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Influence of the Péclet number on reactive viscous fingering
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The hydrodynamic viscous fingering instability can be influenced by a simple viscosity-
changing chemical reaction of type A + B → C, when a solution of reactant A is injected
into a solution of B and a product C of different viscosity is formed by reaction. We
investigate here numerically such reactive viscous fingering in the case of a reaction de-
creasing the viscosity to define the optimal conditions on the chemical and hydrodynamic
parameters for controlling fingering. In particular, we analyze the influence of the Péclet
number, Pe, on the efficiency of the chemical control of fingering. We show that the
viscosity-decreasing reaction has an increased stabilizing effect when Pe is decreased.
On the contrary, fingering is more intense and the system more unstable when Pe is
increased. The related reactive fingering patterns cover then respectively a smaller (larger)
area than in the nonreactive equivalent. Depending on the value of the Péclet number,
a given chemical reaction may thus either enhance or suppress a fingering instability.
This stabilization and destabilization at low and high Pe are shown to be related to the
Pe-dependent characteristics of a minimum in the viscosity profile that develops around
the miscible interface thanks to the effect of the chemical reaction.

DOI: 10.1103/PhysRevFluids.5.014004

I. INTRODUCTION

A hydrodynamic viscous fingering (VF) instability can deform the interface between two
different fluids when a high mobility fluid of lower viscosity displaces a more viscous and hence less
mobile one in a porous medium [1–5]. In numerous industrial and environmental problems, such as
enhanced oil recovery (EOR), CO2 sequestration, combustion, hydrology, and soil remediation, to
name a few [6–10], this fingering instability can interplay with chemical reactions. In the past few
decades, viscous fingering has been analyzed in reactive systems on both miscible and immiscible
interfaces [11–37]. If the reaction does not modify the viscosity in situ, the chemical species are
passively advected by the flow and the fingering properties of the interface remain similar to those
of the nonreactive system [11–15]. The flow in the fingering patterns can, however, change the
spatiotemporal distribution of the reactants and influence the yield of the reaction. The active
influence of chemistry on fingering can be obtained as soon as the chemical reaction taking place
around the interface between the two fluids modifies their physical properties and, in particular,
their viscosity [35–37]. The reaction then influences the stability as well as the spatiotemporal
dynamics of the flow. In turn, the hydrodynamic flow affects mixing and thus the amount and spatial
distribution of chemical species and a highly nonlinear feedback is established between chemistry
and hydrodynamics.
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For cases where reactions actively change the viscosity in situ, numerical simulations have first
shown on the basis of a bistable chemical reaction scheme that the properties of miscible VF are
modified when the reaction changes the viscosity across the reactive miscible interface [16,17]. The
bistable nature of chemical kinetics is then responsible for a new phenomenon of droplet formation
isolating regions of high or low viscosity within connected domains of the other steady state. In
other studies, the active influence of A + B → C types of chemical reactions on miscible VF has
been studied both experimentally [19,20,22,27–29,31–33] and theoretically [21,23–26,28,30,34].
Various fingering regimes have been identified depending on concentrations, fluid characteristics,
and injection flow rate.

In some experiments by Nagatsu et al., a less viscous acidic or basic aqueous solution was
injected into a more viscous polymeric solution, the viscosity of which depends on pH [20,22,27].
It is observed that, when the viscosity is increased (decreased) by the reaction, fingers are widened
(narrowed), which is mainly due to suppressed (enhanced) shielding effects. Interestingly, opposite
results have been observed at moderate reaction rates for systems with a viscosity decrease [22]
and increase [27]. In the case where the nonreactive displacement is stable (a more viscous solution
displacing a less viscous once), it has even been shown both experimentally and numerically that the
reaction is able to trigger VF [28]. Depending whether the reaction increases or decreases viscosity,
a different fingering pattern is then obtained.

