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Dynamics of A + B → C reaction fronts under radial advection in a Poiseuille flow

Alessandro Comolli , A. De Wit , and Fabian Brau *

Université libre de Bruxelles (ULB), Nonlinear Physical Chemistry Unit, CP231, 1050 Bruxelles, Belgium

(Received 7 July 2021; accepted 24 September 2021; published 18 October 2021)

A + B → C reaction fronts describe a wide variety of natural and engineered dynamics, according to the
specific nature of reactants and product. Recent works have shown that the properties of such reaction fronts
depend on the system geometry, by focusing on one-dimensional plug flow radial injection. Here, we extend the
theoretical formulation to radial deformation in two-dimensional systems. Specifically, we study the effect of
a Poiseuille advective velocity profile on A + B → C fronts when A is injected radially into B at a constant
flow rate in a confined axisymmetric system consisting of two parallel impermeable plates separated by a
thin gap. We analyze the front dynamics by computing the temporal evolution of the average over the gap of
the front position, the maximum production rate, and the front width. We further quantify the effects of the
nonuniform flow on the total amount of product, as well as on its radial concentration profile. Through analytical
and numerical analyses, we identify three distinct temporal regimes, namely (i) the early-time regime where the
front dynamics is independent of the reaction, (ii) the transient regime where the front properties result from
the interplay of reaction, diffusion that smooths the concentration gradients and advection, which stretches the
spatial distribution of the chemicals, and (iii) the long-time regime where Taylor dispersion occurs and the system
becomes equivalent to the one-dimensional plug flow case.
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I. INTRODUCTION

Reaction-diffusion (RD) fronts are observed in a broad
variety of natural and engineered systems, e.g., in popula-
tion dynamics [1], disease spreading [2–4], biological pattern
formation [5], transport of ions in cells [6], nonlinear phe-
nomena in physics [7], combustion [8], finance [9], and more.
A + B → C fronts are an important subset of RD fronts. They
develop when the reactants A and B, initially spatially sep-
arated, are transported through diffusion and react to form
the product C. Depending on the specific nature of A, B,
and C, this class of fronts is found in several problems in
geochemistry [10], catalysis [11], atmospheric chemistry [12],
and ecological [13] and environmental problems [14], to name
a few.

So far, the dynamics of A + B → C fronts has typically
been studied theoretically for simple one-dimensional (1D)
geometries, that is, by assuming invariance in the other two
spatial dimensions. Gálfi and Rácz [15] paved the way to
the study of A + B → C reaction-diffusion fronts in the 1D
rectilinear geometry, where the initial contact zone between
the reactants is planar and the reactants are transported only
through molecular diffusion. Their theoretical predictions on
the evolution of the front position and shape have meanwhile
found numerical [16] and experimental [17,18] confirmation.

Recently, the case of radial reaction-diffusion-advection
(RDA) A + B → C fronts has started to be analyzed due to
their ubiquity in a large variety of systems, including, e.g.,
infectious disease propagation on complex networks [19],
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reactions on droplets [20], Liesegang rings [21,22], CO2

mineralization in soils [23], or material synthesis in nonequi-
librium conditions [24–27], to cite a few. Specifically,
theoretical analysis of the front dynamics has started to be
tackled in the case of 1D radial symmetry with diffusive
transport [21,22,28]. Advected fronts developing when A is
injected radially at a constant flow rate into B in systems with
polar [29–31] or spherical [32] symmetry have further been
addressed.

The 1D polar theory [29,30] assumes that the equations
that govern the front dynamics depend on the radial coor-
dinate only. When transport and reaction occur in a volume
delimited by two parallel plates, this is equivalent to assuming
a plug flow. However, experiments that were carried out in
Hele-Shaw cells [29,33] show that the 1D plug flow model
underestimates the measured amount of product, as it does not
account for enhanced transverse mixing. The authors suggest
that this discrepancy can be traced back to the heterogeneity
of the velocity field across the gap, which cannot be embraced
by 1D models. Several experimental [34,35] and theoretical
[36–38] studies have tackled the problem of A + B → C dy-
namics in Poiseuille flows, as a base example of microscale
reactive transport processes in porous or fractured media.
However, these works considered either a rectilinear injection
of A into B [34] or a relaxation of a reaction-diffusion front
in a radial geometry after stopping the injection of A into
B when reaching a given radius [35]. In the radial advective
geometry, the velocity field depends both on the distance from
the plates in the gap and on the radial distance from the
inlet. Understanding the impact of such nonuniform veloci-
ties on the dynamics of the reactive fronts remains an open
problem.
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FIG. 1. Schematic illustration of the system. (a) Top view show-
ing in the (x̄, ȳ) plane the reactant A injected radially with a velocity
v̄r (r̄, z̄) into the reactant B. The product C is generated in the miscible
contact zone between the reactants. (b) Lateral view of the velocity
field, showing the Poiseuille profile in the (r̄, z̄) coordinate system.

In this context, we study theoretically the properties of
radial A + B → C reaction-diffusion-advection fronts in a 2D
axisymmetric confined geometry when the laminar injection
generates a Poiseuille velocity field v̄r (r̄, z̄); see Fig. 1. The
reactant A is injected into B at a constant flow rate Q̄ and all
the species have the same mobility properties. The Poiseuille
flow deforms the reaction front in the gap of the reactor as
reactants and products are initially transported at different
velocities, depending on their position along the gap. As a
result, the curvature of the front and its length increase due to
advective stretching. At later times, this effect is contrasted by
transverse diffusion along the gap, which makes reactants and
product move across the flow lines. Then, the system evolves
toward a Taylor dispersion regime, where the dependence
on z̄ is lost and the dynamics is conveniently described by
the radial 1D theory. We study the temporal evolution of the
front characteristics, namely its position, the maximum of the
production rate, and its width across these three successive
regimes. We characterize them analytically and numerically
in terms of their respective temporal scalings.

This paper is structured as follows. Section II introduces
the model and its nondimensionalization and presents the
relevant timescales and the observables that are analyzed
throughout the paper. Section III describes the front dynam-
ics. In Sec. IV, we study the long-time regime, whereas
the preasymptotic dynamics is analyzed in Sec. V. Finally,
Sec. VI summarizes the key findings and concludes the paper.

II. MODEL

We consider a 2-dimensional axisymmetric system con-
fined by two impermeable plates located at z̄ = ±h̄/2, where
z̄ is the coordinate along the vertical axis; see Fig. 1. The
system conveniently describes, for instance, the geometry of a
Hele-Shaw cell. This reactor is initially filled by a reactant B in
dimensional concentration b̄0. A reactant A in initial concen-
tration ā0 is injected radially into the cell from a point source
located at the center of the system at a constant flow rate
Q̄. The product C is created by the irreversible A + B → C
reaction upon contact of the reactants. All the species
are transported by passive advection and diffusion. Their

dynamics is governed by the following set of coupled dimen-
sional partial differential equations (PDEs),

∂t̄ ā + (v̄ · ∇̄)ā = Da∇̄2ā − kāb̄, (1a)

∂t̄ b̄ + (v̄ · ∇̄)b̄ = Db∇̄2b̄ − kāb̄, (1b)

∂t̄ c̄ + (v̄ · ∇̄)c̄ = Dc∇̄2c̄ + kāb̄, (1c)

where ā, b̄, and c̄ are the dimensional concentrations of the
corresponding species, Da, Db, and Dc are their diffusion
coefficients, k is the kinetic constant of the reaction, v̄ is the
advective velocity, and t̄ is the dimensional time. Throughout
this paper, all dimensional quantities, except the diffusion
coefficients and k, are denoted by an overline. For the sake
of simplicity, we assume that all species share the same
mobility properties by considering the same diffusion coef-
ficient, namely D = Da = Db = Dc. Flow incompressibility,
i.e., ∇̄ · v̄ = 0, and radial symmetry are assumed. Therefore,
the only nonzero component of the velocity field is the radial
component, i.e., v̄ = v̄r (r̄, z̄)er , where er is the unit radial
vector. Specifically, v̄ defines a Poiseuille flow along the radial
direction with

v̄r (r̄, z̄) = v̄m(r̄)

(
1 − 4z̄2

h̄2

)
, v̄m(r̄) = 3Q̄

4π h̄r̄
, (2)

where v̄m(r̄) is the maximum velocity of the flow located at
z̄ = 0 [39,40].

