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Effects of radial injection and solution thickness
on the dynamics of confined A + B - C
chemical fronts

Ágota Tóth, a Gábor Schuszter, a Nirmali Prabha Das,a Emese Lantos,a

Dezs +o Horváth, b A. De Wit c and Fabian Brau *c

The spatio-temporal dynamics of an A + B - C front subjected to radial advection is investigated

experimentally in a thin solution layer confined between two horizontal plates by radially injecting

a solution of potassium thiocyanate (A) into a solution of iron(III) nitrate (B). The total amount and

spatial distribution of the product FeSCN2+ (C) are measured for various flow rates Q and solution

thicknesses h. The long-time evolution of the total amount of product, nC, is compared to a scaling

obtained theoretically from a one-dimensional reaction–diffusion–advection model with passive advec-

tion along the radial coordinate r. We show that, in the experiments, nC is significantly affected when

varying either Q or h but scales as nC B Q�1/2V where V is the volume of injected reactant A provided

the solution thickness h between the two confining plates is sufficiently small, in agreement with the

theoretical prediction. Our experimental results also evidence that the temporal evolution of the width

of the product zone, WC, follows a power law, the exponent of which varies with both Q and h, in

disagreement with the one-dimensional model that predicts WC B t1/2. We show that this experimental

observation can be rationalized by taking into account the non-uniform profile of the velocity field of

the injected reactant within the cell gap.

1 Introduction

Reaction–diffusion (RD) models1 can describe dynamics in a
wide variety of systems ranging from population dynamics,2

disease spreading,3 epidemiology,4 ecology,5 and biological
pattern formation6 to upper atmospheric lightning,7 finance8

and particle physics,9 to name a few. In many cases, RD fronts
can form when two species A and B are initially separated and
meet by diffusion, react and form a product C. Such A + B - C
fronts have been intensively studied in one-dimensional (1D)
rectilinear geometries for which the initial contact zone
between A and B is a line. Scalings of the temporal evolution
of the front position as well as of the amplitude and width of the
production rate (defined as R = kab, where a and b are the
concentrations of the species A and B and k is the rate constant
of the reaction) have been derived theoretically10 and tested both
numerically11 and experimentally using chemical reactions.12–14

Recently, this A + B - C RD front theory has been extended
to radial geometries with advection when A is injected radially
into B at a given flow rate Q.15 Assuming no transverse
deformation and a plug flow along the thickness h of the
solution along the z-axis, see Fig. 1(b), this 1D theory provides
the temporal evolution of the position rf of the front and of the
amplitude R(rf) and width w of the production rate R in
the asymptotic long time limit. This limit is obtained when
ka0t c (hD/Q)3/4, where a0 is the initial concentration of A, t is
the time, Q is the volumetric flow rate, and D is the molecular
diffusion coefficient assumed equal for all species. It has been
shown that, in this limit, the properties of the front scale as
rf = a(Q,g)t1/2, R(rf) = b(Q,g)t�2/3 and w = d(Q,g)t1/6, where a, b and
d are known functions of Q and of g = b0/a0 with b0 the initial
concentration of B.15,16 These scalings are similar to those
obtained in a rectilinear geometry except for the non-trivial
dependence on the flow rate Q. The major difference
introduced by the radial geometry appears in the temporal
evolution of the total amount of product nC. Indeed, in a
rectilinear geometry, nC B a0hL(Dt)1/2, where L is the constant
length of the contact zone between the two reactants A and B,
whereas, in a radial geometry, nC B a0j(g)h(Q/hD)1/2(Dt), where
j(g) C [ln(4.5g + 1)]/3 for 0.1 t g t 10. This difference
originates primarily from the growth in time of the length L
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of the contact zone between the two reactants in the radial
geometry as:16 L = 2prf B t1/2. Since, by definition of the flow
rate, the injected volume, V, evolves in time as V = Qt, this
scaling can be written as