The experimental study of Nagatsu et al. [20] showed that at larger injection rates Q, an
instantaneous chemical reaction can have opposite effects on miscible VF when a less viscous
(acidic or basic) solution is injected radially into a more viscous one (e.g., polymeric solution)
in a Hele-Shaw cell depending whether the reaction locally increases or decreases the viscosity. In
the viscosity-increase case, the VF pattern is “denser” in the sense that it covers a more compact
area in the Hele-Shaw cell than the nonreactive pattern. On the contrary, a VF pattern covering a
smaller area (also qualified as a “less dense pattern”) was reported in the viscosity-decrease reactive
case. Recently, new experiments have been carried out focusing on the influence of the injection
rate Q on viscosity increasing and decreasing reactive systems [29,38]. Interestingly, it was found
that, at lower injection rates, the trends are opposite than at large Q; i.e., for viscosity-decreasing
reactions, the system can be stabilized at low injection flow rates. These experiments [20,29,38]
thus clearly show that, in the presence of a viscosity decreasing reaction, the reactive VF patterns
can be controlled by varying the flow rate. Moreover, when the reaction-induced viscosity decrease
is large enough, a suppression of the VF instability can be obtained at small enough Q. In practice,
a change in the flow rate modifies the Péclet number (Pe) of the problem, i.e., the ratio between the
diffusive and convective time scales. Even though the effect of varying the relative contribution of
advection and diffusion on nonreactive miscible VF has been the focus of recent studies [39,40], the
influence of varying the Péclet number has, however, not been addressed theoretically explicitly in
the reactive cases.

In this context, our objective is to analyze numerically the influence on the VF instability of
changes in the Péclet number, Pe, when a simple A + B → C chemical reaction decreases the
viscosity in situ. To this end, we integrate numerically the reaction-diffusion-convection (RDC)
equations of reactive VF in porous media and analyze the properties of the fingering patterns
for different values of Pe. We show that a viscosity-decreasing reaction enhances stabilization or
destabilization of the interface at respectively low and high Pe, with regard to the nonreactive
system. This is related to the possibility for chemistry to build up at low Pe a minimum in the
viscosity profile that blocks the further progression of fingering and stabilizes the system. On the
contrary, at high Pe, chemistry does not have time to act to decrease the viscosity and the classical
enhancement when Pe is increased is then observed.

These results highlight the optimum flow conditions to obtain stabilization by reactions of
VF. This is of practical importance as it paves the way to possible chemical control of fingering
instabilities appearing in many practical situations ranging from geophysical to environmental
problems.
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FIG. 1. Sketch of a two-dimensional porous medium of length Lx and width Ly with permeability κ in
which a solution of reactant A with viscosity μA is displacing a solution of reactant B of viscosity μB from
left to right at a constant speed U . Here x0 and a0 are the initial contact position and initial concentration of
reactants, respectively.

This paper is organized as follows. The problem description and the related RDC model are
given in Sec. II. In Sec. II C, the numerical method used to integrate the model is discussed. The
characteristics of VF patterns and in particular the influence of the Péclet number are studied
in Sec. III. The nonreactive and reactive cases are given in Secs. III A and III B, respectively.
A quantitative analysis and parametric study are carried out in Secs. III C and IV. At the end,
conclusions and outlook are given in Sec. V.

II. PROBLEM DESCRIPTION AND GOVERNING EQUATIONS

A. Dimensional model

Consider a homogeneous two-dimensional porous medium or horizontal thin Hele-Shaw cell of
length Lx and width Ly with constant permeability κ in which a miscible solution of reactant A with
viscosity μA is injected from left to right into a solution of reactant B with viscosity μB at a constant
speed U along the x direction (Fig. 1). We assume that the initial concentrations of A and B are
both equal to a0. The initial position of the miscible interface is x0. Upon contact between the two
solutions, a simple A + B → C chemical reaction takes place in the miscible interface zone where
A and B meet by diffusion, react, and yield the product C of lower viscosity μC . The objective is to
analyze numerically how the dynamic decrease of viscosity driven by the reaction can influence the
VF instability and in particular what is the influence of the Péclet number on this effect.

