initially adhering to the tongue (glossa) by capillary
forces [51,52], relaxes to a widely open brushlike shape when immersed in the nectar. During the
retraction, this peculiar tongue’s morphology allows the nectar to be trapped by viscous entrainment
and capillary forces and finally driven to the bee’s mouth [53–63]. The amount of nectar collected
per laps is essentially constant at sufficiently low sugar concentration but drops sharply when the
sugar content exceeds around 60% [62–65]. Very recently, the loss of efficiency of the bees’ tongue
in capturing very sweet nectar has been related to the relaxation dynamics of their slender papillae
which can be modeled as flexible rods [63].

The aim of this paper is to study the full spectra of relaxation dynamics observed for bent
flexible rods in a fluid with a special emphasis on the overdamped regime. We consider clamped
rods slightly deflected at their free end. In Sec. II, we report a series of experiments conducted
with rods of various dimensions made of contrasted materials immersed in liquids of drastically
different viscosity. The results of these experiments have been reported elsewhere [63] but only one
of the three identified regimes has been briefly discussed. The goal of this paper is to provide a
detailed description of the dynamics for all observed regimes. For the theoretical analysis presented
in Sec. III, we propose a simplified model obtained by decoupling the fluid equations from the rod
elasticity and assuming an effective drag force for the rod geometry. The asymptotic analyses for
the overdamped and underdamped regimes are derived and quantitatively compared to experimental
results in Sec. IV. In spite of its simplifying assumptions, the model shows an impressive quanti-
tative agreement with the experimental data and provides a new insight into this intricate problem.
The application of the model to the bee’s papillae relaxation dynamics is described in Sec. VI. We
show that the papillae are not fully erected when the sugar concentration exceeds roughly 30%.

II. EXPERIMENTS AND RESULTS

The experiments described in this section have been briefly presented in Ref. [63] with an empha-
sis on the overdamped regime relevant for dynamics of bee’s papillae. We recall the experimental
setup here for completeness and discuss in more detail the results and in particular the raw data and
associated scalings for all regimes.
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A. Experimental methods

We consider rods of length L, radius R, Young modulus E , and density ρs clamped at one extrem-
ity and immersed in a liquid of viscosity μ and density ρl . To cover a broad range of parameters,
we used various materials for the rod, from stainless steel surgery needle to polypropylene (PP)
and polylactic acid (PLA) filaments extruded from a three-dimensional (3D) printer nozzle (5 GPa
� E � 165 GPa). The bending and Young moduli have been determined from the profile of rods
bent by a known force applied at their free end. We also considered contrasted rod geometries
(1.1 cm � L � 9.0 cm, 0.15 mm � R � 0.4 mm). For the immersing fluid, water, glycerol, and
silicone oils with viscosities ranging from 10−3 to 10 Pa s were used. The size of the fluid container
(32 × 115 × 60 mm3) is much larger than the rod dimension to avoid finite-size effects. The
densities of both solids and liquids have been obtained by weighing a known volume of materials
(1400 kg/m3 � ρs � 8300 kg/m3, 950 kg/m3 � ρl � 1100 kg/m3).

For all experiments, the rod is bent by manually displacing its free end with a graduated tool by a
distance 0.7 mm � d � 4.9 mm depending on the rod length and radius. The initial displacement
of the rod tip is small with respect to rod length d/L � 1, and large with respect to the rod radius
d/R � 1. Once the free end is released, the motion of the rod is recorded by a Photron Fastcam SA3
high-speed camera operating at 103–104 frames per second until the rod returns to its horizontal
equilibrium position. For each system, i.e., given fluid, rod, and initial displacement, the dynamics
were averaged over three repetitions of the same experiment. The relaxation dynamics always occur
in the plane of the bent rod since recording its motion from different angles does not reveal any
lateral deviation of the rod.

Figure 1(a) shows few snapshots of the rod profile during its motion. Conventional image analysis
yields the position of the moving tip as a function of time. Figure 1(b) shows three examples of
underdamped, critically damped, and overdamped dynamics. For comparison with the theoretical
model, we determine the time T at which the tip of the rod crosses the horizontal axis for the first
time (crossing time) and, when several oscillations are observed, the damping time T � characterizing
the decay of the oscillations’ envelope.

B. Results

The relaxation dynamics of a bent rod immersed in a fluid depends strongly on the fluid viscosity
as well as on the rod materials and geometry. Indeed, for the same steel rod, Fig. 1(b) shows
that, at low viscosity μ = 10−3 Pa s, the tip of the rod follows an underdamped motion with
several oscillations before reaching its equilibrium position whereas no oscillations are observed at
a higher viscosity, μ = 5.5 Pa s, where the motion is completely damped. Therefore, we define the
overdamped, critically damped, and underdamped regimes as the regimes where the profile wE (t )
has 1, 2, or more than 2 zeros, respectively.

The motion of the rod tip in the overdamped regime, shown in Fig. 1(c), reveals a striking
feature of the relaxation dynamics. For a classical overdamped oscillator with a damping term
proportional to the velocity, the system returns to equilibrium without oscillations following an
exponential decay. In contrast, the data reported in Fig. 1(c) clearly show significant deviations
from this classical behavior. This observation implies that, in these cases, the viscous force is not a
linear function of the tip velocity, precluding the use of the resistive force theory.

Figure 1(d) gives an overview of the crossing time T for the various studied systems. This
characteristic time depends mainly on the length and bending modulus of the rod, B ∼ ER4, and on
the fluid viscosity. Two main tendencies emerge from the graph: the crossing time follows T ∼ L2

in the underdamped regime and T ∼ L3 in the overdamped one. For the slowest dynamics in the
overdamped regime, we even observe a T ∼ L3.6 regime. However, various types of relaxation can
be observed at a given value of the crossing time. Therefore, it is not possible from these raw data to
determine a priori which law will be followed by a given system. As a matter of fact, all the control
parameters are intricately entangled. As shown hereafter, the theoretical model will disentangle this
problem.
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FIG. 1. (a). Snapshots of a deflected stainless steel rod of length L = 54 mm oscillating in water at various
times as indicated. The horizontal dashed line indicates the equilibrium position of the rod whereas the red
solid line represents the initial shape (6). (b), (c) Evolution of the rescaled position of the tip of rod wE (t )/d
as a function of time. (b) Representative temporal variations of wE (t )/d as the rod materials and the fluid
are changed, showing three types of evolution: overdamped, underdamped, and critically damped. L = 9.0 cm
and R = 0.4 mm for the steel rod and R = 0.2 mm for PLA rod. The viscosity of the silicone I and II are,
respectively, 1.1 and 5.5 Pa s. The crossing times T are also indicated. (c) Representative evolution of wE (t )/d
as a function of the rescaled time t/T in the overdamped regime, showing two types of relaxation dynamics
characterized either by a nearly exponential decay or by a polynomial decay: L = 4.5 cm and R = 0.15 mm
for PP and L = 9.0 cm and R = 0.40 mm for steel. (d) Evolution of the crossing time T as a function of the
rod length L for various fluids and rod materials and geometry: 5 GPa � E � 165 GPa, 1400 kg/m3 � ρs �
8300 kg/m3, 0.15 mm � R � 0.4 mm, 1.1 cm � L � 9.0 cm, 10−3 Pa s � μ � 10 Pa s and 950 kg/m3 �
ρl � 1100 kg/m3. Insets: representative temporal variations of wE (t )/d .