nC = Za0j(g)[hD/Q]1/2V, (1)

where Z is a numerical constant. This scaling has been tested
experimentally using calcium carbonate precipitation as a
model reaction.15 For given parameter values (a0, g, D, and h),
the experimental evolution of nC with Q and V was measured to
be nC B Q�0.4V. The slightly larger value of the exponent in the
experiments, i.e., �0.4 instead of �1/2, implies that the pro-
duction of calcium carbonate decreases slightly less compared
to the theoretical prediction when Q increases. This discre-
pancy was attributed to undetected buoyancy-driven convection
due to the density difference between the precipitate and the
surrounding solution, which enhances the mixing and hence
the production of the precipitate.

To reduce the density difference between the product
and the reactants, we test experimentally here the theoretical
scaling (1) using the complex formation of FeSCN2+ between
the reactants potassium thiocyanate KSCN (A) and iron(III)
nitrate Fe(NO3)3 (B) in the presence of radial injection as a
model reaction for A + B - C processes. The selected reaction
is very fast and yields a product ‘‘instantly’’ when the two
colorless reactants are in contact. The long-time limit for which
the scaling (1) is valid is thus reached soon after injection
starts. Moreover, the product is characterized by a prominent
brown color allowing us to easily visualize the front, as shown
in Fig. 1(a–c). The theory is further tested by measuring the
width of the product zone, WC, as a function of time. In the
long-time limit, this quantity should evolve as WC B te, with
e = 1/2 for a one-dimensional dynamics neglecting any spatial
variation within the thickness of the solution. We observe
however that the exponent varies with both Q and h and is
sub-diffusive, i.e., e o 1/2. We show that this result can be

rationalized by taking into account the three-dimensional
profile of the velocity field of the injected reactant within the
reactor gap.

2 Experimental methods

Reagent-grade chemicals (Alfa-Aesar, VWR) are used through-
out the experiments without further purification. The experi-
ments are performed in the quasi two-dimensional confined
geometry of a horizontal Hele-Shaw cell consisting of two
transparent glass plates separated by a small gap h. This gap
that fixes the solution thickness h is controlled using spacers
ranging from h = (0.18 � 0.03) mm to h = (0.66 � 0.06) mm. In
such a thin layer, both reactant solutions appear colorless
whereas the product has a well visible brown color, see
Fig. 1(a–c). The setup is illuminated from above by two light
sources and the dynamics is recorded using a digital camera.
The gap between the two plates of the cell is initially filled with
an aqueous solution of iron(III) nitrate Fe(NO3)3 (0.03 M), which
is acidified with 0.174 ml of a HNO3 solution at 0.1 M per 25 ml
of solution to stabilize Fe3+ ions. An aqueous solution of
potassium thiocyanate KSCN (0.03 M) is then radially injected
through the center of the lower plate using a syringe pump
(KD Scientific) at a constant flow rate Q, ranging from 0.01 to
0.09 ml min�1. The low concentrations of the two reactants induce
small differences of viscosity (mFe(NO3)3 = (0.98 � 0.01) mPa s and

mKSCN = (1.03 � 0.01) mPa s) and of density (rFe(NO3)3 = (1.0068 �
0.0001) g cm�3 and rKSCN = (0.9993 � 0.0001) g cm�3). Together
with the low flow rates used, this prevents the emergence of
transverse hydrodynamic instabilities, which preserves the
radial symmetry, see Fig. 1(a–c). The dynamics is thus at most
two-dimensional. Small gaps of h are used to approach a one-
dimensional dynamics to get closer to the assumption made in
the theory15 used to derive the scaling (1). When the two
reactants are in contact, depending on the stoichiometric
ratio of the reactants, a number of Fe(SCN)i