To analyze the problem, the system is considered as incompressible and neutrally buoyant. The
dynamics is modeled using Darcy’s law for the velocity field along with three RDC equations for
the concentrations:

∇ · u = 0, (1)

∇p = −μ(a, b, c)

κ
u, (2)

∂a

∂t
+ u · ∇a = DA ∇2a − k a b, (3)

∂b

∂t
+ u · ∇b = DB ∇2b − k a b, (4)

∂c

∂t
+ u · ∇c = DC ∇2c + k a b, (5)
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where a, b, and c denote the concentrations of the reactants A and B and of the product C,
respectively; k is the kinetic constant; p is the pressure; DA, DB, and DC are the diffusivities of the
reactants A and B and the product C, respectively; u = (u, v) is the two-dimensional flow velocity;
and κ is the constant permeability. The viscosities of the solution when only one species is present
in concentration a0 are defined as μA, μB, and μC , respectively, in the presence of the reactants A
or B or of the product C. Following previous theoretical work [3,16,17,21,23–26,29,30,41,44], we
assume the viscosity as an exponential function of the concentrations of A, B, and C:

μ(a, b, c) = μA e[Rbb+Rcc]/a0 . (6)

This assumption, which is a good approximation for some solutes [42,43], allows to discuss the
relative effect of solution viscosities with only two dimensionless parameters: the log-mobility
ratios Rb and Rc, defined as

Rb = ln

(
μB

μA

)
and Rc = ln

(
μC

μA

)
. (7)

For the nonreactive VF case or the equivalent specific reactive case when the product C has the same
viscosity as the reactant B (i.e., Rb = Rc), the system is unstable when the lower viscosity solution
of A displaces the more viscous solution of B, i.e., when μA < μB or Rb > 0. Let us analyze how
this stability is changed when both μC and the relative effect of advection and diffusion are varied.

B. Nondimensional equations

To specifically let the Péclet number appear in the dimensionless problem, the reference scales
for length, velocity, time, concentration, viscosity, diffusivity, and pressure are taken as Ly, U , Ly/U ,
a0, μA, DC , and μAULy/κ , respectively. For simplicity, equations are written in a reference frame
moving with speed U by transforming variables as x → x − Utex and u → u − Uex with ex being
the unit vector along the x direction. The dimensionless forms of (1)–(6) can then be written as

∇ · u = 0, (8)

∇p = −μ(a, b, c)(u + ex), (9)

∂a

∂t
+ u · ∇a = δaPe−1∇2a − Da a b, (10)

∂b

∂t
+ u · ∇b = δbPe−1∇2b − Da a b, (11)

∂c

∂t
+ u · ∇c = Pe−1∇2c + Da a b, (12)

μ(a, b, c) = e(Rbb+Rcc), (13)

where Da=ka0Ly/U =τh/τc is the dimensionless Damköhler number defined as the ratio of the
hydrodynamic time scale τh =Ly/U to the chemical time scale τc =1/ka0. The Péclet number Pe=
ULy/DC = τD/τh is the ratio of the diffusive time τD = L2

y/Dc and the advective time τh while δa =
DA/DC and δb =DB/DC are the diffusion coefficient ratios. The dimensionless width of the domain
becomes thus equal to 1 while the dimensionless length is given by the aspect ratio A = Lx/Ly.
Taking the curl of the momentum equation and defining the stream function ψ (x, y) as u=∂ψ/∂y
and v=−∂ψ/∂x, we get

∇2ψ = Rb(ψxbx + ψyby + by) + Rc(ψxcx + ψycy + cy), (14)

at + axψy − ayψx = δaPe−1∇2a − Da ab, (15)

bt + bxψy − byψx = δbPe−1∇2b − Da ab, (16)

ct + cxψy − cyψx = Pe−1∇2c + Da ab, (17)
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where the subscripts x and t represent the respective derivatives. The last term in (15)–(17)
corresponds to the reaction rate R:

R(x, y, t ) = Da a(x, y, t )b(x, y, t ), (18)

which quantifies the importance of the reaction terms in the dynamics.
Comparing the present RDC model (14)–(17) with those previously studied in the literature

[5,21,23,26,39], we note that (i) when Da=0 we recover the classical model for nonreactive VF
similar to the one studied by Tan and Homsy [5,39], (ii) when Da �=0, Pe=1, and Rb =0 we obtain
the model of reactive VF for solutions of A and B of the same viscosity as analyzed numerically by
Gérard and De Wit [21], and (iii) when Da �=0 and Pe = δa =δb =1, we get back to the reactive VF
model with A, B, and C of different viscosity but species diffusing all at the same rate as studied by
Hejazi et al. [23] and Nagatsu and De Wit [26].