Dimensionless system

The nondimensionalization of the governing equations is
carried out by rescaling time by τ = 1/kā0 and space by
� = √

Dτ . In addition, all concentrations are rescaled by the
initial concentration ā0 of the injected reactant. Thus, the
initial dimensionless concentration of the reactant B is given
by γ = b̄0/ā0. The dimensionless governing equations are
derived from (1) and read

∂t a + (vr − 1/r)∂ra = ∂2
r a + ∂2

z a − ab, (3a)

∂t b + (vr − 1/r)∂rb = ∂2
r b + ∂2

z b − ab, (3b)

∂t c + (vr − 1/r)∂rc = ∂2
r c + ∂2

z c + ab, (3c)

where t , r, and z are the dimensionless time, radial, and
vertical coordinates, respectively, and vr is the radial dimen-
sionless velocity

vr (r, z) = 3Q

2r

(
1 − 4z2

h2

)
, Q = Q̄

2π h̄D
, (4)

where h = h̄/� is the dimensionless aperture gap. We solve
the coupled PDEs (3) numerically with the initial conditions
a(r > 0, z, 0) = b(r → 0, z, 0) = c(r, z, 0) = 0, a(r →
0, z, 0) = 1, and b(r > 0, z, 0) = γ , while the boundary
conditions are a(r → 0, z, t ) = 1, a(r → ∞, z, t ) = b(r →
0, z, t ) = c(r → 0, z, t ) = c(r → ∞, z, t ) = ∂za(r, z = ±h/

2, t ) = ∂zb(r, z = ±h/2, t ) = ∂zc(r, z = ±h/2, t ) = 0, and
b(r → ∞, z, t ) = γ . The three parameters that control
the system are the nondimensional flow rate Q, the
nondimensional gap height h, and the ratio γ between the
initial concentrations of B and A. The numerical computations
are carried out through an in-house 2D solver written in C and
based on the forward time centered space (FTCS) scheme.
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FIG. 2. Concentration c(r, z) at times (a) t = 1, (b) t = 6, (c) t =
40, and (d) t = 1585 for Q = 10, γ = 1, and h = 10. The segment
in panel (a) shows the distance d = r̃c(z = h/2) − r̃c(z = 0).

The mesh is composed of Nr × Nz nodes, with Nz = h/�z
and Nr = L/�r. For the computations shown in this paper,
the radial domain size L varies in the range 500–2500 and
it increases for increasing Q, while the spatial discretization
steps are �r = �z = 0.1 and the temporal integration
step �t is chosen according to the configuration to ensure
convergence. Average quantities across the gap are computed
as the arithmetic mean over the nodes with the same radial
index.

III. FRONT DYNAMICS

The dynamics of the reaction front is illustrated in Fig. 2
through snapshots of the product concentration at different
times. Reactant A is injected into B as a line at r = 0. By
effect of the Poiseuille flow, which transports the reactants
at a different velocity according to their position along z,
the initially rectilinear interface along z is deformed along
the curved shape shown in Fig. 2(a). Both the reactants and
the product also diffuse across the gap exploring different
flow lines. At longer times all reactants have equally expe-
rienced all the velocity variability within the gap. Therefore,
the concentration distribution becomes homogeneous across
the gap; see Fig. 2(d). This effect was first studied by Taylor
[41] for conservative transport in a channel, and it is therefore
known as Taylor dispersion. Some authors have generalized
this process to reactive transport [38,42] in a channel. Here,
we show that Taylor dispersion also arises when A is injected
radially into B. We quantify this process through the temporal
evolution of the curvature �(t ) = d (t )/h2, shown in Fig. 3,
where d (t ) = r̃c(z = h/2, t ) − r̃c(z = 0, t ), see Fig. 2(a), and
r̃c is the radial position at which the concentration of C at a
given z is maximum. We observe that the curvature grows as
t1/2 in the early-time regime, it reaches a maximum, and then
decreases as t−1/2 in the long-time limit. In this asymptotic
limit, the homogeneity along the gap allows us to treat the
advective transport as that of a plug flow, i.e., to consider a
1D system with radial symmetry such as in [29,30].

FIG. 3. Temporal evolution of the curvature � of the concentra-
tion profile of C for γ = 1 and various Q and h. Inset: Log-log plot.

Observables

To characterize the dynamics of A + B → C reaction
fronts in the described system, we study the temporal evolu-
tion of observables averaged over the aperture gap, i.e., along
the z direction. For a generic function f (z), the average over
the gap is defined as

〈 f 〉 = 1

h

∫ h/2

−h/2
f (z) dz. (5)

First, we introduce the radial position of the front, r f (t ), which
is classically defined as the position where the concentrations
of A and B are equal [15,43],

〈a〉(r f , t ) = 〈b〉(r f , t ). (6)

In this work, we also consider a different definition of the front
position, which can be of more practical use in experimen-
tal setups. In reaction-diffusion-advection experiments carried
out in a Hele-Shaw cell [29,33,35], the concentration profile
of the product C is indeed typically the only visible variable
that can be quantified. Hence, it is convenient to introduce the
radial front position rc as the radial distance from the inlet
where the average concentration 〈c〉 is maximum,

cmax(t ) = max
r

(〈c〉(r, t )), 〈c〉(rc, t ) = cmax(t ). (7)

The average over the gap of the dimensionless production
rate can be performed in two ways, either by multiplying the
average of the concentrations or by averaging the product of
the concentrations of A and B, i.e.,

R(r, t ) = 〈a〉〈b〉, R̃(r, t ) = 〈ab〉. (8)

The maximum values of these quantities along the radial di-
rection r are denoted with Rmax and R̃max, respectively.

The size of the front can be quantified through the radial
width of the production rate or the width of the radial concen-
tration profile of C. Specifically, let w, w̃, and wc be the width
at half height of R, R̃, and 〈c〉, respectively. The quantities
introduced in this section are shown in Fig. 4. Finally, the total
amount of product is obtained by integrating the concentration
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FIG. 4. Radial averaged concentration profiles and production
rates computed at t = 630 for the following set of parameters:
Q = 10, γ = 1, and h = 20.

of the product C over the entire domain,

nc(t ) = 2π

∫ h/2

−h/2
dz

∫ ∞

0
rc(r, z, t ) dr, (9)

where 2π accounts for the azimuthal integration, due to
cylindrical symmetry. The dynamics of RDA fronts is char-
acterized by three distinct temporal regimes, namely (i) the
early-time (diffusion) regime, (ii) the transient (Poiseuille)
regime, and (iii) the long-time (dispersion or Taylor) regime.
In the following, each regime is described in terms of the
temporal scalings of the observables presented in this section.

IV. LONG-TIME FRONT DYNAMICS

Figure 2(d) shows that, at long times, the concentrations
are homogeneous along the gap. The system is thus equivalent
to the 1D case of a plug flow for which scalings in radial
flows have been recently derived [29]. We start the analysis
of such RDA fronts by studying the asymptotic limit t → ∞,
in analogy with the studies on polar [29] and spherical [32] ge-
ometry. The early-time limit and the transient regime, which
are affected by the Poiseuille profile, are studied subsequently.
In the limit of large t , the temporal evolution of the z-averaged
concentrations can be described in terms of the following set
of approximated equations,

∂t a + Q − 1

r
∂ra − ∂2

r a + ab = E

[
∂2

r a − 1

r
∂ra

]
, (10a)

∂t b + Q − 1

r
∂rb − ∂2

r b + ab = E

[
∂2

r b − 1

r
∂rb

]
, (10b)

∂t c + Q − 1

r
∂rc − ∂2

r c − ab = E

[
∂2

r c − 1

r
∂rc

]
, (10c)

where E = Q2h2/210r2 and we have dropped the average
signs for shortness. These equations are derived in Appendix
A by assuming small initial concentrations ā0 and shallow
gap height h̄. However, as we show in Fig. 5, the set of
equations (10) approximates well the system dynamics even
when the conditions for which these equations are derived are
relaxed. Notice that when the front has traveled a distance

FIG. 5. Comparison between the average concentrations com-
puted by solving numerically the full (3) and the approximated model
(10) for Q = 100, h = 26, γ = 1 at t = 104.

r � √
210Qh, the terms on the right-hand side of Eqs. (10)

become negligible and we retrieve the same set of equations
that describes the front dynamics for the A + B → C reaction
in 1D when the reactants and the products undergo diffusion
and passive radial advection [29]. This means that far from
the injection point, the system reaches a dispersive regime in
which the properties of the front do not depend on the position
z along the gap. This is analogous to Taylor dispersion [41],
which holds for conservative tracer transport in Poiseuille
flows.

A. Front position

In the long-time dispersive regime, the behavior of the
observables is the one derived for 1D radial injection in [29].
The asymptotic long-time front position r f ,A is given by

r f ,A(t ) = 2
√
Kt with K = Q−1

(
Q

2
,

γ

1 + γ

)
, (11)

where the index A stands for asymptotic long time and
Q−1(α, x) is the unique solution for y � 0 with 0 � x � 1 and
α > 0 of the equation x = Q(α, y), where Q = 
(α, x)/
(α),

(α, x), and 
(α) are the regularized, incomplete, and com-
plete gamma functions, respectively [44]. Notice that for Q �
1 and γ 	 1, Eq. (11) reduces to [29]

r f ,A(t ) 	 2
√

t

(
Q

2
+ 1 − γ

1 + γ

√
πQ

2

)1/2

. (12)

As shown in Fig. 6, Eq. (11) is in good agreement with the
results obtained from numerical solutions of Eq. (3). Notice
that for fixed values of h and γ , increasing the flow rate
Q induces a faster movement of the front, as A is injected
with a higher speed into B. In contrast, higher values of γ

correspond to the slower progression of the front, since more
reactant A is needed to consume B at a given distance from
the injection site. The width h of the gap does not have any
impact on the front position. In this long-time regime, the
region of maximum concentration of the product C is located
at the front position, rc,A = r f ,A, regardless of the value of γ
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FIG. 6. Temporal evolution of r f and rc. Solid, dotted, and
dashed lines represent Eq. (21a), Eq. (23), and Eq. (11), respectively.

(Fig. 6). This feature was also observed for RDA fronts in 1D
polar [29] and 1D spherical [32] radial systems.