III. MODEL

The main objective of the theory proposed here is to describe the full motion of the tip of the
rod to obtain the crossing time T and, when there are several oscillations, the damping time T �

characterizing the temporal decay of the oscillation amplitudes. We note that although T is the
relaxation time for overdamped systems, it is related to the oscillation frequency when the system is
underdamped, T � becoming the true relaxation time. The system is critically damped when T and
T � have similar values.

A. Main equation

To describe the experiments reported in Sec. II, we consider a homogeneous cylindrical rod
clamped at one extremity (x = 0) and free at the other end (x = L). Describing the planar motion
of the rod is a complex problem requiring to solve the dynamic elastica equation coupled to the
Navier-Stokes equations where boundary conditions apply on the moving rod. We propose here to
decouple the governing equations by simply adding an effective viscous force to the beam equation
which then reads as [66]

ρ̄sl ∂2
t w(x, t ) = −B ∂4

x w(x, t ) − Fμ, (1)

114102-4



RELAXATION DYNAMICS OF A FLEXIBLE ROD IN A …

FIG. 2. (a) Evolution of the rescaled viscous force F̄μ = Fμ/(4πμ vc ), given by Eq. (2), as a function of
the rescaled velocity v̄ = v/vc together with two power-law approximations: F̄μ = 1.02 v̄1.34 for v̄ ∈ [1, 200] ×
10−3 and F̄μ = 0.288 v̄1.1 for v̄ < 10−3. The gray shaded area indicated the region where Eq. (2) is not valid.
(b) Number of experimental data for given types of fluids as a function of v/vc where the velocity is estimated
as v = d/T . The orange shaded area indicated data for which the experimental profiles wE (t ) have 2 zeros
(critically damped regime). Outside this region, the profiles have either 1 zero (overdamped regime) or more
than 2 zeros (underdamped regime).

where w(x, t ) is the transverse displacement along the vertical axis, B = EI is the bending modulus
of the rod where I is the area moment of inertia, and ρ̄sl = (ρs + ρl )S ≡ ρsl S is the linear mass
density of the rod supplemented by the linear mass of the displaced fluid (hydrodynamic mass
[67]), S being the section area of the rod.

The expression of the viscous force per unit length Fμ is a priori complicated since it depends
on the local fluid velocity which varies in space and time. Here, we propose to use the viscous
drag experienced by a rigid cylinder moving at a constant speed perpendicular to its symmetry axis
obtained by solving the Stokes equations with the Oseen’s correction [68]:

Fμ = 4πμ v

1/2 − γE − ln[v/vc]
, vc = 4μ

ρl R
, (2)

where v is the (constant) cylinder velocity and γE � 0.577 is the Euler constant. This expression
is, by construction, valid when the Reynolds number is small, i.e., Re � v/vc � 1, and indeed it
diverges when v/vc � 0.926. Higher-order corrections to the expression of the viscous drag exists
[69,70] but they will not be considered here.

As shown in Fig. 2(a), the evolution of the rescaled viscous force Fμ/(4πμ vc) as a function of
the rescaled velocity v/vc can be approximated by two power laws depending on the range of v/vc.
Figure 2(b) shows how the experiments are distributed as a function of v/vc when v is estimated as
d/T , the nature of damping regime are also indicated. Interestingly, we notice that the overdamped
regime is spreading across the transition between the two power-law regions I and II. In the region
I where v/vc � 10−3, the viscous force grows almost linearly with the velocity and the relaxation
dynamics should thus be characterized by a nearly exponential decay [Eq. (2) behaves linearly
with v when v/vc � 10−10]. In contrast, in the region II where 10−3 � v/vc � 0.2, the evolution
of the viscous force deviates significantly from a linear growth which should impact the relaxation
dynamics. Therefore, the viscous force (2) allows already to understand qualitatively the two types
of relaxation dynamics observed in the overdamped regime.

Notice that the force (2) deviates significantly from a power law when v/vc � 0.2 [see Fig. 2(a)].
Nevertheless, as we will show below, the viscous force is negligible in this regime when computing
the crossing time T . In addition, after few oscillations, the velocity of the tip of the rod decreases
such that the expression (2) becomes valid. Therefore, the damping time T � computed with
Eq. (2) can be compared to the experimental data provided it is measured experimentally after
few oscillations.
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We will thus consider the following expression for the nonlinear viscous force:

Fμ = 4πμβ v1−σ
c vσ , (3)

where β = 1.02 � 1.0 for σ = 1.34 � 4
3 and β = 0.288 for σ = 11

10 [see Fig. 2(a)].
Combining Eq. (1) with the expression (3) of the viscous force, we obtain the main equation used

to describe the experimental data presented in Sec. II B:

ρ̄sl ∂2
t w = −B ∂4

x w − 4πμβ v1−σ
c Sg |∂tw|σ , (4)

where Sg is the sign of ∂tw such that the viscous force is always acting against the rod motion. Since
the rod is clamped at one extremity and free at the other end and is released from initial position with
a vanishing velocity, Eq. (4) needs to be solved with the following boundary and initial conditions:

w(0, t ) = ∂xw(x, t )
∣∣
x=0 = 0, (5a)

∂2
x w(x, t )|x=L = ∂3

x w(x, t )
∣∣
x=L = 0, (5b)

w(x, 0) = w0(x), ∂tw(x, t )
∣∣
t=0 = 0. (5c)

For the shape of the initially bent rod w0(x), we use the solution of B ∂4
x w0(x) = q given by

w0(x̄)/d = x̄2(x̄2 − 4x̄ + 6)/3, (6)

where x̄ = x/L and d = qL4/(8B). Figure 1(a) shows that the expression (6) fits nicely the initial
shape of the rod prior to its release.

B. Crossing time scalings and adimensionalization

When the bending modulus of the rod is large and/or the viscosity of fluid is low, the tip of the
rod oscillates around its equilibrium position at a high frequency ν � (4T )−1 [see Fig. 1(b)]. In this
underdamped regime, the viscous force can be neglected to compute T from Eq. (4) that becomes,
in order of magnitude,

ρ̄sl d

T 2
∼ Bd

L4
⇒ T ∼ 2

[ρsl

E

]1/2 L2

R
, (7)

where we have used ∂2
t w ∼ d/T 2, ∂4

x w ∼ d/L4, ρ̄sl = πR2ρsl , and the bending modulus of a
cylindrical rod B = πER4/4. The scaling T ∼ L2 is in agreement with the experimental data
obtained in the underdamped regime [see Fig. 1(d)]. On the contrary, when the bending modulus of
the rod is low and/or the viscosity of fluid is large, the motion of the rod is overdamped and there
are no oscillations [see Figs. 1(b) and 1(c)]. In this regime, the rod inertia can be neglected and
Eq. (4) leads in order of magnitude (∂tw ∼ d/T ) to

Bd/L4 ∼ 4πμ v1−σ
c (d/T )σ . (8)

Therefore, we have

T ∼ 4

[
4μ2ρl dR

E3

]1/4[
L

R

]3

for σ = 4

3
, (9a)

T ∼ 8

[
32μ9ρl dR

E10

]1/11[
L

R

]40/11

for σ = 11

10
. (9b)

The two trends observed in Fig. 1(d), namely T ∼ L3 or L3.6, correspond thus to two different
overdamped regimes, their behavior being determined by the value of v/vc.