In reality, the various chemical species involved typically do not diffuse at the same rate as when
the reaction produces or consumes big molecules like polymers or micelles, for instance [19,32,33].
Differential diffusion effects might then play an important role in fingering as shown previously
[21,44,45]. A detailed analysis of double diffusive effects coupled to variations of the Péclet number
in reactive conditions is, however, outside the scope of this paper and will be developed in future
studies. We keep, therefore, δa = δb = 1 in the sequel of this article.

Equations (14)–(17) are integrated using periodic boundary conditions in both directions. This is
standard for the transverse direction. In the longitudinal direction, we ensure that this does not have
any effect on the dynamics by using a large aspect ratio A = Lx/Ly such that the dynamics of the
reactive zone does not confront its periodic extension [5].

The initial conditions for the stream function and product concentration are taken as ψ (x, y)=0
and c(x, y)=0, for all (x, y), respectively. For the initial concentrations of the reactant A and B
solutions, we use a step front between a = 1, b = 0 on the left and b = 1, a = 0 on the right of
x=x0 with a random noise of amplitude of order 10−2 added in the front to trigger the instability.
The dimensionless system size is A × 1. Equations (14)–(17) together with the initial and boundary
conditions form an initial-boundary value problem with six dimensionless control parameters,
namely, Pe, Rb, Rc, Da, δa, and δb. As we have fixed δa = δb = 1 to avoid differential diffusion
effects, we explore here the role of tuning Pe and the effect of reaction by varying Da and Rc for a
given Rb.

C. Numerical method

To solve Eqs. (14)–(17), we use a pseudospectral numerical scheme based on the discrete
Fourier transform library FFTW 3.3.4 [5,16,17,21,46]. The numerical domain (A × 1) has a size
(32 × 1) and is discretized into 4098 × 128 mesh points such that the spatial step sizes are
dx = dy = 1/128. A convergence study analyzing the values of dx, dy and dt below which the
nonlinear finger dynamics and the averaged value of the mixing lengths do not change any more has
fixed the optimum time step of numerical integration as dt = 10−4. To validate our code, we have
successfully reproduced previous nonlinear simulation results of nonreactive [5,39] and reactive
[21,23,26] systems.

III. RESULTS

A. Nonreactive system

It is already known that, in the absence of any reaction effect (Da = 0 or Rb = Rc [23,26]),
increasing Pe increases the destabilization of the interface by VF when Rb > 0 [4,5,39]. As a
reference case, this observation is shown in Fig. 2, which illustrates the concentration of reactants
A and B for Pe = 100 and Pe = 1000, respectively, at four different times. As Pe increases,
fingering becomes more intense and the wavelength of the pattern decreases as the interface becomes
more unstable. It is also observed that, at low Pe, the deformed interface tends to flatten as time
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FIG. 2. Equivalent nonreactive (Rb = Rc = 2) system: Concentrations of A and B for (a, b) Pe = 100 and
(c, d) Pe = 1000 at four different times (from top to bottom). Concentration fields are scaled between zero
(blue) and 1 (red). The viscosity (not shown) varies in a similar way as the concentration of B.

evolves, thanks to transverse diffusion. Note that, as all lengths are scaled here by Ly such that the
dimensionless width is equal to 1, the wavelength of the fingers depends in our simulations on Pe.
This reference nonreactive case gives more than a dozen fingers at Pe = 1000 [Figs. 2(c) and 2(d)].