3�i complexes,

Fig. 1 (a)–(c) Snapshots of the coloured ring of the product in an injection experiment at t = 1121, 1881, and 3021 s with flow rate Q = 0.05 ml min�1 and
solution thickness h = 0.66 mm. Image (c) is displayed in false colors to show the respective locations of the two reactants and of the product. The small
circle at the center of the images is the injection valve. Scale bar 5 cm. (d) Grayscale intensity I(x,y,t) obtained after subtracting the image at t = 0 from
image (b). (e) Concentration distribution of image (b) computed from image (d) and a calibration curve. (f) Radial profile, I(r,t), of the grayscale intensity of
image (d) showing the width of the product zone, WC, measured at half the height of the peak.
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where i ranges from 1 to 6, can be obtained. The concentrations
of both reactants and the way the injection is performed,
i.e., SCN� into Fe3+, are chosen such that the mono-
complex FeSCN2+ is the dominant product. In addition, we

have SCN� þ Fe3þ Ð
k

k0
FeSCN2þ, with k C 200 M�1 s�1 and

k0 C 1.5 s�1.17 Therefore, the equilibrium is strongly shifted
towards the product, as required to compare with the theory.15

The concentration distribution of the product of the reac-
tion, c(x,y,t), where x and y are the spatial coordinates in the
horizontal plane, is reconstructed from the recorded images of
the dynamics in order to test the scaling (1). For this purpose,
we measure the local grayscale intensity, I0(x,y), of the back-
ground image of the cell containing only Fe(NO3)3, i.e., before
injection starts. The average value, I0, of this essentially uni-
form distribution is also computed in a region r 4 rv, where r is
the radial distance measured from the center of the injection
zone and rv is the radius of the injection valve, see Fig. 1(b). At
times tn = nDt, where n is an integer, the local grayscale
intensity, Ic(x,y,t), of the images of the dynamics is measured,
see Fig. 1(a–c). The local relative grayscale intensity, obtained
after subtracting the grayscale intensity of the background
image, is then computed using the relation

I(x,y,t) = [I0(x,y) � Ic(x,y,t)]/I0. (2)

An example of this relative distribution of intensity is shown in
Fig. 1(d). Fig. 1(e) shows the local concentration field computed
from I(x,y,t) shown in Fig. 1(d) by using a calibration curve, see
Appendix A. Notice that, in these experiments, only the concen-
tration field averaged over the reactor gap can be reconstructed,
i.e., cðx; y; tÞ � h�1

Ð h
0cðx; y; z; tÞdz. The total amount of product,

nC, is then obtained by integrating the concentration distribu-
tion over the entire image:

nCðtÞ ¼
ð
cðx; y; tÞdxdy: (3)

Finally, the width of the product concentration field, WC, is
defined as the width at half-height of the radial grayscale intensity
profile, I(r,t), where r is the radial distance measured from the
center of injection, see Fig. 1(d) and (f). This radial profile, I(r,t), is
obtained by measuring the intensity I along radial lines separated
by Dy C 0.02 and averaging over the polar angle y.

3 Results and discussions
3.1 Total amount of product

The 1D reaction–diffusion–advection (RDA) theory for A + B - C
fronts subject to passive radial advection15 predicts that the
total amount of product, nC, grows linearly with the injected
volume of reactant A as

nC = SthV + p, (4)

where p is a constant and Sth is the theoretical slope varying
with the flow rate as

Sth = aQ�1/2 (5)

where a is a parameter independent of Q. The typical evolution
of nC obtained experimentally as a function of the volume of
KSCN injected is shown in Fig. 2(a) for some values of the flow
rate and one value of the solution thickness h. These data result
from the average over at least three experiments performed for
each value of Q and h. We see that, after some transient
evolution, nC evolves indeed linearly with V in agreement with
the theoretical scaling (4). The slope S was extracted from linear
regressions performed at sufficiently large injected volumes, as
shown in Fig. 2(a). The evolution of S as a function of Q is
shown in Fig. 2(b) for three different values of h. The uncer-
tainties in S result from the errors displayed in Fig. 2(a) whereas
the errors in the flow rate Q are neglected.