B. Production rate

Since in the long-time regime the concentrations of reac-
tants and product are independent of z, the definitions (8) of
the production rate are equivalent. Specifically, the maximum
values of R and R̃ in the Taylor dispersion regime are given by
[29]

Rmax
A (t ) = R̃max

A (t ) 	 29

π4
K4/3 t−2/3, (13)

where K = (1 + γ )
−1(Q/2)K(Q−1)/2e−K. Figure 7 shows
the temporal evolution of Rmax and R̃max obtained by solving
Eqs. (3) numerically. Notice that for large flow rates, the max-
imum production rate is essentially independent of Q in the
long-time regime and is fully governed by the reaction process
through the dependence on γ . We observe that while R̃max

directly switches from the early-time behavior to the long-
time regime, Rmax exhibits an intermediate-regime behavior.
In Appendix B we show that R � R̃ pointwise and therefore
Rmax � R̃max, as is clearly seen in this intermediate regime.

C. Front width

The temporal evolution of w and w̃, shown in Fig. 8,
exhibits a different behavior in the transient and short-time
regimes, while their asymptotic long-time limits, wA and w̃A,
converge to

wA = w̃A 	 πK−1/3 t1/6, (14)

as for the 1D polar fronts case [29].
In Appendix C, we show that the width of the radial

gradient of 〈u〉 = 〈a − b〉 is given in the long-time limit by
Eq. (C17). Because the width of the radial profile of 〈c〉
exhibits a similar behavior, we describe its temporal evolution
by using the same functional as done in [33]. Hence, we find
that the width wc, shown in Fig. 9, of the average radial con-

FIG. 7. Temporal evolution of (a) Rmax and (b) R̃max. The dashed
lines represent Eq. (13), the dashed-dotted lines represent Eq. (25).

centration profile 〈c〉 is approximated in the long-time limit
by

wc,TA(t ) 	 cγ

√
4

3
t + tc, tc = Qh2

115
, (15a)

cγ (γ ) = 1

2

(
1 − γ

1 + γ

)2

+ 0.03

(
1 − γ

1 + γ

)
+ 1.23, (15b)

where cγ is obtained through numerical fitting, as shown in
the inset of Fig. 9. The index TA stands for transient and
asymptotic long-time regimes. Notice that the coefficient 4/3
in Eq. (15a) accounts for the long-time limit of wc in the 1D
polar case, i.e., w1D

c,A = √
4t/3, as shown in Appendix D. In

dimensional units, Eq. (15a) reads

w̄c,TA(t̄ ) = cγ

√
4

3
Dt̄ + Dt̄c, t̄c = Q̄h̄

230πD2
. (16)

For γ = 1, the latter expression is approximated as w̄c,TA 	√
2Dt̄ (1 + 3t̄c/4t̄ ). Notice that Eq. (15a) also describes wc in

the transient regime, for t � tc, as we will discuss in Sec. V B.

D. Total amount of product

In the long-time regime, the calculation of the total
amount of product given by Eq. (9) simplifies to nc,A(t ) =
2πh

∫
rc(r, t )dr due the independence of z of the concen-

tration of C. Hence, the following result from the 1D polar
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FIG. 8. Temporal evolution of (a) w and (b) w̃. The dashed lines
represent Eq. (14), the dashed-dotted lines represent Eqs. (26) and
(27).

system holds [29]:

nc,A(t ) 	 116

π2
αhK (Q, γ )K1/2(Q, γ )t . (17)

The coefficient α 	 1.1 is a constant whose value is obtained
by fitting the numerical results shown in Fig. 10. Experimental

FIG. 9. Temporal evolution of wc. The dashed lines represent
Eq. (15a) and the dashed-dotted lines represent Eq. (28). Inset: Coef-
ficient cγ obtained from numerical computations with Q = 100 and
h = 20. The solid line represents Eq. (15b).

FIG. 10. Temporal evolution of the total amount of product. The
dashed lines represent Eq. (17). The dashed-dotted lines represent
Eq. (29).

data of Ref. [33] show that the dimensional total amount of
product can be expressed in terms of the injected volume V̄ =
Q̄t̄ of A through the linear relation

n̄c,A(V̄ ) = ā0SthV̄ + p̄, Sth = j(γ )Q−β(h), (18)

where j, β, and p̄ are fitting parameters. In dimensionless
units, Eq. (18) reads

nc,A(V ) = SthV + p, V = 2πhQt, (19)

where n̄c,A and p̄ are both rescaled by ā0�
3. Experiments

showed that β 	 1/2 for small gaps, and β < 1/2 for large
values of h̄ [33]. This is confirmed by our numerical computa-
tions, for which the dependence of the slope Sth on Q is shown
in Fig. 11. For values of γ in the range [0.1–10], the coefficient
j(γ ) can be approximated with (see the inset of Fig. 11)

j(γ ) 	 0.57 ln(1 + 4.5γ ). (20)

This expression is similar to what was found in [29], where the
value β = 1/2 was used. The difference in the multiplicative
coefficient that we observe here is traced back to the use of the

FIG. 11. Total amount of product as a function of the injected
volume of A from numerical computations. The lines represent
Eq. (19). Inset: Fit of Sth obtained from numerical analysis with
γ = 1.
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value of β(h) obtained from the numerical fit of Sth and which
is slightly different from 1/2 (e.g., β = 0.46 for h = 20).

V. PREASYMPTOTIC DYNAMICS

The temporal evolution of the system at preasymptotic
times is characterized by two distinct regimes, namely the
early-time and the transient-time regimes. The analytical
derivation of the results relative to the early-time regime is
carried out in Appendix E.

A. The early-time regime

For 1D polar [29,31] and spherical [32] systems, the early-
time regime is characterized by a small amount of diffusive
mixing and thus solutions for the concentration fields a and b
are obtained by neglecting the reaction term in the governing
PDEs. The derivation of analytical early-time solutions is car-
ried out in Appendix E by assuming that transverse diffusion
can be neglected in this regime. This means that transport
occurs along independent streamlines. In the following, we
summarize the analytical results and the numerical computa-
tion analysis for the early-time regime.

1. Front position

We indicate the early-time limit of the front position as r f E .
In Appendix E, we show that it can be approximated as

r f ,E (t ) 	 2
√

KE t, (21a)

KE = 0.9 Q

1 + 0.6 γ
, for Q � 1, γ � 1, (21b)

where the index E stands for early time. Notice that Eq. (21a)
has the same form as for the long-time 1D polar system [29],
except that the specific expression of KE is different. When
the reactants A and B are in equal initial concentration, i.e.,
when γ = 1, Eq. (21a) reduces to

r f ,E (γ = 1) 	
√

2.25 Qt . (22)

The radial position rc where the average concentration of
the product is maximum scales at early times as rc = rc,E ∝
Q1/2t1/2. It is not surprising that this quantity exhibits the
same dependence on the flow rate as r f ,E . However, numerical
computations (see Fig. 6) show that rc,E does not depend sig-
nificantly on γ , which means that it only depends on transport
and not on reaction parameters. We obtain

rc,E (t ) = cr (Q)t1/2 	 5
3 Q1/2 t1/2, (23)

where cr (Q) is determined numerically and shown in Fig. 12.
By comparing Eqs. (21a), (21b), and (23) we observe that rc,E

is delayed with respect to r f ,E when γ � 1/2, and advanced
otherwise.

2. Production rate

Because in this early-time regime we neglect the reac-
tion term in Eq. (3), the equations for a and b are identical.
Hence, if aE is a solution that satisfies the boundary con-
ditions aE (0, z, t ) = 1 and aE (r → ∞, z, t ) = 0, then bE =
γ (1 − aE ) is also a solution that satisfies the boundary con-
ditions bE (0, z, t ) = 0 and bE (r → ∞, z, t ) = γ . Hence, the

FIG. 12. Coefficients of cr and cw from numerical results ob-
tained from different values of Q ∈ [10, 500], γ ∈ [0.1, 4], and h ∈
[10, 200].

production rate at early times reduces to

RE (r, z, t ) = aE (r, z, t )bE (r, z, t )

= γ aE (r, z, t )[1 − aE (r, z, t )]. (24)

Its maximum along the radial direction is obtained by set-
ting ∂rRE |r=rmax = 0, where rmax is the radial coordinate of
the maximum of RE . This implies a(r, z, t ) = 1/2 and thus
b(r, z, t ) = γ /2. Since these quantities do not depend on z,
Rmax

E = max(〈aE 〉〈bE 〉) and R̃max
E = max(〈aE bE 〉) are equal

and

Rmax
E = R̃max

E = γ

4
. (25)

Figure 7 shows the good agreement between Eq. (25) and the
numerical solutions of Eq. (3) at short time. In this regime, the
production rate is constant and it increases as γ is increased,
which can be traced back to the larger availability of reactants.
These results confirm that the maximum production rate at
early times does not depend on the geometry of the system.
Indeed, the same result was found for rectilinear reaction-
diffusion fronts [45], as well as for 1D polar [29,31] and
spherical [32] reaction-diffusion-advection fronts.