Figure 3 compares the one-dimensional profiles of the concentrations of A and B, and the
logarithm of viscosity, ln(μ), at a fixed transverse location y = Ly/2 for Pe = 100 at time t = 30
and Pe = 1000 at t = 5, respectively. As a reference, the white line y = Ly/2 is shown in the
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FIG. 3. Spatial profiles of concentrations of A (dashed blue line), B (dash-dotted red line), and of ln(μ)
(solid magenta line) along the injection direction at y = Ly/2 for Rb = Rc = 2 and (a) Pe = 100 at t = 30 and
(b) Pe = 1000 at t = 5 (see Fig. 2). The top figures represent the corresponding two-dimensional map of ln(μ)
through which the one-dimensional sections are shown.
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FIG. 4. Reactive VF at Rb = 2, Rc = −2, and Da = 1. The (a–e) first and (f–j) second columns represent
the concentrations of A, B, C, viscosity in log-scale [ln(μ)], and R for Pe = 100 and 1000 at various times,
respectively. A and B are scaled between zero (blue) and 1 (red), C is scaled between zero (blue) and 0.5 (red),
and ln(μ) and R are shown in their absolute values.
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FIG. 5. Same as Fig. 3 but for the reactive case at Da = 1 (see Fig. 4).

corresponding two-dimensional map of ln(μ) on the top of the panels. The concentrations and
viscosity profiles at large Pe show bump characteristics of the fingering instability and a sharp
jump at the tip of the finger, coherent with an increased destabilization when Pe increases. On the
contrary, the profiles are quasilinear between the end-point values at small Pe, indicating a more
stable interface. This stabilizing effect at low Pe is in agreement with previous results [3,5,39].

B. Reactive system

Let us now analyze the effect of Pe on reactive VF when an A + B → C reaction produces the
product C of lower viscosity with a negative value of Rc, such that the viscosity of the system
develops in time a minimum around the reactive front.

In order to compare reactive fingering with the nonreactive one of Sec. III A, we consider in
this section two representative cases: Pe = 100 and Pe = 1000. Figure 4 shows the concentrations,
ln(μ), and reaction rate R at Da = 1, Rb = 2, and Rc = −2 for Pe = 100 and 1000. Two opposite
behaviors are obtained at low and high Pe: At Pe = 1000, fingering is more intense than in the
nonreactive case with coarsening, and more repetitive shielding and tip splitting [26]. The fingered
zone extends on a larger spatial extent than in the nonreactive case (Fig. 2), suggesting that the
reaction has here a destabilizing effect. The reaction rate R [see Eq. (18)], which is nonzero where
the reaction proceeds, is seen to extend along the finger edges. Similar to the nonreactive fingering,
it is found that the system tends to stabilize for Pe = 100. The reaction proceeds essentially in a
localized zone at the rear of the finger. As a consequence, more C is produced there which decreases
locally the viscosity, stabilizing further the zone between A and C.

A comparison of the one-dimensional profile of the logarithm of the viscosity, ln(μ), at location
y = Ly/2 in the nonreactive [Fig. 3(b)] and reactive [Fig. 5(b)] cases shows that, at Pe = 1000, the
decrease in viscosity induced by the reaction leads to a sharper viscosity jump which can explain
the increased destabilization. As a consequence, fingering extends both in the A- and B-rich regions
with the reaction rate being localized at the fingered frontier between the two reactants. On the
contrary, at Pe = 100, a minimum in viscosity develops in the course of time where the less viscous
C is produced by the reaction [Fig. 5(a)]. The reaction rate correspondingly decreases in time and
remains strongly localized at a given location [Fig. 4(e)]. The time scales are also longer as more
time is needed to cover the same distance. Interestingly, fingering is weak and remains for a longer
time in the boundary zone where the less viscous C displaces the more viscous B than in the stable
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FIG. 6. Transverse averaged (a, b) concentration, (c, d) viscosity, and (e, f) reaction rate profiles corre-
sponding to the reactive fingering case of Fig. 4 for Pe = 100 (left column; a, c, e) and Pe = 1000 (right
column; b, d, f). The dashed, dash-dotted, and solid lines in (a) and (b) depict concentrations of A, B, and C,
respectively. The black, red, green, blue, and magenta colors in (a), (c), and (e) correspond to t = 0, 10, 20, 40,
and 50, respectively, while those in (b), (d), and (f) correspond to t = 0, 1, 3, 5, and 10, respectively.