In the experiments, the dependence of S on the flow rate is
well described by a power law S = aQ�b, as predicted by eqn (5).
Nevertheless, instead of the predicted constant theoretical
value b = 1/2, we find that the experimental value of the
exponent b varies with the solution height h as shown in Table 1,
approaching the value 1/2 only as h decreases. At larger h,

Fig. 2 (a) Total amount of product nC as a function of the volume V of
KSCN solution injected for six different flow rates and h = 0.18 mm. The
evolution of nC(V) is similar for other h and is not displayed. (b) Slope S,
measured from panel (a), as a function of the flow rate Q for various
solution heights. The dashed lines are fitted power laws: S = aQ�b.

Table 1 Fitted parameters of the power law S = aQ�b shown in Fig. 2(b)
for different solution heights

h (mm) a � 106 (mol mlb�1 min�b) b

0.18 � 0.03 0.29 � 0.04 0.52 � 0.04
0.34 � 0.05 0.56 � 0.07 0.48 � 0.04
0.66 � 0.06 1.38 � 0.17 0.37 � 0.04
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the exponent decreases below the theoretical value while the
coefficient a increases, in agreement with what has been
measured experimentally previously using a precipitation
reaction.15 This means that, for larger gaps, more product is
generated when the flow rate increases than expected from the
1D theory assuming a plug flow within the gap. This suggests
that extra mixing develops within the reactor gap on increasing
the solution height, yielding a more efficient contact between
the reactants that enhances the production of the complex.

To sum up, these experimental results confirm thus that
provided the solution height is sufficiently small and the radial
symmetry is preserved to approach a 1D plug flow dynamics,
the total amount of product generated in a radial injection
follows the theoretical scaling (4). At larger gaps, however,
additional effects induce an enhanced production of C.

3.2 Width of the product zone

The local dynamics of the front can be further analyzed by
measuring the temporal evolution of the width WC of the
product zone, which should evolve as WC B t1/2 according to
the theory.15 The experimental evolution of WC is shown in
Fig. 3 for various flow rates and cell gaps. In all cases, the width
evolves in time following a power law: WC = dte, as predicted
theoretically. Nevertheless, the values of the coefficient d and

the exponent e vary experimentally with Q and h, as shown in
Table 2. Such a variation of the exponent, whose values are
moreover systematically sub-diffusive (eo 1/2), is not expected,
since WC should grow proportionally to the width of the
depletion zone, Wd, where the concentrations of the two
reactants differ significantly from their initial values due to
the reaction and diffusion. This depletion zone is known to
grow as Wd B t1/2 even when there is some advection.10,15

In order to rationalize this striking observation, we note
that, in the presence of advection, the velocity profile within the
reactor gap is not uniform along the vertical z-axis but is
instead described by a Poiseuille profile:18,19

vrðr; zÞ ¼ vmðrÞ 1� 4z2

h2

� �
; and vmðrÞ ¼

3Q

4phr
; (6)

where z varies in the range �h/2 r z r h/2 and vm is the
maximum of the velocity profile at z = 0, which decreases
when the radial distance from the injection zone increases.
The derivation of this relation together with a discussion
of its domain of validity are presented in Appendix B for
completeness. In particular, we show that it is valid for a
stationary Stokes flow, which neglects the inertial contribution.
Under our experimental conditions, this approximation is valid
when t c 0.03 s.