The transition between the underdamped and overdamped regimes occurs when both values of
T , given by Eqs. (7) and (9a), are equal. From this equality, we obtain a dimensionless parameter
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FIG. 3. Evolution of the experimental rescaled crossing time T/τ as a function of the control parameter k,
defined by Eq. (10), for various types of rods and fluids. The data for the damping time T �/τ are represented by
star symbols. The black solid line represents the theoretical expression (24a) divided by 3. The orange shaded
area highlights the critically damped regime as deduced theoretically whereas the horizontal dashed lines show
the transition between the three regimes. The blue, green, and gray shaded areas and the dotted black curves
show the variations of the theoretical scalings and of the numerical solution of Eqs. (1) and (2) as d̄ is varied
within its experimental range (0.4 � d̄ � 10.5). Insets: positions of the tip of the rod as a function of time for
some representative cases: overdamped, critically damped, and underdamped regimes.

k/d̄ merging all the relevant experimental parameters of the system, where

k = Eρsl R6

64μ2L4
, d̄ = d

�
, � = ρsl R

ρl
. (10)

At the transition between the underdamped and overdamped regimes, we thus have k/d̄ = 1 by
construction. Since 0.4 � d̄ � 10.5 in the experiments, k is also close to 1 at this transition (see
Fig. 3). The quantity � appears thus as a suitable length scale for the transverse motion of the rod
and will be used below to rescale w. Finally, one natural timescale of this problem τ is obtained by
dividing � by vc:

τ = ρsl R2

4μ
. (11)

Equation (4) can now be adimensionalized using these length scales and timescales:

∂2
t̄ w̄(x̄, t̄ ) = −k ∂4

x̄ w̄(x̄, t̄ ) − β Sg|∂t̄ w̄(x̄, t̄ )|σ , (12)

where w̄ = w/�, x̄ = x/L, t̄ = t/τ and k, �, and τ given by Eqs. (10) and (11). The three regimes
identified above, Eqs. (7) and (9), can be written in rescaled variables as follows:

T̄ ∼ k−1/2 when k � 1 (underdamped), (13a)

T̄ ∼ (d̄ )
σ−1
σ k−1/σ when k � 1 (overdamped). (13b)

The scalings T̄ = T̄ (k) in the two overdamped regimes involve a coefficient d̄ that still depends
on the control parameters. Indeed, it is not possible to rescale the variables so that the dynamics
of all three regimes will be described by a unique master curve. Nevertheless, in the experiments,
the coefficient (d̄ )

σ−1
σ varies moderately between 0.8 and 1.8 for σ = 4

3 and between 0.9 and 1.2
for σ = 11

10 . Therefore, this coefficient will be taken into account through an effective error on the
scaling coefficients that will be determined in Sec. IV A.
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Figure 3 shows that the rescaled crossing times T/τ measured for various fluids and rods collapse
on a master curve which follows closely the expected scalings (13). The three scalings can be
roughly associated to different immersing fluids. The overdamped regimes I and II are related to
experiments conducted mainly in silicone oil and glycerol, respectively. The rods immersed in
water follow the underdamped regime. In-between these asymptotic regimes, the damping time
T � characterizing the decay of the amplitude envelope becomes close to the crossing time T . This
region corresponds to critical damping where the tip of the rod barely oscillates before reaching
its equilibrium position. The transitions between the two overdamped regimes and between the
overdamped and underdamped regimes occur when v/vc � 10−3 and v/vc � 1, respectively [see
Fig. 2(a)]. Using v = d/T , these relations in rescaled variables become T̄2 � 1000 d̄ and T̄1 � d̄ ,
respectively. Since the averaged value of d̄ is 6.6 for the overdamped data with k < 10−4 and 3.0
for data with 10−3 < k < 1, the transition regions for the crossing time are T̄2 � 6.6 × 103 and
T̄1 � 3.0 which agree well with the transition observed in Fig. 3. Notice that, because the transition
between the two overdamped regimes is controlled by the value of v/vc and not by k, there exists a
small region near k = 10−5 where both regimes coexist.

In the next sections, we will study the temporal evolution of the free end of the rod w̄E (t̄ ) =
w̄(1, t̄ ) obtained from Eq. (12) and compare it to the experimental dynamics. In the process, we will
be able to determine the numerical prefactors of the scalings (13) through asymptotic analyses.

IV. ASYMPTOTIC THEORIES AND COMPARISON WITH EXPERIMENTS

A. Overdamped regime k → 0

The scaling (13b) shows that, when k � 1, the quantity T/(τk−1/σ ) is of order 1. Therefore, if
we rescale time as t̃ = t/(τk−1/σ ) = t̄ k1/σ , Eq. (12) becomes

k2/σ−1∂2
t̃ w̄(x̄, t̃ ) = −∂4

x̄ w̄(x̄, t̃ ) − β Sg|∂t̃ w̄(x̄, t̃ )|σ . (14)

This equation contains only quantities of order 1 in contrast with Eq. (12) where t̄ is large when k
is small. Therefore, the limit k → 0 can now be considered since all other quantities will remain
of order 1. In this limit, the term with the highest temporal derivative disappears. This term cannot
rigorously be neglected because, without it, the initial conditions (5c) cannot be all satisfied. In this
type of singular perturbation problem [71], the inertial term creates a boundary layer near t̃ = 0
whose size decreases when k decreases. The asymptotic expression for small k corresponds thus to
the so-called “outer” solution of the problem. Since we are interested in the profile at much larger
time, i.e., up to T̃ = O(1), we can consider this asymptotic expression as a good approximation.

In the limit k → 0, Eq. (14) reduces to

β[−∂t̃ w̄(x̄, t̃ )]σ = ∂4
x̄ w̄(x̄, t̃ ). (15)

The sign Sg of the velocity appearing in Eq. (14) is removed since there is no oscillation in this
regime and ∂t̃ w̄ � 0. This equation involves only a first-order temporal derivative and must be
solved with the boundary and initial conditions (5) without imposing a vanishing initial velocity.
Using the separation of variables w̄(x̄, t̃ ) = w̄E (t̃ ) g(x̄), the nonlinear partial differential equation
(PDE) (15) reduces to two ordinary differential equations (ODEs)

˙̄wE = −[η4/β]1/σ w̄
1/σ
E , w̄E (0) = d̄, (16a)

g′′′′ = η4 gσ , g(0) = g′(0) = g′′(1) = g′′′(1) = 0, (16b)

where η4 is the separation constant and the overdot and prime indicate time and spatial deriva-
tive, respectively. The nonlinear eigenvalue Eq. (16b) can be solved numerically since, at t̃ = 0,
w̄(1, 0) = g(1) = 1. This last condition fixes the value of the separation constant to η1 � 1.8916 �
70
37 for σ = 11

10 and η2 � 1.9285 � 27
14 for σ = 4

3 . The nonlinear Eq. (16a) is then integrated and
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FIG. 4. (a), (b) Evolution of the rescaled position of the tip of the rod wE/d as a function of a rescaled time
for the overdamped regimes I and II. Data obtained by solving numerically Eq. (12) with d̄ = 1 and σ = 11