part of the nonmonotonic viscosity profile where A pushes the less viscous C. This means that,
in experiments where often a dye is used to visualize the fingering pattern, the instability would
quickly become unnoticeable if the dye is diluted in the injected A reactant [29].
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A comparison of the spatiotemporal distribution of A in Fig. 2 (nonreactive) and Fig. 4 (reactive)
leads thus to the conclusion that, at high Pe, reactive fingering is more intense with more ramified
fingers that cover a larger area in the presence of reaction. On the contrary, at low Pe, fingering is
stabilized by the reaction. The effect of the reaction decreasing the viscosity has thus an opposite
effect on the flow at high and low Pe, as observed experimentally [20,29].

C. Quantitative analysis

In order to understand the opposite dynamics at low and high Pe, and to quantify the influence
of varying Pe on reactive VF, we compute the one-dimensional transverse averaged profiles 〈ζ 〉 of
a given quantity ζ (x, y, t ) such as concentration or viscosity, for instance, as

〈ζ 〉 = 1

Ly

∫ Ly

0
ζ (x, y, t ) dy. (19)

In the absence of fingering (Rb = Rc = 0), these profiles are equivalent to the one-dimensional
reaction diffusion profiles. For the simulations of reactive fingering in Fig. 4, the temporal evolution
of some of these transversely averaged profiles is shown in Fig. 6.

In the convective flow regime, the fingering pattern starts to develop around the reactive interface
as soon as solutions A and B react and produce a less-viscous product C [see Figs. 6(a) and 6(b)].
As the system evolves in time, we see that increasing amounts of A and B are consumed and that
the total amount of product 〈c(x, t )〉 increases. The corresponding reaction rate 〈R(x, t )〉, shown
in Fig. 6(e), decreases in time when A and B are consumed and are progressively separated by C.
Figure 6(c) shows the development of viscosity at low Pe as time evolves. We see that a minimum
in viscosity develops in time at the back of the reaction front where the product concentration is
maximum which can also be seen from Figs. 4(c) and 4(d). Owing to the viscosity minimum, the
interface between A and C is stabilized, which can clearly be observed in Fig. 4(a) as the interface
tends to flatten. On the contrary, the interface between B and C where the less viscous C pushes the
more viscous B indicates the presence of VF. Nevertheless, transverse diffusion finally dominates
VF, and the interface between B and C eventually stabilizes again [see Figs. 4(a)–4(e)].

Let us now analyze quantitatively fingering patterns at larger Pe. We have noticed in Figs. 4(f)–
4(j) that reactive VF is destabilizing at high Pe in contrast to a stabilizing trend at low Pe.
Figures 6(b), 6(d), and 6(f) show that, at high Pe, when VF is present, the transverse averaged
concentration profiles feature bumps, indicating the presence of forward and backward fingering. In
contrast to fingering at the back, forward fingering shows merging and tip splitting [see Figs. 4(f)–
6(j)]. Similar to the concentration, the log viscosity, Fig. 6(d), and reaction rate profiles, Fig. 6(f),
show similar features. The center of mass of these profiles is shifted towards the right of the reaction
front, indicating the presence of more elongated fingering in the B-rich region. While, at low Pe, the
viscosity minimum formed at the back of the reaction front gives rise to stabilization, it is absent at
high Pe because advection dominates the dynamics and does not let the reaction-diffusion processes
build up the stabilizing minimum in viscosity. Nevertheless, the gradient in viscosity is sharper,
which explains the destabilization at higher Pe.

IV. PARAMETRIC STUDY

We have seen that fingering is stabilized at lower Pe when the viscosity decreases thanks to
a chemical reaction. To gain more insight into this stabilization effect, a parametric study is next
carried out at several low Pe values to understand the effect of varying the Damköhler number Da
and the viscosity of the product by changing the log-mobility ratio Rc.