Eqn (6) shows that decreasing h increases the velocity
gradient along the cell gap since qzvr B h�2. Therefore, while
a global property of the front, such as the total amount of
product generated, nC, is well described by a one-dimensional
model once the cell gap h is sufficiently small, a local property
of the front, such as the width of the product distribution, is
increasingly impacted as the gap is decreased and the inhomo-
geneity of the velocity field along the gap increases. Indeed,
eqn (6) shows that fluid particles at different z positions within
the reactor gap travel at different speeds. This shear flow, which
increases the spatial spreading of a species, impacts the width
of the product zone. This effect can be taken into account
through an effective diffusion coefficient, Deff, also called the
dispersion coefficient, which is given by

Deff ¼ D 1þ L2U2

sD2

� �
; (7)

where D is the molecular diffusion coefficient, U is the intensity
of the gap averaged velocity, L is the characteristic length of the
flow and s is a numerical factor that depends on the geometry.
As shown by Taylor20 and Aris,21 in a tube of diameter d, L = d
and s = 192. In a Hele-Shaw cell with rectilinear displacement
geometry, L = h and s = 210, where h is the cell gap.22 We
assume here that eqn (7) still applies at sufficiently large times
in a Hele-Shaw cell with radial displacement geometry with
again L = h and s = 210. Therefore, the width of the product
zone subjected to dispersion should grow in time as

WC ¼ x Deff t½ �1=2¼ x Dtþ h2U2

210D
t

� �1=2
; (8)

Fig. 3 Width of the product distribution as a function of time for various
solution height h and flow rate Q. Dashed lines indicate fitted curves
according to the power law W = dte. Solid curves indicate fits to the data
according to eqn (12). The values of the fitting parameters, namely d, e, W0

C

and tc, are reported in Table 2.

Table 2 Fitted parameters of the power law WC = dte and of eqn (12)
shown in Fig. 3 for different solution heights h and flow rates Q

h (mm) Q (ml min�1) d (mm s�e) e

0.18 � 0.03 0.09 0.291 � 0.011 0.330 � 0.005
0.34 � 0.05 0.09 0.727 � 0.017 0.261 � 0.003
0.34 � 0.05 0.02 0.108 � 0.001 0.456 � 0.002
0.66 � 0.06 0.09 1.534 � 0.019 0.209 � 0.002

h (mm) Q (ml min�1) W0
C (mm) tc (s)

0.18 � 0.03 0.09 1.54 � 0.02 412 � 15
0.34 � 0.05 0.09 2.98 � 0.03 856 � 28
0.34 � 0.05 0.02 1.60 � 0.03 511 � 20
0.66 � 0.06 0.09 5.15 � 0.02 1753 � 23

Paper PCCP



10282 | Phys. Chem. Chem. Phys., 2020, 22, 10278--10285 This journal is©the Owner Societies 2020

where x is a numerical constant of order 1. In our case, the gap
averaged velocity reads

UðrÞ ¼ 1

h

ðh=2
�h=2

vrðr; zÞdz ¼
2

3
vmðrÞ ¼

Q

2phr
: (9)

The average front position is thus the solution of the
following differential equation

dr

dt
¼ UðrÞ ¼ Q

2phr
) rðtÞ ¼ Qt

ph

� �1=2
: (10)

The gap averaged velocity of the flow can then be expressed
as a function of time as

UðtÞ ¼ UðrðtÞÞ ¼ 1

2

Q

ph

� �1=2
t�1=2: (11)

Substituting eqn (11) into eqn (8), we finally obtain the
temporal evolution of the width of the product zone taking
into account dispersion due to the non-uniformity of the
velocity field across the reactor gap:

WCðtÞ ¼W0
C 1þ t

tc

� �1=2
; (12a)

where tc ¼
hQ

840pD2
; W0

C ¼ x Dtc½ �1=2: (12b)

Relation (12) is not a power law but is characterized by two
distinct regimes, at small and large times, which are power laws:

W
disp
C ¼

t�tc
W0

C; and Wdiff
C ¼

t�tc
x½Dt�1=2: (13)

At small times, dispersion is dominant and leads to
WC = Wdisp

C = W0
C. As time increases, the front velocity (11)

decreases due to volume conservation and dispersion becomes
progressively negligible in comparison to molecular diffusion.
At large times, diffusion is thus dominant and leads to
WC = Wdiff

C = W0
C(t/tc)1/2.