10
(a) or σ = 4

3 (b) are compared to the experimental data and the asymptotic theoretical curves (17). (c) Evolution
of the crossing and damping times as a function of k extracted from numerical solutions of Eq. (12) with d̄ = 1
(symbols) together with analytical asymptotic behaviors: Eq. (18a) (dashed-dotted line), Eq. (18b) (solid line),
Eq. (23) (dashed line), Eq. (24b) (short-dashed line). The orange shaded area highlights the critically damped
regime. Inset: temporal evolution of wE/d at k = kc � 8 × 10−3. (d) Comparison between the temporal
evolution of wE/d obtained by solving numerically Eq. (12) with σ = 4

3 and d̄ = 1 in the underdamped regime
(solid curves) and the profiles (24a) obtained from a multiple-scale analysis (dashed curves). The dashed-dotted
curve indicates the asymptotic theoretical curve (22) obtained in the undamped regime. The numerical and
theoretical data have been shifted vertically for each value of k for clarity.

yields the position of the tip of the rod as a function of time. Returning to the physical variables, we
have for each value of σ

wE (t )

d
=

[
1 − 2.86

k10/11

d̄1/11

t

τ

]11

(overdamped I), (17a)

wE (t )

d
=

[
1 − 1.79

k3/4

d̄1/4

t

τ

]4

(overdamped II), (17b)

where k and τ are given by Eqs. (10) and (11). In these overdamped regimes, the relaxation dynamics
of the tip of the rod wE (t ) is not characterized by an exponential decay, as predicted by a linear
theory, but by a polynomial decay as first suggested by experiments [see Fig. 1(c)]. Figures 4(a)
and 4(b) show that, once the time is properly rescaled, the numerical solutions of Eq. (12) at small
k and the experimental data in overdamped regimes collapse on the proposed asymptotic curves
(17) showing the good quality of these approximations. With these relations, the crossing time
corresponding to wE = 0 can be computed and is given by

T/τ � 0.35 d̄ 1/11 k−10/11 (overdamped I), (18a)

T/τ � 0.56 d̄ 1/4 k−3/4 (overdamped II), (18b)

which agrees well with the crossing times extracted from the numerical solutions of Eq. (12) [see
Fig 4(c)].
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To compare to the data, d̄ is varied between 0.4 and 10.5 as in the experiments. Figure 3 shows
that Eqs. (18) describes very well the crossing time measured experimentally in the overdamped
regime over almost six and eight orders of magnitude for T/τ and k, respectively.

As the tip of the rod approaches its equilibrium position, its velocity decreases so that, a
priori, a transition from the overdamped II to the overdamped I regime could happen during a
given experiment. Such a transition would occur if vE/vc becomes smaller than v̄∗ � 10−3 where
vE (t ) = dwE/dt is the velocity of the tip of the rod. Using Eq. (17b), we can compute vE (t )
and the time t∗ at which vE/vc = v̄∗. The position of the tip of the rod at t = t∗ is found to be
w∗

E/d = (v̄∗ T̄ /4d̄ )4/3. In our experiments performed in the overdamped II regime w∗
E < 0.6 R.

Therefore, we cannot observe such a transition since it would happen when the tip of the rod is at a
distance from its equilibrium smaller than the rod radius.

B. Undamped regime k → ∞
Before discussing the underdamped regime in the next section where both regular oscillations

and decay are observed, we first analyze an idealized case where there is no damping. The scaling
(13a) shows that, when k � 1, the quantity T/(τk−1/2) is of order 1. Therefore, if we rescale time
as t̃ = t/(τk−1/2) = t̄ k1/2, Eq. (12) becomes

∂2
t̃ w̄(x̄, t̃ ) = −∂4

x̄ w̄(x̄, t̃ ) − kσ/2−1βSg|∂t̃ w̄(x̄, t̃ )|σ . (19)

Again, this equation contains only quantities of order 1 in contrast with Eq. (12) where t̄ is small
when k is large. In the limit k → ∞, Eq. (19) reduces to

∂2
t̃ w̄(x̄, t̃ ) = −∂4

x̄ w̄(x̄, t̃ ). (20)

This equation describes the oscillation of a rod in a fluid of negligible viscosity and must be solved
with the boundary and initial conditions (5). Using the separation of variables w̄(x̄, t̃ ) = w̄E (t̃ ) g(x̄),
this linear PDE reduces to two ODEs

¨̄wE = −4 w̄E , w̄E (0) = d̄, ˙̄wE (0) = 0, (21a)

g′′′′ = 4 g, g(0) = g′(0) = g′′(1) = g′′′(1) = 0, (21b)

where −4 is the separation constant. The linear eigenvalue Eq. (21b) is easily solved and nontrivial
solutions exist provided 1 + cos() cosh() = 0 whose lowest solution is  � 1.8751 � 15

8 [16].
We show in Appendix A that considering only the first mode is sufficient for the initial condition
(6). The linear Eq. (21a) is then integrated and yields the position of the tip of the rod as a function
of time. Returning to the physical variables, it reads as

wE (t )

d
= cos(ω t ), ω = 2 k1/2

τ
,  � 15

8
. (22)

In this undamped regime, there is obviously no attenuation of the oscillation’s amplitude.
Figure 4(d) shows that, once the time is properly rescaled, all the numerical solutions of Eq. (12)

at large k have the same frequency which is well captured by the asymptotic expression (22)
obtained for the ideal undamped regime. Therefore, Eq. (22) can be used to estimate the crossing
time T = 1/(4ν) = π/(2ω), which reads as

T

τ
= π

22
k−1/2 � 0.45 k−1/2, (23)

and agrees well with the crossing times extracted from the numerical solutions of Eq. (12) [see
Fig. 4(c)]. Figure 3 shows that Eq. (23) describes very well the crossing time measured experimen-
tally in the underdamped regime over four orders of magnitude for k.
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FIG. 5. Representative evolution of wE (t )/d as a function of time in the underdamped regime where the
rod is immersed in water. The solid curves show the theoretical profiles (24a) with ω and T � adjusted for
each rod. The values of T � obtained are the experimental values reported in Fig. 3 and ω is computed using
Eq. (22) with k and τ allowed to vary within their experimental errors. The theoretical profiles are limited to
time intervals where v/vc is not too large so that the viscous force (2) is valid.

C. Underdamped regime k � 1

The undamped theory presented in the previous section is, of course, unable to describe the
temporal decay of the oscillation amplitudes and the related damping time. For this purpose, a
multiple-scale analysis is performed (see Appendix A). This approach gives the following temporal
evolution of the tip of rod:

wE (t )

d
= [1 + t/T �]−3 cos(ω t ), (24a)

T �

τ
� 4.69 d̄ −1/3k−1/6, (24b)

where the frequency ω is unchanged compared to the undamped regime and is given by Eq. (22).
Figures 4(c) and 4(d) show that Eqs. (24) describe very well the numerical solutions obtained
from Eq. (12) for k � 1 and the related damping time. Figure 3 shows that Eq. (24b) captures
very well the evolution with k of the damping time measured experimentally in the underdamped
regime. It should be noted, however, that the numerical prefactor is too large by a factor close
to 3. Therefore, the amplitude of the oscillations decreases faster experimentally compared to the
theoretical prediction but it follows closely the polynomial decay given by Eq. (24a) as shown in
Fig. 5. This underestimation is probably due to the fluid flows produced by the rod motion itself.
During its periodic oscillations, the rod experiences an additional drag force related to its motion
against the flow. Therefore, the rod velocity ∂tw is no longer equal to the relative velocity between
the fluid and the rod when the latter oscillates several times. It is, on average, larger than ∂tw and the
viscous drag is thus probably underestimated in the underdamped regime. A detailed description of
the damping time in this regime thus requires to take explicitly the fluid flow into account by solving
the Navier-Stokes equation coupled to the beam equation which is beyond the scope of this paper.