3. Reaction front width

The reaction front width at early times is defined here as
the width at half height of the production rate. Because the
definition of the latter is twofold, we define wE as the width
of RE = 〈a〉〈b〉 and w̃E as the width of R̃E = 〈ab〉. In this
early-time regime, both quantities increase as t1/2. Indeed, this
scaling appears to be independent of the geometry, as it holds
for rectilinear RD fronts [45], and 1D polar [29,31] and spher-
ical [32] RDA fronts. However, the multiplicative coefficients
depend on the geometry. In Appendix E, we derive that the
width wE of RE grows at early times as

wE 	 0.78 Q1/2t1/2, (26)

as shown in Fig. 8(a). Notice that increasing the flow rate leads
to a wider RE profile. In contrast, numerical results show that
w̃E does not depend on the system parameters. This feature
was also observed for the early-time front width in spherical
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geometry [32]. The multiplicative constant depends on the
geometry of the system. Here, by fitting on the numerical
solution shown in Fig. 8(b), we find

w̃E 	 2.1 t1/2. (27)

The width at half height of the average product 〈c〉 at early
times also scales as t1/2

wc,E = cw(Q) t1/2, cw(Q) 	 2.49 + 0.215Q

1 + 0.055Q
, (28)

where cw(Q) is a real coefficient determined numerically. The
temporal evolution of wc,E at early times is shown in Fig. 9,
while the coefficient cw is shown in Fig. 12.

4. Total amount of product

The total amount of product nc exhibits a ballistic growth
in the early-time regime, nc,E ∝ γ hQ1/2t2. This scaling is
characteristic of 1D polar injection in the early-time regime
[29]. The effect of the nonhomogeneous flow field along z on
the total amount of product appears only in the multiplicative
constant. As shown in Appendix E, we have

nc,E (t ) 	
√

3π3

4
γ hQ1/2t2. (29)

Numerical results are shown in Fig. 10, where good agreement
with Eq. (29) is observed.

B. The transient-time regime

In the transient-time regime, the Poiseuille flow field bends
the concentration profiles along z. This regime lasts until
diffusion along z has homogenized the concentrations across
the gap, thus until the occurrence of Taylor dispersion. The
presence of a curvature in the z-direction concentration pro-
files has two fundamental consequences. First, it makes the 1D
polar theories developed in [29,31], which assume the sym-
metry along the z axis, not applicable for this regime. Second,
it has a different impact on average quantities, according to
how the average is computed. In fact, the production rates
R = 〈a〉〈b〉 and R̃ = 〈ab〉 exhibit significant differences in the
transient regime, as explained in Sec. IV, which is reflected
in the maximum production rates Rmax and R̃max, as well as in
the front widths w and w̃, as shown in Fig. 13.

Specifically, tilded quantities diverge from the 1D polar
behavior less than the corresponding nontilded quantities. It
is not surprising that the deviation from the 1D polar case is
larger for larger values of the gap aperture h. Because fronts
dynamics in the transient regime is strongly nonlinear, analyt-
ical expressions are not trivial to find. Nevertheless, Eq. (15a)
describes the evolution of wc in the transient and the long-time
regimes. The time tc represents a transition timescale, as we
shall discuss in Sec. V C. For t � tc, a plateau is observed
which indicates that the width of C does not vary in time. In
fact, in this regime the front progresses radially but does not
spread around its mean position. This is due to the contrasting
effect of diffusion, which enhances spreading, and reaction
that consumes the outermost part of reactant A. Equation (15a)
reproduces with good agreement the numerical results, as
shown in Fig. 9. Notice that in order for the transient regime to
be observed, a condition on the transition timescales must be

FIG. 13. Temporal evolution of Rmax, R̃max, w, and w̃ for Q = 10
and γ = 1.

fulfilled. Specifically, we must require that tc be much larger
than the transition timescale tET between the early- and the
transient-time regimes.

C. Transition timescales

The transition time tET between the early and the transient
regime can be estimated by using the early-time and the
asymptotic long-time expressions of R̃max, in analogy to what
was done for spherical fronts [32]. Indeed, as we showed in
the previous section, R̃max behaves in the same way in the
transient- and in the long-time regimes. Thus, by equating the
right-hand side terms of Eqs. (25) and (13), we get

tET = 232
√

29K2

(γπ4)3/2

Q�1	 464
√

29

π6γ 3/2
ln(1 + γ /

√
2π ), (30)

where the approximation K
Q�1	

√
2 ln(1 + γ /

√
2π ) was

used [29].
We can define the transition time between the transient-

and the long-time regimes in two ways. According to the
first definition, the transition time is the time tTa at which the
Taylor regime arises. It is found by requiring that E (r) � 1 in
Eq. (10). In Appendix A, we show that

tTa = Q2h2

840K(Q, γ )
. (31)

According to this definition, the condition to observe the
transient-time regime tTa � tET reads

h � hc(Q, γ ) 	 210 K1/2(Q, γ )K (Q, γ )

γ 3/4π3Q
. (32)

For Q � 1, we can use the approximation [29]
K1/2(Q, γ )K (Q, γ ) 	 j(γ )Q1/2, where j(γ ) is given by
Eq. (20), while for Q → 0, K1/2(Q, γ )K (Q, γ )/Q → 1/2.
Thus, we obtain

hc(Q, γ ) 	
{

210 j(γ )
γ 3/4π3Q1/2 , Q � 1,

29

γ 3/4π3 , Q � 1.
(33)
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FIG. 14. Temporal evolution of w and wc The solid lines are the
transition time (31) and the dashed lines indicate the transition time
(15a).

Notice that for small flow rates, the value of the critical gap
width hc beyond which the transient-time regime is observed
does not depend on Q. For example, by using Eq. (32), we
find hc = 5.7 for γ = 1 and Q = 10, which explains why the
transient regime is not visible in Fig. 9 for h = 10, which is
not large enough compared to hc. In contrast, it is visible for
Q = 500, γ = 1, h = 10 since hc = 0.8.

The second definition of the transition time between the
transient- and the long-time regimes is based on the temporal
evolution of the product width wc. We indicate this time scale
by tc as defined in Eq. (15a). These timescales are shown in
Fig. 14 for two distinct sets of parameters. Notice that because
K(Q, g) 	 Q/2 when Q � 1 [29], tc and tTa differ only by a
constant factor at large flow rates. For experimental purposes,
however, the choice of tc, Eq. (15a), as the transition time is
preferable, as it directly refers to the width wc of the product,
a quantity that can be measured in laboratory experiments.

To provide an example of the timescales at which the
different time regimes arise in real laboratory conditions, we
refer to the recent experiment presented in Ref. [33], where
for ā0 = 0.03 M and k = 200 M−1 s−1 the characteristic time
of the reaction is τ = 0.167 s. The diffusion coefficient in
the experiment is D = 4 × 10−10 m2/s. The smallest flow rate
used is Q̄ = 0.01 mL/min, which, in virtue of Eq. (4), implies
Q 	 368, so that the approximations for Q � 1 hold. Hence,
by using Eq. (30), the dimensional transition timescale t̄ET

between the early- and the transient-time regimes is t̄ET =
τ tET 	 0.15 s. Notice that this time increases if the reactant
A is in a smaller initial concentration and/or if the reaction is
slower, i.e., for smaller values of the kinetic constant k.

By using Eq. (16), we estimate the dimensional transition
time t̄c between the transient- and the long-time asymptotic
regimes. We use the narrowest gap used in Ref. [33], namely
h̄ = 0.18 mm, and Q̄ = 0.01 mL/min, and we obtain t̄c 	
260 s. This timescale is larger for larger values of the flow
rate and for higher gaps.

VI. CONCLUSIONS

We have studied the effect of a nonuniform advection field
on the dynamics of A + B → C fronts when A is injected

radially into B. To this end, we have considered the Poiseuille
flow as it describes the velocity field in a volume confined by
two parallel plates, such as in a Hele-Shaw cell. The interplay
between transport and reaction processes gives rise to a com-
plex front dynamics, which we have characterized from the
numerical and theoretical viewpoints. To derive predictions
that can provide relevant insight to experimental works, we
have studied the behavior of the observables averaged over
the gap separating the boundaries. Specifically, we have per-
formed the analysis of the front position, the maximum and
the width of the production rate, the position and the width
of the radial concentration profile of the product, as well as
its total amount. This analysis reveals the occurrence of three
distinct temporal regimes.

The early-time regime is characterized by a small amount
of mixing of the reactants. Therefore, the impact of reaction
is also small. In this regime, the vertically averaged front
position r f ,E and the position rc,E of maximum product con-
centration both scale as t1/2, as expressed in Eqs. (21a) and
(23), respectively. The same temporal scaling is observed for
the front width wE and w̃E , as well as the width wc of the
product profile, see Eqs. (26)–(28), while the total amount of
product nc,E ∼ t2 (29). While these are common features of
1D radial fronts, the multiplicative coefficients of the various
scalings depend on the specific geometry, hence on the veloc-
ity profile. In contrast, the maximum of the production rate
Rmax

E = R̃max
E = γ /4 is independent of the geometry.

The transient regime is characterized by the interplay of
diffusion, advection, and reaction. In this regime, the concen-
tration profiles of the reactants are bent and stretched by the
Poiseuille flow. On the other hand, diffusion tends to smooth
the gradients of concentration. These contrasting mechanisms
enhance the formation of the plateau that is observed in the
temporal evolution of wc, Eq. (15a). In this and the follow-
ing regime, reaction is important and it opposes itself to the
front expansion due to passive advection. Because of these
processes, the front dynamics in the transient regime is com-
plex and it has been described from a numerical point of
view.

Finally, in the long-time regime, we retrieve the same dy-
namics as in the purely 1D radial system. This is explained in
terms of Taylor dispersion, generalized here to the considered
radial reactive system. This means that in the long-time limit,
transverse diffusion homogenizes the system in the z direction
and the problem becomes effectively one-dimensional. As a
consequence, all the analytical results for the 1D polar system
[29] apply here in this asymptotic limit. As for the other radial
front systems, and in contrast to rectilinear injection, the flow
rate Q can here be tuned to control the front dynamics as well
as the total amount of product.