Fig. 3 and Table 2 show that, when W0
C and tc are considered

as independent parameters, the temporal evolution of the
width WC is well described by eqn (12), without the need
to use sub-diffusive exponents varying with Q and h.
This evidences that the power laws followed by the temporal
evolution of WC in Fig. 3 correspond actually to a transient
regime between the two asymptotic, respectively dispersive and
diffusive regimes (13), which are, in contrast, characterized by
well-defined power laws. In between these two asymptotic
regimes, the exponent obtained by fitting the data by a power
law can thus vary between 0 and 1/2. The exponent will be close
to 0 (1/2) if the time interval during which the experiment is
performed is small (large) compared to tc.

Using the mean value of h and tc reported in Table 2, the
expression (12b) of tc yields a diffusion coefficient of the order
of D = (0.4 � 0.1) � 10�9 m2 s�1, which is the correct order of
magnitude. In addition, eqn (12b) predicts that tc and W0

C

increase with h and Q in agreement with the values obtained
from the fits shown in Fig. 3 and reported in Table 2.

The relation (12b) between W0
C and tc provides a more stringent

test of the argument used to explain the temporal evolution of
WC. Indeed, Fig. 4 shows that W0

C increases with tc following a
power law in agreement with eqn (12b). The fit of the data
using eqn (12b) yields xD1/2 = 102 mm s�1/2. Using the value of
D obtained above from tc, we find that x is indeed of order
1 : 4.4 t x t 5.6. However, a larger exponent, i.e., 1 instead
of 1/2, better describes the evolution of W0

C with tc. This
discrepancy could originate from various factors not taken
into account to derive eqn (12), like, for example, the slight
difference in density and viscosity between the product and
reactant solutions. In addition, the standard theory of disper-
sion used to obtain the general eqn (7), from which eqn (12) is
derived, does not take into account the production of C due to
the chemical reaction. This additional contribution is expected
to increase the width of the product zone and could explain the
larger exponent obtained in Fig. 4. The extension of the
dispersion theory taking into account the production of C by
a chemical reaction is beyond the scope of this work and is left
for a subsequent paper.

4 Conclusion

The complex formation of FeSCN2+ has been studied experimen-
tally by radially injecting potassium thiocyanate into iron(III)
nitrate in a horizontal Hele-Shaw cell to test the predictions of
a recently developed 1D RDA theory of A + B - C fronts in a
radial geometry.15 We have shown that, as predicted theoreti-
cally, the total amount of product measured experimentally
grows linearly with the volume of injected reactant. In addition,
provided the cell gap is small enough, the slope of this linear
growth scales as Q�1/2, where Q is the volumetric injection rate,
in agreement with the 1D theory assuming a plug flow in the gap
of the cell. However, at larger gaps, more product is generated
than expected and the exponent decreases below the theoretical
value, suggesting that enhanced mixing takes place because of a
non-uniformity of the velocity field in the gap. We have also
measured the dependence of the width WC of the product
distribution on the flow rate Q and solution thickness h.
We find that the 1D plug flow model fails to explain the

Fig. 4 Evolution of W0
C as a function of tc together with a linear fit: W0

C =
atc and a = 3.1 mm s�1, and with eqn (12b) and b = xD1/2 = 102 mm s�1/2.
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experimental trends while a 2D simple model taking into
account the Poiseuille deformation of the velocity field within
the gap of the cell better fits the data. This 2D model suggests
that, at small times, the width of the product zone is controlled
by dispersion while at larger times when the intensity of
advection decreases, a diffusive regime is reached. A preliminary
theoretical analysis indicates that the characteristic transition
time between the dispersive and diffusive regimes tc B hQ/D2,
where D is the molecular diffusion coefficient. The experimental
data measured in this transition time between the two asympto-
tic regimes feature unusual WC = dte scalings with a sub-diffusive
exponent e that varies with Q and h.