D. Critically damped regime

When the crossing time T and the damping time T � are close, the tip of the rod barely oscillates.
The interval of k where this critically damped regime takes place can be estimated by equating
the expressions of T obtained in the overdamped regime, Eq. (18b), and in the undamped regime,
Eq. (23), to the expression (24b) of T �. This leads to the range 9 × 10−4 � k � 7 × 10−2 with
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TABLE I. Scalings for the rescaled crossing time T/τ , where τ is defined by Eq. (11), for the three observed
regimes and their range of validity with respect to the value of k defined by Eq. (10). d̄ is also defined by
Eq. (10). The value of T/τ could also be used to determine the range of validity. Overdamped I: T/τ � 6000;
overdamped II: 6000 � T/τ � 3; underdamped: T̄ � 3.

Regime Range k Scaling

Overdamped I k � 10−5 T/τ � 0.35 d̄
1
11 k− 10

11

Overdamped II 10−5 � k � 1 T/τ � 0.56 d̄
1
4 k− 3

4

Underdamped k � 1 T/τ � 0.45 k− 1
2

a mean value, in logarithmic scale, around kc � 8 × 10−3. This interval of k is shown in Fig. 4(c)
where the inset displays the temporal evolution of wE at k = kc which is in-between the overdamped
evolution, where the dynamics slowly relaxes to equilibrium, and the underdamped evolution where
the system oscillates with a well-defined frequency. This interval of k is also reported in Fig. 3
where the inset shows that the experimental evolution of wE as a function of time at k � kc presents
the same features than the theoretical profile.

V. SUMMARY AND DISCUSSIONS

The scalings obtained for the crossing time T and their range of validity are summarized in
Table I. In the overdamped I regime, the viscous force (2) can be approximated by a power law
without significant impact on the crossing time T [see Fig. 2(a)]. However, in the overdamped II
regime, the viscous force departs from a power law and some moderate variation of the scaling
reported in Table I can be expected. Actually, the viscous force could have been approximated
by F̄μ = 0.79 v̄1.26 with the same level of accuracy (see Appendix B). It is easy to repeat the
computations performed in Sec. IV A with σ = 1.26 � 5

4 . Solving Eq. (16b) leads to η � 1.9156.
Integrating the nonlinear Eq. (16a) yields the temporal evolution of the tip of the rod and a crossing
time T/τ � 0.52 d̄ 1/5 k−4/5. Such a small change in the scaling has a negligible impact on the
description of the experimental data. Indeed, the ratio between this scaling and the one reported in
Table I behaves as k1/20 so that it varies by a factor 2 when k varies by a factor 105.

Finally, for a linear viscous force (v/vc � 10−10, σ = 1), the usual relaxation time T ∼ μL4/B
is recovered.

VI. RELAXATION OF BEES’ PAPILLAE

Many bees feed on nectar and collect it by quickly protracting and retracting their tongue
(glossa). Surprisingly, the lapping period TL � 0.2 s appears to be essentially independent on the bee
species and nectar viscosity μ (at least on the range [0.001, 0.5] Pa s) [55,56,58,60,62,63,65,72].
The tongue is decorated with hairy papillae, characterized by a length L � 135 μm and a radius
R � 2.1 μm for Bombus terrestris [63]. When immersed in the nectar, these papillae, which initially
adhere to the glossa due to capillary forces, relax to form a brushlike shape within a characteristic
relaxation time strongly dependent on the fluid viscosity [63]. When this relaxation time is smaller
than the retraction time, i.e., T < TR � TL/2, the papillae are fully erected before the tongue is
retracted out of the nectar. For large viscosity, however, this relaxation time T may become larger
than the retraction time TR, an effect inducing a rapid decrease of the capture efficiency. Figure 6(b)
shows in vivo measurements of the evolution of the ingestion rate of Bombus, Q, as a function of
the sugar concentration cs [62,63]. At low concentration, Q is essentially constant and decreases
significantly when cs exceed around 50%. Consequently, the energy intake rates first increase with
sugar concentration (viscosity) before reaching a maximum around 50% [see Fig. 6(c)]. With the
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FIG. 6. (a) Schematic of the papillae relaxation dynamics. (b) Comparison between the theoretical in-
gestion rate Q [see (28)] and in vivo measurements for Bombus as a function of the sugar concentration
together with the contribution QP of the papillae and of the dragged film QLLD. The parameter values used
are TL = (0.20 ± 0.02) s, E = (1.1 ± 0.1) MPa, RG = (95 ± 5) μm, R = (2.1 ± 0.1) μm, L = (135 ± 5) μm,
d = L sin(π/4), LI = 2.0 ± 0.1 mm, ρl = (1175 ± 175) kg/m3. (c) Evolution of the energy intake rate Ė as
a function of the sugar concentration for several bee species obtained from Eqs. (29) and (28) with the same
parameter values. The vertical dotted line indicates the concentration at which Ė is maximum. The symbols
represent data obtained by using (29) together with the in vivo measurements of Q reported in (b). The shaded
areas show the regions spanned by the theoretical curves when the parameters are varied within their error bars.

elastoviscous model proposed here, we can determine the critical viscosity above which the amount
of nectar captured per lap starts to decrease.

For this purpose, we first need to determine the nature of the damping regime by estimating
v/vc � ρl dR/(4μT ). A simple inspection of in vivo measurements of the papillae relaxation
dynamics for a 37% w/w sucrose solution [i.e., μ = 5 × 10−3 Pa s at 20 ◦C, see Appendix C]
leads to T > 0.06 s [63]. Using d � L sin(π/4) � 95 μm [63], we obtain v/vc < 10−4. At larger
sugar concentrations, ρl/μ is smaller and T is larger so that the ratio v/vc is smaller than 10−4. The
relaxation dynamics belongs thus to the overdamped I regime.