The results presented in this work shed light on the impact
of nonuniform velocity fields on 2D radial reaction fronts
and can be used as predictive tools to analyze experimental
data.
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APPENDIX A: TAYLOR DISPERSION

The system is characterized by four distinct timescales,
namely

(i) the chemical timescale: τ = 1/kā0;
(ii) the diffusion time along z: t̄D = h̄2/D;
(iii) the advection time: T̄A = ρ̄/v̄m(ρ̄);
(iv) the diffusion time along r: T̄D = ρ̄2/D;

where v̄m is given by Eq. (2) and ρ̄ is a characteristic length
scale of advection that is typically much larger than the aper-
ture gap h̄ and

v̄m(ρ̄) = 3Q̄

4π h̄ρ̄
, ε = h̄

ρ̄
� 1. (A1)

Hence, T̄D � t̄D. Moreover, in the radial direction advection
occurs on a shorter timescale than diffusion, i.e., T̄A � T̄D,
when

Q̄ � 4
3π h̄D. (A2)

Condition (A2) establishes the smallest flow rate that is
needed to observe Taylor dispersion. For h̄ = 0.5 mm and
D = 10−9 m2/s, the minimum flow rate is Q̄ 	 10−12 m3/s
= 1 nl/s. We consider here systems for which t̄D � τ ∼
T̄A � T̄D, which is satisfied when h̄ or k are small and Q
is large enough [see Eq. (A2)]. The long-time dynamics is
characterized by two distinct timescales, namely the advection
time T̄A and the dispersion time T̄D.

The dimensional equation for the conservative component
ū = ā − b̄ is obtained by subtracting Eq. (1b) from Eq. (1a),

∂t̄ ū + (v̄ · ∇̄)ū = D∇̄2ū. (A3)

The initial and boundary conditions for u are derived from
those of the reactant concentrations and read u(r, z, 0) = 1 −
(1 + γ )H (r), u(r = 0, z, t ) = 1, u(r → ∞, z, t ) = −γ , and
∂zu(r, z = ±h/2, t ) = 0, where H (·) is the Heaviside func-
tion. In order to derive equations for the z-averaged concen-
trations in the long-time regime, we perform a multiple-scale
analysis for t̄ � T̄A. First, we nondimensionalize the equations
by rescaling the lengths and times as

r̃ = r̄/ρ̄, z̃ = z̄/h̄, t̃ = t̄/T̄A, τ̃ = τ/T̄A, (A4)

and the velocity, given in Eq. (2), as

ṽr (r̃, z̃) = v̄r (ρ̄ r̃, ρ̄ z̃)

v̄m(ρ̄)
= v̄m(ρ̄ r̃)

v̄m(ρ̄)
ṽ(z)

r (z̃) = ṽ(z)
r (z̃)

r̃
, (A5a)

with ṽ(z)
r (z̃) = 1 − 4z̃2, (A5b)

and where tilde denotes nondimensional quantities. Concen-
trations are rescaled by the initial concentration of A as in
the main text. Hence, by substituting these expressions into
Eqs. (1a) and (A3) we get for a and u

Pe(ρ̄)ε

[
∂a

∂ t̃
+ ṽ(z)

r

r̃

∂a

∂ r̃

]

= ε2

[
∂2a

∂ r̃2
+ 1

r̃

∂a

∂ r̃

]
+ ∂2a

∂ z̃2
− Pe(ρ̄)

τ̃
ε a(a − u) (A6)

and

Pe(ρ̄)ε

[
∂u

∂ t̃
+ ṽ(z)

r

r̃

∂u

∂ r̃

]
= ε2

[
∂2u

∂ r̃2
+ 1

r̃

∂u

∂ r̃

]
+ ∂2u

∂ z̃2
, (A7)

where Pe(ρ̄) = v̄m(ρ̄)h̄/D is the Péclet number. We assume
that all terms are of order 1, except for ε � 1. Hence, Pe(ρ̄)
is assumed of order 1 and by using Eq. (A1) we obtain

ρ̄ ∼ 3Q̄/(4πD). (A8)

Moreover, since Pe(ρ̄) is of order 1, we must have τ̃ of order
1 in Eq. (A6). Thus, τ ∼ T̄A which implies

ρ̄ ∼
√

3Q̄τ

4π h̄
. (A9)

Since both Pe and τ̃ are of order 1, we have τ̃ ∼ Pe. This
is equivalent to τ ∼ tD/ε which is consistent with the as-
sumption τ � tD made above since ε � 1. If this condition
is verified, then the term Pe/τ̃ in Eq. (A6) is of order 1 and ε

is the only small parameter. By combining Eqs. (A8) and (A9)
we obtain h̄ ∼ 4πD2/(3Q̄kā0), which implies small values of
k and/or Q̄ and/or ā0 to have a value of h̄ comparable to the
one used usually in experiments. In dimensionless units, the
condition reduces to h ∼ Q−1/2. Although these requirements
are quite restrictive, we find that the approximated equations
(10) that we derive in the following hold on a much broader
domain of validity, as we showed in the main text.

We assume that the solutions depend on two different
timescales. A short timescale, t0 = t̃ , and a long timescale,
t1 = εt̃ , so that t1 is of order 1 when t0 is of order ε−1 � 1.
Therefore, the time derivative becomes

∂t̃ = ∂t0 + ε∂t1 . (A10)

In addition, we introduce the following expansion,

x = x0 + εx1 + ε2x2 + O(ε3), (A11)

where x stands for a or u. By substituting the expansions
(A10) and (A11) into Eqs. (A6) and (A7) and solving order
by order up to the second order in ε, we obtain the following
expressions.

Order ε0:

∂2
z̃ a(0) = 0 ⇒ a(0) = a(0)(r̃, t0, t1), (A12a)

∂2
z̃ u(0) = 0 ⇒ u(0) = u(0)(r̃, t0, t1). (A12b)

These equations imply that both a(0) and u(0) do not de-
pend on z̃ because of the zero-flux boundary conditions at the
reactor walls ∂z̃a(0)|z̃=±1/2 = ∂z̃u(0)|z̃=±1/2 = 0.

Order ε1:

Pe(ρ̄ )

[
∂t̃0 a(0) + ṽ(z)

r

r̃
∂r̃a(0)

]

= ∂2
z̃ a(1) − Pe(ρ̄)

τ̃
a(0)[a(0) − u(0)], (A13a)

Pe(ρ̄ )

[
∂t̃0 u(0) + ṽ(z)

r

r̃
∂r̃u(0)

]
= ∂2

z̃ u(1). (A13b)

By averaging Eq. (A13) over z̃ using Eq. (5), the second-
order z-derivative terms cancel out because of the zero-flux
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boundary conditions at z̃ = ±1/2. Thus, we obtain

Pe(ρ̄ )

[
∂t̃0 a(0) +

〈
ṽ(z)

r

〉
r̃

∂r̃a(0) + a(0)(a(0) − u(0) )

τ̃

]
= 0, (A14a)

Pe(ρ̄)

[
∂t̃0 u(0) +

〈
ṽ(z)

r

〉
r̃

∂r̃u(0)

]
= 0. (A14b)

By subtracting these equations from Eq. (A13), we get

Pe(ρ̄)

r̃
v(z̃)∂r̃a(0) = ∂2

z̃ a(1), (A15a)

Pe(ρ̄)

r̃
v(z̃)∂r̃u(0) = ∂2

z̃ u(1), (A15b)

where v(z̃) = ṽ(z)
r − 〈ṽ(z)

r 〉 = ṽ(z)
r − 2/3 is a measure of the nonuniformity of the advective field across the gap. By substituting

Eq. (A5b) into the latter, we obtain

v(z̃) = 1
3 − 4z̃2. (A16)

Equations (A15) are solved by using the separation of variables method; i.e., let

a(1)(r̃, z̃, t̃0, t̃1) = Pe(ρ̄ )

r̃
∂r̃a(0)H (z̃), (A17a)

u(1)(r̃, z̃, t̃0, t̃1) = Pe(ρ̄ )

r̃
∂r̃u(0)H (z̃). (A17b)

Substituting these expressions into Eq. (A15) implies in both cases

d2
z̃ H (z̃) = v(z̃), (A18)

with dz̃H (z̃) = 0 at z̃ = ±1/2. Solving Eq. (A18) gives H (z̃) = z̃2/6 − z̃4/3 + cH . To compute the value of the integration
constant cH , we impose 〈H〉 = 0, so that 〈a(1)〉 = 〈u(1)〉 = 0 and we obtain cH = −7/720, which implies

H (z̃) = z̃2

6
− z̃4

3
− 7

720
. (A19)

Order ε2:

Pe(ρ̄ )

[
∂t̃0 a(1) + ∂t̃1 a(0) + ṽ(z)

r

r̃
∂r̃a(1)

]
= ∂2

r̃ a(0) + ∂r̃a(0)

r̃
+ ∂2

z̃ a(2) + Pe(ρ̄)

τ̃
[−2a(0)a(1) + a(0)u(1) + a(1)u(0)], (A20a)

Pe(ρ̄)

[
∂t̃0 u(1) + ∂t̃1 u(0) + ṽ(z)

r

r̃
∂r̃u(1)