In order to do so, we compute the mixing lengths La, Lb, and Lc of the concentration of reactants A
and B and of the product C as the horizontal distance between points where the transverse averaged
profile has a value between ε and 1 − ε, where ε is a small positive number which is set to 0.01 in
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FIG. 7. From top to bottom in each column: concentrations of A, B, and C, ln(μ) and R at successive time
steps (t = 10, 20, 30 and 40) at Pe = 100 with Rc = −2 (first column), Rc = 0 (second column), and Rc = 2
(equivalent of the nonreactive case, third column). Other parameter values are as in Fig. 4.

the present simulations [5,21,26,44,47–49]. For species A, for instance, we have thus

La = x|〈a〉=ε − x|〈a〉=1−ε . (20)

Similarly, the mixing lengths Lb and Lc for the solution of reactant B and the product C, respectively,
are defined as

Lb = x|〈b〉=1−ε − x|〈b〉=ε and Lc = x|〈c〉>ε. (21)

In the initial diffusive regime, the mixing length varies as ∼√
t while it starts to grow faster when

the dynamics enters the nonlinear convective regime [50].
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FIG. 8. (a) Long time asymptotic one-dimensional reaction diffusion profiles for ln(μ) and (b) temporal
variation of the mixing length for A for Rc: −2 (solid line), 0 (dashed line), and 2 (dash-dotted line). Other
parameter values are as in Fig. 7.

A. Effect of mobility ratio Rc at Rb > 0

The effect of changing the log-mobility ratio Rc is shown in Fig. 7 for three values Rc = −2, 0,
2. We remind that, when Rb = Rc (= 2 here), the consumption of B is balanced by the production
of C; hence the dynamics of the reactive case is equivalent to that of the nonreactive system. When
0 < RC < Rb, the viscosity decreases by the reaction but the viscosity profile remains monotonic in
space. On the contrary, if Rc < 0, a minimum in viscosity develops in time. For Rb = 2, the cases
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FIG. 9. Temporal variation of the mixing length at Rc: −2 (solid line), 0 (dashed line), and 2 (dash-dotted
line) for species (a) B and (b) C. Other parameter values are as in Fig. 7.
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FIG. 10. Same as Fig. 7 but for Rc = −2 and different values of Pe: 100 (first column), 150 (second
column), and 300 (third column) at different times.

Rc = 2, Rc = 0, and Rc = −2 represent thus the (i) nonreactive VF, (ii) reactive VF with monotonic
viscosity, and (iii) reactive VF with a viscosity minimum, respectively.

By comparing concentrations of A, B, and C for various time steps in these three cases, we
see that, when Rc < 0, the viscosity minimum has the following effects: (i) the interface between
A and C stabilizes rapidly and the mixing of reactant A decreases as compared to the other two
cases and (ii) as time evolves, the mixing region between C and B increases and stops fingering in
time, displacing more B by the product C. The reactive VF is stabilized at low Pe by the viscosity
minimum compared to the reactive VF case with monotonic viscosity or the nonreactive VF.

The origin of this stabilization can be explained through the long time asymptotic one-
dimensional reaction-diffusion (RD) profiles of ln(μ), as shown in Fig. 8(a). If Rc = −2, the
reaction diffusion viscosity front moves in time from the higher viscosity region of B to the lower
viscosity region of A [see Fig. 8(a)]. Due to the presence of a lower viscosity region containing C,
the profile of ln(μ) develops a minimum in the A-rich region. While the gradients d (lnμ)/dx are
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FIG. 11. (a) Long-time asymptotic RD profiles of ln(μ) for Pe = 100 (solid line), 150 (dashed line), 300
(dash-dotted line), and 1000 (dotted line). Reactive and nonreactive cases are shown by arrows pointing towards
curves at decreasing Pe. (b) Temporal evolution of the mixing length of A for different Pe. Other parameter
values are as in Fig. 10.