Using E � 1.1 MPa [63] and the values of R, L, and d given above for Bombus terrestris together
with the definition of k, τ , and d̄ given by Eqs. (10) and (11), the evolution of the relaxation time T
is obtained as a function of μ and ρl using Eq. (18a):

T � 6.12 μ9/11ρ
1/11
l � 11.64 μ9/11, (25)

in MKS units. The variation of nectar density can be neglected (see Appendix C). For instance, ρl

varies between 1000 and 1350 kg/m3 when μ varies over three orders of magnitude. In addition,
ρl appears with a very small exponent in Eq. (25), we thus use a constant average value ρl �
1175 kg/m3. Equation (25) allows to obtain the critical viscosity beyond which the papillae are
not fully erected when the tongue retracts out of the nectar, i.e., when T > TR. This happens when
μ > μc � 0.003 Pa s corresponding to a 30% w/w sucrose solution at 20 ◦C (see Appendix C).
However, the relaxation dynamics is very slow when the papillae approach their equilibrium position
so that they are close to that position at times significantly smaller than T . The condition T > TR

leads thus to a crude estimation of critical viscosity beyond which the efficiency of the nectar capture
by bees decreases. To obtain a better estimation, it is necessary to incorporate the papillae relaxation
dynamics into a nectar capture model.
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As proposed in Ref. [63], we assume that the volume of fluid collected by bees is the sum of
the volume trapped by their papillae and the volume dragged through a Landau-Levich-Derjaguin
(LLD) mechanism [73–76]. The volume of liquid trapped by the papillae when the tongue retracts
from the nectar at t = TR is the volume delimited by the glossa of radius RG and the tip of the
papillae which are at a distance d − wE (TR) from the glossa. This volume per unit of time QP is
thus given by

QP = π vR
[
R̃2

G − R2
G

]
, R̃G = RG + d − wE (TR), (26)

where wE (t ) is given by Eq. (17a) and vR = LI/TR and LI are the retraction velocity and the
immersion length of the tongue, respectively. The thickness h of the film of nectar dragged by
the hairy structure through a LLD mechanism during its retraction is given by h = 1.34 R̃G Ca2/3

where Ca = μvR/γ is the capillary number. The surface tension γ � 0.074 N/m does not vary
significantly with the sugar concentration [77]. The volume dragged per unit of time QLLD is
given by

QLLD = π vR
[
(R̃G + h)2 − R̃2

G

]
. (27)

The total volume of nectar collected per unit of time Q = QP + QLLD is thus given

Q = π vR
[
R̃2

G(1 + 1.34 Ca2/3)2 − R2
G

]
. (28)

Using the physiological parameters of Bombus terrestris [63], Eq. (28) describes well the in vivo data
reported in Fig. 6(b). For moderate sugar concentrations, the ingestion rate is essentially constant
and equal to the volume trapped by the papillae per unit time. The volume of the film dragged
through a LLD mechanism is indeed negligible except at very large sugar concentrations cs. The
decrease of Q at large cs is directly related to the papillae relaxation dynamics that induces a decrease
of d − wE (TR), i.e., the distance between the tip of the papillae and the glossa when the tongue
retracts out of the nectar.

Once the ingestion rate is known, the energy intake rate Ė is computed using

Ė (cs) = σ Q(cs) ρl (cs) cs, (29)

where σ = 15.48 kJ/g is the energy content per unit mass of sugar [65] and Q is given by Eq. (28).
The dependence of the nectar mass density on the sugar concentration is here taken into account
(see Appendix C) since Ė varies linearly with ρl in contrast to Q which depends very weakly on
this quantity. Figure 6(c) confirms the good agreement with the model, Ė first grows essentially
linearly until it reaches a maximum value at cs = c�

s � 53% (μc � 0.02 Pa s). At this value of the
sugar concentration, the papillae are still open at 92% when the tongue retracts out of the nectar and
T � 5 TR [see Fig. 6(b)]. For larger sugar concentrations cs > c∗

s , the opening of papillae rapidly
decreases as the efficiency of the capture mechanism.

VII. CONCLUSIONS

The motion of a bent rod immersed in a fluid shows contrasted dynamics according to the
experimental conditions (rod material and geometry and the fluid viscosity). When the bending
modulus of the rod is large and/or the viscosity is low, the relaxation dynamics is underdamped and
the rod oscillates with a well-defined frequency T −1 and an amplitude damped with a characteristic
time T �. In contrast, when the bending modulus of the rod is small and/or the viscosity of fluid
is large, the relaxation dynamics is overdamped and the rod returns to its equilibrium position in
a time T without oscillating [see Fig. 1(b)]. Unexpectedly, the observed motion of the free end of
the rod does not follow an exponential decay but a polynomial one [see Fig. 1(c)]. This observation
indicates that the viscous force is a nonlinear function of the rod velocity.

The system has been modeled using the dynamical beam equation supplemented by the viscous
force experienced by a rigid cylinder moving at a constant speed. This model provides scalings that
are used to rescale the experimental data so that they collapse along an essentially unique master
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curve as the comparison between Figs. 1(d) and 3 shows. The characteristic times of the dynamics
T and T � are well described by the model as shown in Fig. 3 as well as the temporal evolution
of the tip of the rod in all regimes [see Figs. 4(a), 4(b), and 5]. Figure 3 shows, however, that the
magnitude of the viscous force is underestimated in the underdamped regime leading to a damping
time overestimated by roughly a factor 3. We attribute this effect to the motion of the rod against
the flow producing an additional drag force. The model also provides a simple explanation for the
existence of two scalings for the relaxation time in the overdamped regime as shown in Fig. 3.

To illustrate the model ability for applications, it has been used in Sec. VI to characterize
the overdamped relaxation dynamics of the papillae of the bee tongues observed during nectar
feeding. Assuming that the lapping period does not depend significantly on the nectar viscosity,
as shown by in vivo measurements, the model predicts the evolution of the energy intake rate from
the papillae relaxation dynamics which exhibit a maximum of efficiency for sugar concentration
around 50%. At larger concentrations (viscosity), the erection of the papillae is further hindered by
the viscous drag which impacts the nectar capture and explains the significant drop of the observed
ingestion rate.
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APPENDIX A: MULTIPLE-SCALE ANALYSIS

To derive the crossing time T and the damping time T � in the underdamped regime (k � 1),
we take the nonlinear viscous drag into account as a small perturbation. We first consider the
linear unperturbed equation (k → ∞) in Appendix A 1 to obtain an eigenmode expansion and the
oscillation frequency. We show that, for our initial condition w̄(x̄, 0) = w̄0(x̄) given by Eq. (6),
the first mode provides an excellent approximation of the unperturbed dynamics. We then consider
the nonlinear viscous drag as a small perturbation in Appendix A 2 to derive the modulation of the
oscillation amplitudes through a multiple-scale analysis.

1. Unperturbed equation: Eigenmode expansion

The unperturbed equation is obtained from Eq. (19) in the limit k → ∞:

∂2
t̃ w̄(x̄, t̃ ) = −∂4

x̄ w̄(x̄, t̃ ), (A1)

which must be solved with the boundary and initial conditions (5) and (6). Using the separation of
variables w̄(x̄, t̃ ) = f (t̃ )g(x̄), we obtain

f̈ (t̃ )

f (t̃ )
= −g′′′′(x̄)

g(x̄)
= −4, (A2)

where −4 is the separation constant and where the overdot and prime denote temporal and spatial
derivatives. We thus obtain two ODEs

f̈ = −4 f , f (0) = d̄, ḟ (0) = 0, (A3a)

g′′′′ = 4 g, g(0) = g′(0) = g′′(1) = g′′′(1) = 0, (A3b)

where the boundary and initial conditions are obtained from Eqs. (5) and (6) taking into account the
separation of variables.