]
= ∂2

r̃ u(0) + ∂r̃u(0)

r̃
+ ∂2

z̃ u(2). (A20b)

Substituting the expressions (A17) into (A20), we obtain

Pe(ρ̄)

[
Pe(ρ̄)H (z̃)

r̃

(
∂2a(0)

∂r̃∂t̃0

− ṽ(z)
r ∂r̃a(0)

r̃2
+ ṽ(z)

r ∂2
r̃ a(0)

r̃

)
+ ∂t̃1 a(0)

]

= ∂2
r̃ a(0) + ∂r̃a(0)

r̃
+ ∂2

z̃ a(2) + Pe2(ρ̄)H (z̃)

τ̃ r̃
[(u(0) − 2a(0) )∂r̃a(0) + a(0)∂r̃u(0)], (A21a)

Pe(ρ̄)

[
Pe(ρ̄)H (z̃)

r̃

(
∂2u(0)

∂r̃∂t̃0

− ṽ(z)
r ∂r̃u(0)

r̃2
+ ṽ(z)

r ∂2
r̃ u(0)

r̃

)
+ ∂t̃1 u(0)

]
= ∂2

r̃ u(0) + ∂r̃u(0)

r̃
+ ∂2

z̃ u(2). (A21b)

Notice that Eq. (A14) provides expressions for ∂t̃0 a(0) and ∂t̃0 u(0) which we substitute into Eq. (A21) to get

Pe2(ρ̄)H (z̃)v(z̃)

r̃2

(
∂2

r̃ a(0) − ∂r̃a(0)

r̃

)
+ Pe(ρ̄)∂t̃1 a(0) = ∂2

r̃ a(0) + ∂r̃a(0)

r̃
+ ∂2

z̃ a(2), (A22a)

Pe2(ρ̄)H (z̃)v(z̃)

r̃2

(
∂2

r̃ u(0) − ∂r̃u(0)

r̃

)
+ Pe(ρ̄)∂t̃1 u(0) = ∂2

r̃ u(0) + ∂r̃u(0)

r̃
+ ∂2

z̃ u(2). (A22b)
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We perform the average over z̃ of these equations by recalling that a(0) and u(0) do not depend on z̃. Hence

Pe(ρ̄)∂t̃1 a(0) + Pe2(ρ̄ )〈H (z̃)v(z̃)〉
r̃2

(
∂2

r̃ a(0) − ∂r̃a(0)

r̃

)
= ∂2

r̃ a(0) + ∂r̃a(0)

r̃
, (A23a)

Pe(ρ̄ )∂t̃1 u(0) + Pe2(ρ̄)〈H (z̃)v(z̃)〉
r̃2

(
∂2

r̃ u(0) − ∂r̃u(0)

r̃

)
= ∂2

r̃ u(0) + ∂r̃u(0)

r̃
, (A23b)

where we used again the zero-flux boundary conditions at z̃ = ±1/2. Finally, we multiply Eqs. (A23) by ε and we sum them to
Eq. (A14), and we obtain

Pe(ρ̄)

[
∂t̃ a

(0) +
〈
ṽ(z)

r

〉
r̃

∂r̃a(0) + 1

τ̃

(
a(0)2 − a(0)u(0)

)] = ε

[
E+(r̃)∂2

r̃ a(0) + E−(r̃)

r̃
∂r̃a(0)

]
, (A24a)

Pe(ρ̄)

[
∂t̃ u

(0) +
〈
ṽ(z)

r

〉
r̃

∂r̃u(0)

]
= ε

[
E+(r̃)∂2

r̃ u(0) + E−(r̃)

r̃
∂r̃u(0)

]
, (A24b)

where ∂t̃ = ∂t̃0 + ε∂t̃1 and

E±(r̃) = 1 ∓ Pe2(ρ̄)〈H (z̃)v(z̃)〉/r̃2. (A25)

The term 〈Hv〉 is computed by using Eq. (A19) and Eq. (A16) to obtain

〈H (z̃)v(z̃)〉 =
∫ 1/2

−1/2

(
1

3
− 4z̃2

)(
z̃2

6
− z̃4

3
− 7

720

)
dz̃ = − 2

945
. (A26)

Thus, Eq. (A25) reduces to

E± = 1 ± 2 Pe2(ρ̄)

945 r̃2
= 1 ± 2 Pe2(ρ̄ )ρ̄2

945 r̄2
. (A27)

Notice that the average velocity across the gap is V̄r (r̄) = 〈v̄r (r̄, z̄)〉 = 2v̄m(r̄)/3. Therefore, by using the definition of the Péclet
number, we have Pe(ρ̄ )ρ̄/r̄ = v̄m(r̄)h̄/D = 3V̄r h̄/2D. Using this relation in Eq. (A27), we obtain

E± = 1 ± V̄ 2
r (r̄)h̄2

210 D2
. (A28)

By converting Eqs. (A24) to dimensional units, and recalling that ā(0) − ū(0) = b̄(0), we find

∂t̄ ā
(0) + V̄r (r)∂r̄ ā(0) − D

[
∂2

r̄ ā(0) + 1

r̄
∂r̄ ā(0)

]
+ kā(0)b̄(0) = DĒ

[
∂2

r̄ ā(0) − 1

r̄
∂r̄ ā(0)

]
, (A29a)

∂t̄ ū
(0) + V̄r (r)∂r̄ ū(0) − D

[
∂2

r̄ ū(0) + 1

r̄
∂r̄ ū(0)

]
= DĒ

[
∂2

r̄ ū(0) − 1

r̄
∂r̄ ū(0)

]
, (A29b)

where Ē = V̄ 2
r h̄2/210D2. Finally, through the nondimension-

alization used in Sec. II, Eq. (A29a) transforms into Eq. (10).
The equations for the concentrations of B and C can be derived
analogously.

When E (r) = 0, these equations have the same form as
those governing the dynamics for 1D A + B → C fronts in
polar geometry [29]. We assume that the reaction occurs
in a region whose width, in the long-time limit, is much
smaller than the depletion zone [15,29,32]. Hence, u(0) varies
significantly around r = r f and it is constant elsewhere. In
Sec. IV, we have shown that asymptotically r f = r f ,A 	
2
√
Kt . Hence, by substituting this expression into the defi-

nition of E (r), we get

E (r f ) = Q2h2

840Kt
� 1, for t � tTa = Q2h2

840K . (A30)

APPENDIX B: COMPARISON OF R = 〈a〉〈b〉 AND R̃ = 〈ab〉
In this Appendix, we show that R � R̃ pointwise. To do

so, we assume that a(r, z, t ) and b(r, z, t ) are decreasing and

increasing functions of z, respectively, i.e., ∂za � 0 and ∂zb �
0 for 0 � z � h/2. Figure 15 shows that this assumption is
true for different times and distances from the inlet.

By using the definitions of R and R̃, we obtain

R(r, t ) = 1

h2

∫ h/2

−h/2
a(r, z, t ) dz

∫ h/2

−h/2
b(r, z, t ) dz, (B1a)

R̃(r, t ) = 1

h

∫ h/2

−h/2
a(r, z, t )b(r, z, t ) dz. (B1b)

We perform the change of variables ζ = z/h and we use the
symmetry of the system with respect to ζ = 0. Thus, Eq. (B1)
reduce to

R(r, t ) = 4
∫ 1/2

0
a(r, ζ , t ) dζ

∫ 1/2

0
b(r, ζ , t ) dζ , (B2a)

R̃(r, t ) = 2
∫ 1/2

0
a(r, ζ , t )b(r, ζ , t ) dζ . (B2b)
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FIG. 15. Concentration profiles along z ∈ [0, h/2] for Q = 100,
h = 50, and γ = 1 at (a) t = 1 and (b) t = 4000.

We introduce the functions f1 = a and f2 = bm − b, where
bm = b(r, ζ = 1/2, t ) is the maximum value of b for fixed
r and t . Both f1 and f2 are thus decreasing functions of ζ .
Therefore, we can apply the Chebyshev inequality for inte-
grals ([46], p. 1065)∫ x2

x1

f1(x) dx
∫ x2

x1

f2(x) dx · · ·
∫ x2

x1

fn(x) dx

� (x2 − x1)n−1
∫ x2

x1

f1(x) f2(x) · · · fn(x) dx, (B3)

where we set x1 = 0, x2 = 1/2, and n = 2. Thus, we obtain∫ 1/2

0
a(r, ζ , t ) dζ

∫ 1/2

0
[bm(r, t ) − b(r, ζ , t )] dζ

� 1

2

∫ 1/2

0
a(r, ζ , t )[bm(r, t ) − b(r, ζ , t )] dζ , (B4)

which implies∫ 1/2

0
a(r, ζ , t ) dζ

∫ 1/2

0
b(r, ζ , t ) dζ

� 1

2

∫ 1/2

0
a(r, ζ , t )b(r, ζ , t ) dζ , (B5)

and, by using Eq. (B2), we finally get R(r, t ) � R̃(r, t ).