Note that decreasing the reactor gap h allows us to recover
the 1D plug flow theoretical scalings for the total amount of
product nC while increasing the dispersive influence on the
local width of the front WC. This is related to the fact that nC is a
global quantity while WC is a local property much influenced by
the non-uniformity of the velocity field since the gradient of the
Poiseuille profile along the reactor gap scales as h�2. Note that
the 2D theory does not take into account the continuous
generation of product from the reaction, which could influence
dispersion. Moreover, here, we have not addressed the possible
influence of convective mixing that could still arise because of
slight density differences between the reactant and product
solutions. Our experimental results thus clearly show the need
for additional experimental and theoretical work aiming to
decipher the relative contribution of the reaction, diffusion,
dispersion and buoyancy-driven convection to the properties of
A + B - C fronts.
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Appendix

A Calibration curve

In order to determine the relationship between the grayscale
intensity of the FeSCN2+ complex formed by the reaction and its
concentration, the Hele-Shaw cell has been filled by the product
solution at various known concentrations c. The grayscale
intensity of the image of the cell filled with the product solution
at a given concentration, Ic(x,y), has been subtracted from the
grayscale intensity of the image of the cell filled with pure water
(c = 0), I0(x,y). Since both grayscale intensities are essentially
uniform over the cell, the resulting grayscale intensity, I0� Ic, is
also essentially uniform and vanishes when c = 0. The relative
grayscale intensity of a pixel is then computed as follows:

I ¼

PN
i¼1

I0 xi; yið Þ � Ic xi; yið Þ½ �

PN
i¼1

I0 xi; yið Þ
� I0 � Ic

I0
; (14)

where N is the total number of pixels, (xi,yi) are the coordinates
of the pixel i, and I0 and Ic are the average grayscale intensities
of a pixel at c = 0 and at a given concentration c, respectively:

I0 ¼ N�1
XN
i¼1

I0 xi; yið Þ; Ic ¼ N�1
XN
i¼1

Ic xi; yið Þ: (15)

The evolution of I as a function of the concentration c of the
product is shown in Fig. 5. We observe a good overlapping of
the data obtained at various gap h. These data are well fitted by

I = IN(1 � e�kch), (16)

where IN = 0.82 � 0.02 and k = (488.2 � 23.4) L mol�1 mm�1.
During a reactive experiment, where potassium thiocyanate

is injected into iron(III) nitrate, the grayscale intensity of the cell
filled by pure water, I0(x,y), is approximated by the grayscale
intensity of the cell filled by Fe(NO3)3. Indeed, the concen-
tration of the solution of Fe(NO3)3 and the reactor gap h are so
small that the solution appears colorless in the reactor and the
signal recorded by the camera is indistinguishable from the
one recorded with the cell filled by water. The relative grayscale
intensity of each pixel, I(xi,yi,t), is computed using eqn (2). The
local concentration at each pixel is then computed using the
inverse of eqn (16):

cðxi; yi; tÞ ¼ ðkhÞ�1 ln
I1

I1 � I xi; yi; tð Þ

� �
: (17)

B Laminar radial flow between two
parallel plates

We recall the derivation of the exact solution of the velocity
profile, obtained using the Stokes approximation, for a laminar
radial flow confined between two parallel plates.18,19 In the
following derivation, we neglect the difference of viscosity and
density between the two reactants. We thus consider a single
phase, which is a good approximation as the relative difference
of density of this horizontal system, (r1 � r2)/(r1 + r2), is about

Fig. 5 Evolution of the relative grayscale intensity of a pixel of an image of
the cell filled with the complex of FeSCN2+, computed using eqn (14), as a
function of the concentration of FeSCN2+ for various reactor gaps. The fit
by eqn (16) is also shown together with the 95% confidence band.
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4 � 10�3 and the relative difference of viscosity, (m1 � m2)/(m1 +
m2), is about 2 � 10�2.