Equation (A3a) is readily solved and yields

f (t̃ ) = d̄ cos(2 t̃ ). (A4)
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The general solution of Eq. (A3b) reads as

g(x̄) = a e x̄ + b e− x̄ + c ei x̄ + d e−i x̄, (A5)

where a, b, c, and d are constants. Using the boundary conditions for g, we obtain the following
system of four linear equations:⎛

⎜⎜⎝
1 1 1 1
 − i −i

2e 2e− −2ei −2e−i

3e −3e− −i3ei i3e−i

⎞
⎟⎟⎠

⎛
⎜⎝

a
b
c
d

⎞
⎟⎠ = 0. (A6)

This system admits nontrivial solutions if and only if the determinant of the coefficient matrix is
vanishing which gives the condition

1 + cos() cosh() = 0. (A7)

This Eq. (A7) admits a countably infinite set of eigenvalues:

 = n, n = 0, 1, 2, . . . (A8)

where 0 � 1.8751 � 15/8, 1 � 4.6941, 2 � 7.8548, 3 � 10.996, etc. Notice that we have in
good approximation n>0 � (2n + 1)π/2. Solving the system of Eqs. (A6) and taking into account
(A7), the eigenmodes gn, defined up to a multiplicative constant, reads as

gn(x̄) = cosh(nx̄) − cos(nx̄) + α[sin(nx̄) − sinh(nx̄)], (A9)

where

α = [cos n + cosh n]/[sin n + sinh n]. (A10)

As for standard Sturm-Liouville problems, two eigenmodes associated to two different eigenvalues
are orthogonal. It can also be shown that each eigenmode is normalized such that we have∫ 1

0
gn(x̄) gm(x̄) dx̄ = δnm, (A11)

where δnm is the Kronecker symbol.
Since Eq. (A1) is linear, its general solution for a vanishing initial velocity and satisfying the

boundary conditions can be written as a linear combination of the eigenmodes

w̄(x̄, t̃ ) = d̄
∞∑

n=0

An cos
(
2

n t̃
)

gn(x̄). (A12)

The remaining coefficient An is determined by the initial condition

w̄(x̄, 0) = w̄0(x̄) = d̄
∞∑

n=0

An gn(x̄). (A13)

Using the orthogonality relation (A11), we obtain

An = d̄−1
∫ 1

0
w̄0(x̄) gn(x̄) dx̄, (A14)

where A0 � 0.5067, A1 � 7.15 × 10−3, A2 � 5.35 × 10−4, A3 � 9.96 × 10−5, etc. Therefore, we
have in very good approximation

w̄(x̄, t̃ ) � d̄

2
cos

(
2

0 t̃
)

g0(x̄) � cos
(
2

0 t̃
)
w̄0(x̄) (A15)
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FIG. 7. Comparison between w̄0 and g0/2.

as shown in Fig. 7. The temporal evolution of the tip of the rod is then given by

w̄(1, t̃ ) = w̄E (t̃ ) � d̄ cos
(
2

0 t̃
)
, 0 � 15

8
, (A16)

as reported in the main text since t̃ = k1/2 t/τ [see Eq. (22)].

2. Perturbed equation: Multiple-scale analysis

a. Differential equations for the eigenmode expansion coefficients

In order to find corrections to the unperturbed solution (A12), we use the following eigenmode
expansion:

w̄(x̄, t̃ ) =
∞∑

n=0

An un(t̃ ) gn(x̄), (A17)

with un(0) = d̄ and u̇n(0) = 0 and where gn are the eigenmodes of the unperturbed system given by
Eq. (A9). With such an expansion, the boundary conditions are automatically satisfied. In addition,
this procedure transforms the nonlinear PDE (19) into an infinite set of ODEs for the coefficients un

of the eigenmode expansion which can be analyzed by a multiple-scale approach.
Substituting Eq. (A17) into (19) with σ = 4

3 , we obtain

∞∑
n=0

An ün(t̃ ) gn(x̄) = −
∞∑

n=0

An un(t̃ ) g′′′′
n (x̄) − εSg

∣∣∣∣∣
∞∑

n=0

An u̇n(t̃ ) gn(x̄)

∣∣∣∣∣
4/3

, (A18)

where Sg is the sign of the quantity inside the absolute value and ε = k−1/3 � 1. Using Eq. (A3b),
we have

∞∑
n=0

An
[
ün(t̃ ) + 4

nun(t̃ )
]

gn(x̄) = −εh(x̄, t̃ ), (A19a)

h(x̄, t̃ ) = Sg

∣∣∣∣∣
∞∑

n=0

An u̇n(t̃ ) gn(x̄)

∣∣∣∣∣
4/3

. (A19b)
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Since the set of eigenmodes gn forms a basis, we can write

h(x̄, t̃ ) =
∞∑

n=0

Bn(t̃ ) gn(x̄), (A20)

with

Bn(t̃ ) =
∫ 1

0
h(x̄, t̃ ) gn(x̄) dx̄, (A21)

where we used Eq. (A11). Therefore, Eq. (A19a) becomes

∞∑
n=0

An

[
ün(t̃ ) + 4

nun(t̃ ) + ε
Bn(t̃ )

An

]
gn(x̄) = 0. (A22)

Since this last equation must be valid for all x̄, we obtain the infinite set of ODEs to solve for the
function un:

ün(t̃ ) + 4
nun(t̃ ) + ε

Bn(t̃ )

An
= 0, n = 0, 1, 2, . . . (A23a)

with un(0) = d̄, u̇n(0) = 0. (A23b)

As already shown for the unperturbed case (ε = 0), the computation is simpler in our case since
a single-mode analysis is accurate enough. Indeed, setting t̃ = 0 in Eq. (A17) we obtain Eq. (A13)
where the coefficients An are still given by Eq. (A14). Therefore, in good approximation, we can set
A0 = 1

2 and An>0 = 0 such that Eq. (A17) reduces to

w̄(x̄, t̃ ) � 1
2 u0(t̃ ) g0(x̄) � u0(t̃ ) w̄0(x̄)/d̄, (A24)

where u0 is solution of the following ODE:

ü0(t̃ ) + 4
0u0(t̃ ) + 2εB0(t̃ ) = 0, (A25a)

with u0(0) = d̄, u̇0(0) = 0, (A25b)

and where

B0(t̃ ) =
∫ 1

0
h(x̄, t̃ ) g0(x̄) dx̄, (A26)

with

h(x̄, t̃ ) =
[

g0(x̄)

2

]4/3

Sg|u̇0(t̃ )|4/3
, (A27)

where Sg is the sign of u̇0 since g0 is positive. Substituting Eq. (A27) into (A26) and using Eq. (A9)
with n = 0, we obtain

2B0(t̃ ) � 0.8942 Sg|u̇0(t̃ )|4/3 � 76

85
Sg|u̇0(t̃ )|4/3

. (A28)

Therefore, the final form of the ODE to solve is

ü0(t̃ ) + 4
0u0(t̃ ) + 76 ε

85
Sg|u̇0(t̃ )|4/3 = 0, (A29a)

with u0(0) = d̄, u̇0(0) = 0, 0 � 15

8
. (A29b)
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b. Multiple-scale analysis

We now use a multiple-scale analysis to solve Eq. (A29). Indeed, when ε = 0, we already know
that the solution is periodic. The nonlinear term modulates the oscillation amplitudes over a much
longer timescale which diverges when ε → 0. This allows us to introduce a short timescale ts = t̃ ,
over which one oscillation takes place, and a long timescale t� = εt̃ , over which the oscillation am-
plitudes decay, and assume that u0 depends on both timescales considered as independent variables
[71]: u0 = u0(ts, t�; ε), where we have written the explicit dependence on the small parameter ε. At
the first order in ε, this implies that

du0

dt̃
= u̇0 = ∂ts u0 + ε ∂t�u0, (A30a)

d2u0

dt̃2
= ü0 = ∂2

ts u0 + 2ε ∂2
ts,t�u0. (A30b)