APPENDIX C: WIDTH OF d〈u〉/dr

By subtracting Eq. (10b) from Eq. (10a), we obtain the
long-time expression for the average over z of u,

∂t 〈u〉 + Q − 1

r
∂r〈u〉 − ∂2

r 〈u〉 = E (r)

[
∂2

r 〈u〉 − ∂r〈u〉
r

]
, (C1)

where

E (r) = Q2h2

210r2
. (C2)

To simplify the notation, in the following we will drop the an-
gular brackets and we will write u instead of 〈u〉. We introduce
the change of variables ξ = [r − r f (t )]/tα for α > 0. Notice
that the temporal and radial derivatives of ξ read

∂ξ

∂t
= − 1

tα

dr f

dt
− αξ

t
= − 2K

tαr f
− αξ

t
, (C3a)

∂ξ

∂r
= t−α, (C3b)

where we have used the asymptotic limit (11) for r f . Thus, by
using this change of variables in Eq. (C1), we get

[1 + E (r f + ξ tα )]
d2u

dξ 2
+

[
tα

r f + ξ tα
+ αξ t2α−1 + 2Ktα

r f

− [Q + E (r f + ξ tα )]tα

r f + ξ tα

]
du

dξ
= 0. (C4)

We consider now the limit t → ∞ for ξ fixed in order to
determine the value of α. If α < 1/2, the coefficient of du/dξ

vanishes for t → ∞ because r f ∼ t1/2, which would lead to
d2u/dξ 2 = 0, which does not admit physical solutions. On
the other hand, if α > 1/2 the coefficient of du/dξ diverges
for t → ∞, leading to du/dξ = 0, which also does not admit
physical solutions. Therefore, α = 1/2 and Eq. (C4) reads

[1 + E (r f + ξ
√

t )]
d2u

dξ 2
+

[
ξ

2
+

√
t

r f + ξ
√

t
+ 2K

√
t

r f

− [Q + E (r f + ξ
√

t )]
√

t

r f + ξ
√

t

]
du

dξ
= 0. (C5)

The derivatives of u are nonzero only near r = r f , so ξ cannot
assume large values. Therefore, we write

r f + ξ
√

t = r f (1 + χ ), χ = ξ

2
√
K

, (C6)

where χ � 1 if Q � 1 since K ∼ Q/2 and we expand to the
first order in χ to get[

1 + Q2h2

210r2
f

(
1 − 2ξ

√
t

r f

)]
d2

ξ u

+
[
ξ

2
+

√
t

r f

(
1 − ξ

√
t

r f

)
− Q

√
t

r f

(
1 − ξ

√
t

r f

)

− Q2h2
√

t

210r3
f

(
1 − 3ξ

√
t

r f

)
+ 2K

√
t

r f

]
dξ u = 0. (C7)
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Rearranging the terms and using Eq. (11), we obtain[
1 + Q2h2

840Kt
− Q2h2ξ

840K3/2t

]
d2

ξ u +
[
ξ

(
1

2
+ Q − 1

4K

+ Q2h2

1120K2t

)
+ 1 − Q + 2K

2
√
K

− Q2h2

1680K3/2t

]
dξ u = 0.

(C8)

We recall that the equation for u is only valid in the long-
time limit, which is defined by the timescale (A30). Therefore,
we define t = t̄ tTa where t̄ � 1. By performing this change of
variable in Eq. (C8), we obtain[

1 + t̄−1

(
1 − 1√

K

)]
d2

ξ u +
[
ξ

(
1

2
+ Q − 1

4K + 3

4Kt̄

)

+ 1 − Q + 2K
2
√
K

− 1

2
√
Kt̄

]
dξ u = 0. (C9)

Recalling that K 	 Q/2 for Q � 1 and γ 	 1 and that t̄ is of
order one, by keeping the first correction only, we get

A(t̄ )d2
ξ u + ξdξ u = 0, (C10)

where A(t̄ ) = 1 + t̄−1 and the boundary conditions are
u(−∞) = 1 and u(∞) = −γ . The solution of Eq. (C10) thus
reads (we now restore the angular brackets)

〈u(ξ )〉 = 1 − γ

2
− 1 + γ

2
erf

(
ξ√

2A(t̄ )

)
. (C11)

By replacing t̄ = t/tTa into the expression of A(t̄ ), we obtain

A(t ) = 1 + Qh2

420t
, (C12)

where we use K = Q/2. However, as shown in Fig. 16(a), a
nice agreement between Eq. (C11) and the numerical solution
of Eq. (C1) is obtained provided that we use

A(t ) = 1 + Qh2

210t
. (C13)

We do not have an explanation for this incorrect factor 2. We
will thus use Eq. (C13) in the following.

We consider now the radial gradient of ∂r〈u〉 and its width
wu defined as the second centered moment of ∂r〈u〉,

w2
u (t ) =

∫ ∞
0 [r − r f (t )]2∂r〈u〉 dr∫ ∞

0 ∂r〈u〉 dr

= − 1

1 + γ

∫ ∞

0
[r − r f (t )]2∂r〈u〉 dr. (C14)

We use again the change of variable ξ = (r − r f )/
√

t , which
reduces Eq. (C14) to

w2
u (t ) = − t

1 + γ

∫ ∞

0
ξ 2dξ 〈u〉dξ, (C15)

where we can approximate the integral as performed over all
the real domain since du/dr is a well-peaked function around
ξ = 0. The derivative of (C11) reads

d〈u〉
dξ

= −1 + γ

2

√
2

πA
exp (−ξ 2/2A). (C16)

FIG. 16. (a) Temporal evolution of wu. Results for γ = 1. The
dashed lines indicate Eq. (C17). (b) Comparison between the numer-
ical solution of Eq. (C1) and the analytical approximation (C11) for
Q = 100, h = 10, γ = 1 at t = 20.

By substituting this expression into Eq. (C15), we finally ob-
tain the long-time expression for the width wu,TA of |d〈u〉/dr|,

wu,TA = √
t + tc, tc = Qh2

210
, (C17)

where the index TA stands for transient- and long-time
regimes. Figure 16 shows that the obtained expression exhibits
good agreement with the numerical results.

APPENDIX D: DERIVATION OF wc,A

IN 1D POLAR GEOMETRY

We compute here the width wc,A for the 1D radial system in
the limit t → ∞. The evolution of the product concentration
c is governed by the equation [29]

∂t c(r, t ) + Q − 1

r
∂rc(r, t ) − ∂2

r c(r, t ) − R(r, t ) = 0, (D1)

where R = ab is well peaked around the front position r f

where a = b. Thus, we write

R(r, t ) = R[r f (t )] f

(
r − r f (t )

w

)
, (D2)

where w is the width of R. We assume that in the long-time
limit the maximum concentration of C is located at the posi-
tion where the production rate is maximum, i.e., rc 	 r f . For
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Q � 1 and γ 	 1 the long-time front position (11) reads

r f ,A(t ) 	
√

2Qt . (D3)

The width of C is defined as

wc(t ) =
[∫ ∞

0 (r − rc)2c(r, t ) dr∫ ∞
0 c(r, t ) dr

]1/2

. (D4)

By performing the change of variable x = r − rc 	 r − r f ,
Eq. (D4) reduces to

wc(t ) =
[∫ ∞

−r f
x2c(x, t ) dx∫ ∞

−r f
c(x, t ) dx

]1/2

. (D5)

Since c is peaked around x = 0, we assume that r f � wc

(which, as seen below, is true for Q � 1), so that, in virtue
of Eq. (D3), we can replace the lower limit of integration −r f

in Eq. (D5) by −∞. Hence, Eq. (D5) reads

wc,A(t ) =
[∫ ∞

−∞ x2c(x, t ) dx∫ ∞
−∞ c(x, t ) dx

]1/2

. (D6)

By adopting the same change of variables, Eq. (D1) reads

∂t c(x, t ) + Q − 1

x + r f (t )
∂xc(x, t ) − ∂2

x c(x, t ) − R(x, t ) = 0.

(D7)

Because we have assumed wc � r f , the term (x + r f )−1 � 1
when t → ∞. Hence, in this long-time limit Eq. (D7) reduces
to

∂t c(x, t ) − ∂2
x c(x, t ) − R(x, t ) = 0. (D8)

Integrating this equation over x leads to∫ ∞

−∞
∂t c(x, t ) dx =

∫ ∞

−∞
R(x, t ) dx, (D9)

where we used
∫ ∞
−∞ ∂2

x c dx = 0, since ∂xc = 0 for |x| � wc.
By substituting Eq. (D2) into Eq. (D9), we get

∂t

∫ ∞

−∞
c(x, t ) dx = αR[r f (t )]w(t ), (D10)

where α = ∫ ∞
−∞ f (x)dx. In the long-time limit R(r f ) → Rmax

A
and w → wA, which are given as in Eqs. (13) and (14), re-
spectively. Hence, by integrating Eq. (D10) in time, we obtain∫ ∞

−∞
c(x, t ) dx = 58 α

π3
Kt1/2, (D11)

which provides the denominator in Eq. (D6). To obtain an
expression for the numerator, we first multiply Eq. (D8) by
x2 and then we integrate over x to obtain∫ ∞

−∞
x2∂t c(x, t ) dx =

∫ ∞

−∞
x2∂2

x c(x, t ) dx

+
∫ ∞

−∞
x2R(x, t ) dx. (D12)