The Navier–Stokes equations for incompressible Newtonian
fluids read

@tvþ ðv 	 =Þv ¼ �
=p

r
þ m
r

=2v; (18a)

=	v = 0, (18b)

where m is the dynamic viscosity and r is the mass density. Since
the cell is horizontal, gravity will not impact the velocity field and
would only appear as a hydrostatic term in the pressure expres-
sion. It is thus neglected here. Using cylindrical coordinates (r,y,z)
and assuming radial symmetry with the velocity field v = (vr,0,0)
and vr = vr(r,z,t), the radial component of eqn (18a) reads

@tvr þ vr@rvr ¼ �
@rp

r
þ m
r
@r

2vr þ @z2vr þ
@rvr
r
� vr

r2

� �
: (19)

The y and z components of eqn (18a) yield

qyp = 0 and qzp = 0. (20)

Consequently, the pressure p depends only on the radial
coordinate and time, p = p(r,t). The continuity eqn (18b) leads to

1

r
@r rvrð Þ ¼ @rvr þ

vr

r
¼ 0: (21)

Using eqn (21) and its first derivative with respect to r, the
Navier–Stokes eqn (19) reduces to

@tvr �
vr
2

r
¼ �1

r
@rpþ

m
r
@z

2vr: (22)

A steady velocity profile for Stokes flow (neglecting the
nonlinear term) is then the solution of the following equation

mqz
2vr = qrp, (23)

which is readily integrated with the no-slip boundary condition
(vr(r,�h/2) = 0) to give

vr ¼
1

2m
@rp z2 � h2

4

� �
: (24)

The pressure gradient can be related to the flow rate through
the relation

Q ¼
ð
A

vrðr; zÞdA ¼
ð2p
0

rdy
ðh=2
�h=2

vrðr; zÞdz; (25)

where A is the section of reactor along the z-direction located at
a radial distance r. The integrals are readily performed to give
the following pressure profile

@rp ¼ �
6mQ
ph3r

: (26)

The radial velocity profile is thus given by

vrðr; zÞ ¼
3Q

ph3r
h2

4
� z2

� �
; (27)

which coincides with eqn (6) of the main text. The validity of
the Stokes approximation can be assessed by analyzing under
which condition the nonlinear inertial term can be neglected
compared to the viscous term:

m@z2vr
�� ��� max

z2½�h=2;h=2�
r
vrðr; zÞ2

r
¼ r

vrðr; 0Þ2
r

: (28)

Using eqn (27), we find that this condition is equivalent to

r� 3Qrh
32pm

� �1=2

: (29)

In our case, for the largest value of Q and h we consider, the
right-hand side is at most equal to 0.2 mm. Hence, the velocity
profile (27) is already established very close to the injection
valve and a Poiseuille flow is thus indeed operative under our
experimental conditions. Finally, the 2D profile adopted by the
injected fluid is given by the following ODE,

vr ¼ dtr ¼
3Q

ph3r
h2

4
� z2

� �
; rð0Þ ¼ 0; (30)

whose solution can be written as

�r2

2�t
þ �z2 ¼ 1; (31)

with %r = r/h, x = 2%z/h, %t = t/T and T = 4ph3/3Q. This is the equation
of an ellipse centered at the origin of the coordinates and
whose radius along the r-axis, i.e., at z = 0, grows as

�r ¼ ð2�tÞ1=2 ) r ¼ 3Qt

2ph

� �1=2
; (32)

whereas the radius along the z-axis stays constant in time and
equal to h/2. Combining eqn (32) with eqn (29), the condition of
validity of the Stokes approximation becomes

t� rh2

16m
: (33)

For the largest solution height used, the right-hand of this
last relation is at most equal to 0.03 s. This again shows the
need to take the Poiseuille profile (27) into account.
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