In addition, we consider the following expansion:

u0(ts, t�; ε) = u(0)
0 (ts, t�) + ε u(1)

0 (ts, t�). (A31)

Substituting Eqs. (A30) and (A31) into Eq. (A29), we obtain the following PDE:

∂2
ts u

(0)
0 + 4

0u(0)
0 + ε

[
∂2

ts u
(1)
0 + 4

0u(1)
0 + 2∂2

ts,t�u
(0)
0 + 76

85
Sg

∣∣∂ts u
(0)
0

∣∣4/3
]

= 0, (A32)

together with the initial conditions

u(0)
0 (0, 0) = d̄, ∂ts u

(0)
0 (0, 0) = 0, (A33a)

u(1)
0 (0, 0) = 0, ∂ts u

(1)
0 (0, 0) + ∂t�u

(0)
0 (0, 0) = 0. (A33b)

Order ε0. At the leading order, Eq. (A32) gives

∂2
ts u

(0)
0 + 4

0u(0)
0 = 0. (A34)

The solution can be written as

u(0)
0 (ts, t�) = R(t�) cos

[
2

0ts + θ (t�)
]
, (A35)

with the following initial conditions for R and θ obtained from Eq. (A33a):

R(0) = d̄ and θ (0) = 0. (A36)

Order ε1. At the next order, Eq. (A32) gives

∂2
ts u

(1)
0 + 4

0u(1)
0 = −2∂2

ts,t�u
(0)
0 − 76

85
Sg

∣∣∂ts u
(0)
0

∣∣4/3

≡ G(ts, t�). (A37)

The inhomogeneous term on the right-hand side of Eq. (A37) contains resonant terms producing
secular contributions in the solution for u(1)

0 whose envelope grows as ts. Therefore, because of these
resonant terms, the expansion (A31) is valid only for εts ∼ t� � 1. In order to obtain an expansion
valid at least up to the long timescale, those resonant terms must be canceled by a suitable choice
of R and θ . The resonant terms are easy to identify since they are solutions of the homogeneous
Eq. (A37). The right-hand side of Eq. (A37) reads as

G = 22
0 Ṙ sin(X ) + 22

0 R θ̇ cos(X ) − 76

85


8/3
0 R4/3 Sg|− sin(X )|4/3, (A38)

with X = 2
0ts + θ (t�), (A39)
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where Sg is the sign of − sin(X ). The last term can be developed in Fourier series which leads to

G = 22
0 Ṙ sin(X ) + 22

0R θ̇ cos(X ) − 76

85


8/3
0 R4/3 [−b1 sin(X ) + b3 sin(3X ) + · · · ], (A40)

with

b1 = 48 �
(

2
3

)
7
√

π �
(

1
6

) , b3 =
√

π

3

16

91 �
(

1
3

)
�

(
7
6

) . (A41)

The resonant terms are those proportional to sin(X ) and cos(X ). Requiring that they vanish yields
the following ODEs for the amplitude R and the phase θ :

Ṙ + 38 b1

85


2/3
0 R4/3 = 0, R(0) = d̄, (A42)

θ̇ = 0, θ (0) = 0. (A43)

Solving these equations leads to

R(t�) = d̄

[
1 + 38 b1

2/3
0 d̄ 1/3

255
t�

]−3

, θ (t�) = 0. (A44)

Using t� = ε t̃ = k−1/3 t̃ = k1/6 t/τ , we obtain

R(t ) = d̄
[
1 + t

T �

]−3

, θ (t ) = 0, (A45a)

T �

τ
= 255

38 b1
2/3
0 d̄ 1/3

k−1/6 � 4.69

d̄ 1/3
k−1/6. (A45b)

Combining Eq. (A24) with (A35) and (A45a) and ts = t̃ = k1/2t/τ , we obtain the approximate
spatiotemporal evolution of the rod

w̄(x̄, t ) � cos(ωt )

[1 + t/T �]3 w̄0(x̄), ω = 2
0k1/2

τ
, (A46)

with 0 � 15
8 and w̄0 given by Eq. (6). The motion of the tip of the rod is thus given by

w̄E (t ) � d̄ [1 + t/T �]−3 cos(ωt ), (A47)

with T � given by Eq. (A45b) as reported in the main text [see Eq. (24a)].

APPENDIX B: POWER-LAW APPROXIMATION OF THE VISCOUS FORCE

In the region 10−6 � v/vc � 10−3, the viscous force (2) behaves in very good approximation as
a power law [see Fig. 2(a)]. In the region 10−3 � v/vc � 0.2, where most of our experiments in the
overdamped II regime take place, the viscous force (2) does not behave precisely as a power law
and some variation of the exponent can be expected depending on the way the fit is performed.

To determine the exponent of the power law in the overdamped II regime, we take N = 103 points
( ln(v̄i ), ln[F̄μ(v̄i )]) for v̄i in the range [v̄i, v̄N ] = [10−3, 0.2] and we perform a linear regression.

If v̄i varies by a constant step, i.e., v̄i = v̄1 + (i − 1)�, where � = (v̄N − v̄1)/(N − 1) and i =
1, . . . , N , the exponent obtained from the regression is 1.34. In the paper we use 4

3 for simplicity.
If ln(v̄i ) varies by a constant step, i.e., ln(v̄i ) = ln(v̄1) + (i − 1)�, where � = [ln(v̄N ) −

ln(v̄1)]/(N − 1) and i = 1, . . . , N , the exponent obtained from the regression is 1.26 � 5/4 (see
Fig. 8).

The regressions have been performed with Mathematica using the “LinearModelFit” command.
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FIG. 8. Evolution of the rescaled viscous force F̄μ = Fμ/(4πμ vc ), given by Eq. (2), as a function of the
rescaled velocity v̄ = v/vc, together with two power-law approximations in the overdamped II regime. The
coefficient of determination R2 is similar for both power laws.

APPENDIX C: SUGAR SOLUTION VISCOSITY AND DENSITY

Figure 9(a) shows the evolution of the viscosity of various sugar solutions as a function of the
sugar concentration at 20 ◦C [78]. The data are nicely fitted using the following expression adapted
from Ref. [79]:

μ20◦ (x) = (976.27)−1 100.9652 x/(1−x)100.8572 x2
, (C1)

where x ∈ [0, 1] is the sucrose concentration. The numerical coefficients have been determined
using the sucrose data but slight modifications allow to fit the other types of sugar. The viscosity
changes slightly with the temperature and at 30 ◦C, we have [79]

μ30◦ (x) = (1097)−1 100.8752 x/(1−x)101.01 x2
. (C2)

Figure 9(b) shows the evolution of the density of various sugar solutions as a function of their
viscosity [78]. The data are also nicely fitted using the following expression:

ρl = 1134

[
ln

(
μ + 0.00132

0.00175

)]1/10

, (C3)

FIG. 9. (a) Viscosity of sugar solutions as a function of the sugar concentration at 20 ◦C [78] together
with the fit (C1). The fit at 30 ◦C is shown for comparison. (b) Density of sugar solutions as a function of the
viscosity [78].
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where μ is measured in Pa s. Again, the numerical coefficients have been determined using the
sucrose data but slight modifications allow to fit the other types of sugar.
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