By integrating twice by parts the term
∫ ∞
−∞ x2∂2

x c dx and by
recalling that c and ∂xc vanish for |x| → ∞, we obtain∫ ∞

−∞
x2∂2

x c(x, t ) dx = 2
∫ ∞

−∞
c(x, t ) dx = 116 α

π3
Kt1/2,

(D13)

where we have used Eq. (D11). Furthermore, by using
Eq. (D2), we get∫ ∞

−∞
x2R(x, t ) dx = βR[r f (t )]w3(t ), (D14)

where β = ∫ ∞
−∞ x2 f (x) dx. By substituting Eqs. (13) and (14)

into Eq. (D14), we obtain∫ ∞

−∞
x2R(x, t ) dx = 29β

π
K1/3t−1/6, (D15)

which vanishes for t → ∞. Hence, by substituting Eq. (D13)
into Eq. (D12) and by neglecting the term of Eq. (D15), we
get

∂t

∫ ∞

−∞
x2c(x, t ) dx = 116 α

π3
Kt1/2. (D16)

Time integration finally provides∫ ∞

−∞
x2c(x, t ) dx = 232 α

3π3
Kt3/2. (D17)

By substituting Eqs. (D17) and (D11) into Eq. (D6) we obtain

wc,A(t ) =
√

4

3
t . (D18)

In dimensional units, Eq. (D18) reads

w̄c,A(t̄ ) =
√

4

3
Dt̄ . (D19)

APPENDIX E: EARLY-TIME ANALYSIS

The early-time analysis is performed by assuming that in
this regime the amount of mixing between the reactants is
small and that transverse diffusion is negligible. As a conse-
quence of these assumptions, the reaction terms ab and the
derivative along z that appear in Eq. (3a) can be neglected.
Therefore, we approximate Eq. (3a) in the early-time regime
as

∂t aE + Q̃(z) − 1

r
∂raE = ∂2

r aE , (E1a)

∂t bE + Q̃(z) − 1

r
∂rbE = ∂2

r bE , (E1b)

where aE (r, z, t ) and bE (r, z, t ) denote the early-time dimen-
sionless concentration of the reactants A and B, respectively,
and

Q̃(z) = 3

2

(
1 − 4z2

h2

)
Q. (E2)

Notice that this equation is similar to the equation for the
conservative component u = a − b in the 1D polar case [29].
In fact, because diffusion along z is neglected, there is no
mechanism that couples the equations in r and z, so that
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FIG. 17. Radial profiles of 〈a〉 and 〈b〉 for Q = 100, h = 20, and
γ = 1 at t = 10−3. The symbols indicate the results obtained by
solving numerically Eq. (3), while the lines represent Eqs. (E6) and
(E7).

Eq. (E1a) describes a set of independent equations for any
given value of z in [−h/2, h/2]. These equations are solved by
introducing the change of variables η = r2/4t , which allows
us to transform the PDE (E1a) into the ODE

∂2
ηaE +

(
1 + 1 − Q̃(z)/2

η

)
∂ηaE = 0. (E3)

The general solution reads

aE (r, z, t ) = c1 + c2


(
Q̃(z)

2
,

r2

4t

)
, (E4)

where c1 and c2 are integration constants that are deter-
mined by applying the boundary conditions aE (0, z, t ) = 1
and aE (r → ∞, z, t ) = 0, so that

aE (r, z, t ) = Q
(

Q̃(z)

2
,

r2

4t

)
, (E5)

where Q is the regularized gamma function. The average
concentration is obtained by calculating the integral along the
gap numerically,

〈aE 〉 = 1

h

∫ h/2

−h/2
Q

(
Q̃(z)

2
,

r2

4t

)
dz. (E6)

One can obtain the equation for the early-time concentration
bE of B analogously. Because the reaction term is neglected,
notice that we must have bE = γ (1 − aE ) and in particular

〈bE 〉 = γ (1 − 〈aE 〉). (E7)

Figure 17 shows that the calculated averaged concentrations
in Eq. (E6) and Eq. (E7) are in good agreement with the
numerical solutions of Eq. (3).

By using Eq. (E7), the early-time production rate RE =
〈aE 〉〈bE 〉 reads

RE (r, t ) = γ 〈aE 〉(1 − 〈aE 〉). (E8)

Notice that the maximum Rmax
E along r is found for 〈aE 〉 =

〈bE 〉 = 1/2 and its value is Rmax
E = γ /4. To obtain the front

position rmax
E as the distance from the inlet at which RE is

FIG. 18. (a) Comparison between the approximated expres-
sion (21b) and numerical results. (b) Comparison between K̄E =
0.5625 Q and the numerical results.

maximum, we set 〈aE 〉 = 1/2 in Eq. (E6),

∫ h/2

0
Q

(
Q̃(z)

2
,

r2

4t

)
dz = h

4
, (E9)

where we have used the symmetry of the system along the
z axis. Through the changes of variable y = 1 − 4z2/h2 and
η = r2/4t , and by using Eq. (E2), we obtain

f (Q, η) = 1, f (Q, η) =
∫ 1

0

Q
( 3Qy

4 , η
)

dy√
1 − y

. (E10)

The solution η = K̄E (Q) is found by solving Eq. (E10) nu-
merically. We find K̄E 	 0.5625 Q; see Fig. 18(b). Hence, the
position of the maximum of the production rate at early-time
reads

rmax
E = 2

√
K̄E (Q)t =

√
2.25 Qt . (E11)

The front position r f ,E , defined as the location where
〈aE 〉 = 〈bE 〉, is obtained in a similar way. Equation (E7) here
gives 〈aE 〉 = γ /(1 + γ ), which we substitute into Eq. (E6)
and get

∫ h/2

0
Q

(
Q̃(z)

2
,

r2

4t

)
dz = h

2

(
γ

1 + γ

)
. (E12)
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FIG. 19. Comparison of the approximated Kw and the results of
numerical computations.

By using the previous changes of variables and by using the
definition (E10) of f (Q, η) the latter reduces to

f (Q, η) = 2γ

1 + γ
. (E13)

We find numerically the solution η = 0.9 Q/(1 + 0.6 γ ), and
by substituting the definition of η, we finally obtain Eq. (21a).
Figure 18 shows the comparison between the coefficients KE ,
given by Eq. (21b), and K̄E , given above, computed numeri-
cally and their analytical approximations.

To compute the front width wE as the width at half height
of RE = 〈aE 〉〈bE 〉, we notice that the values of 〈aE 〉 for which
RE = Rmax

E /2 = γ /8 are

〈a(±)
E 〉 = 1

2 (1 ±
√

2/2). (E14)

Substituting this into Eq. (E6), we obtain

1

2

(
1 ±

√
2

2

)
= 1

h

∫ h/2

−h/2
Q

(
Q̃(z)

2
,

r2

4t

)
dz. (E15)

Repeating the steps that we took to calculate rmax
E we obtain

the equation

f (Q, η) = 1 ±
√

2/2, (E16)

where f (Q, η) is defined by Eq. (E10). The solutions
η± = r2

±/4t are computed numerically as a function of Q
(see Fig. 19). The width wE is finally expressed as

wE (t ) = r+(t ) − r−(t ) = Kw(Q) t1/2, (E17)

where Kw = 2(
√

η+ − √
η−) 	 0.78 Q1/2. Recalling that in

the early-time regime, Eq. (E1a) describes a set of indepen-
dent equations for each value of z, we compute the total
amount of product nc,E as

nc,E =
∫ h/2

−h/2
n(1D)

c,E (z) dz, (E18)

where n(1D)
c,E (z, t ) = 2π

∫ ∞
0 rc(r, z, t )dr is the total amount of

product along a streamline, obtained from Eq. (E1). By using

FIG. 20. Temporal evolution of w̄c from the experimental work
[33]. The solid lines represent the theoretical predictions (16), where
cγ and D are obtained through fitting.

the relationship [29]

dn(1D)
c,E

dt
= 2π

∫ ∞

0
rRE (r, z, t ) dr, (E19)

where RE (r, z, t ) = aE (r, z, t )bE (r, z, t ), and Eq. (E5) together
with bE = γ (1 − aE ), we obtain

dn(1D)
c,E

dt
= 2πγ

∫ ∞

0
rQ

(
Q̃

2
,

r2

4t

)[
1 − Q

(
Q̃

2
,

r2

4t

)]
dr.

(E20)

Performing the integral, we get

dn(1D)
c,E

dt
= 4

√
πγ



( 1+Q̃

2

)



( Q̃
2

) t . (E21)

Time integration leads to

n(1D)
c,E (z, t ) 	

√
2πγ Q̃1/2(z)t2, (E22)

where we used the approximation 
[(1 + Q̃)/2]/
(Q̃/2) 	√
Q̃/2 for Q̃ � 1. Finally, by substituting Eq. (E22) and

Eq. (E2) into Eq. (E18) and by computing the integral along
the gap we get

nc,E (t ) 	
√

3π3

4
γ hQ1/2t2. (E23)

APPENDIX F: COMPARISON WITH
EXPERIMENTAL RESULTS

In this Appendix, we compare our model to the experimen-
tal results in Ref. [33]. Specifically, we focus on the width w̄c

of the product concentration, which is shown in Fig. 20. In our
model, the transient- and long-time behavior of this quantity is
described in dimensional units by Eq. (16). The multiplicative
coefficient cγ and the diffusion coefficient are used as fitting
parameters. We find D = (8.2 ± 0.7)×10−10 m2/s, which is
of the expected magnitude. Since the reactants are in equal
concentrations, Eq. (15b) predicts cγ = 1.23, while from
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fitting we obtain values in the range 2.2–3.9. Such a difference
could be motivated by effects that are not accounted for in this

model, including, e.g., buoyancy, premixing in the injection
tube, or the finite radius of the injection valve.
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