decreasing with Rc on the left of the reaction front (x − x0 < 0), those on the right (x − x0 > 0)
are increasing. Specifically, when x − x0 > 0, the slope of the RD profiles of ln(μ) becomes steep,
steeper, and steepest when Rc takes values 2, 0, and −2, respectively. On the other hand, when
x − x0 < 0 the opposite trend is observed; i.e., the slope tends to the low, lower, and lowest value
when Rc is equal to 2, 0, and −2, respectively. Consequently, in the RDC system, the instability at
the interface between A and C (C and B) is suppressed (enhanced) when Rc = −2, as observed in
Fig. 7. Owing to this, when Rc = −2, the miscible interface between A and C is more stable as is
the case when a higher viscosity fluid displaces a lower viscosity one. As a consequence, the mixing
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FIG. 12. Same as Fig. 11(b) but for the (a) reactant B and (b) product C.
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FIG. 13. Same as Fig. 7 but for Pe = 100 and different values of Da: 0.5 (first column), 1 (second column),
and 5 (third column).

length La of A decreases rapidly as time evolves and finally reaches a steady value which is the
lowest among all cases, as shown in Fig. 8(b).

In contrast to the interface between A and C, the interface between C and B is more unstable
when Rc = −2 because d (lnμ)/dx is then the steepest [see Fig. 8(a)]. This can also be noticed
in the evolution of the mixing length of B and C in Figs. 9(a) and 9(b). We see from Figs. 9(a)
and 9(b) that the mixing between the reactant B and the product C increases more rapidly as Rc

decreases. Consequently, the instability at the miscible interface between B and C starts earlier and
the mixing lengths Lb and Lc increase more in time as Rc decreases. As time evolves (far from the
onset), due to the transverse diffusion, Lb and Lc saturate to a value which increases with decreasing
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FIG. 14. Same as Fig. 11 for variable Da: 0.5 (thick dashed line), 1.0 (thick solid line), and 5.0 (thick
dot-dashed line). The thin dashed line in (a) represents the nonreactive case.

Rc. The widening of the zone rich in B is thus larger when Rc = −2 in comparison to Rc = 0 and
Rc = 2 (nonreactive). Thus, the effect of the presence of a viscosity minimum for Rc < 0 is that
(i) La decreases after some time, and (ii) Lb and Lc are larger than in the monotonic (Rc = 0) and
nonreactive (Rb = Rc) cases. From Figs. 4–9, we can thus conclude that, when Rc = −2, the front
between A and C stabilizes, the mixing between B and C is increased, and the displacement of B is
larger.

B. Effect of Péclet number, Pe

In the previous section, we saw in Figs. 8 and 9 that the onset time of fingering (defined
as the time at which the mixing lengths depart from the

√
t diffusive trend) decreases; i.e., the
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FIG. 15. Same as Fig. 14(b) but for the mixing length of reactant B and product C.
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system is initially more unstable as Rc decreases. We now fix Rc = −2 and analyze the effect
on fingering of changing Pe, keeping it nevertheless at a small value as this is the range where
chemical reactions have a stabilizing effect and as the large Pe case has already been partially studied
[24]. Specifically, concentrations, log-viscosity, and the reaction rate are shown for Pe = 100
(first column), 150 (second column), and 300 (third column) in Fig. 10. We see that the system
becomes more unstable when increasing Pe. This can be understood by inspecting the long-time
asymptotic one-dimensional RD profiles shown in Fig. 11(a). The nonreactive displacement is more
unstable when Pe increases because the gradient of viscosity, d (lnμ)/dx, is correspondingly sharper.
Similarly, viscosity gradients in the reactive RD systems are larger when Pe increases as diffusion
is then less efficient to smooth the viscosity profile. Consequently, the RDC system also becomes
more unstable with increasing Pe, as shown in Fig. 10, and on the evolution of the mixing lengths
[see Figs. 11(b) and 12], where we see that the onset time of the fingering instability decreases with
increasing Pe. The smaller Pe, the quicker the mixing lengths tend to a steady state value at low Pe,
whereas at large Pe the mixing lengths are increasing irrespective of the viscosity minimum at the
interface for RD system. These results again show that, in the limit of large Pe, reactive VF is more
intense and the reaction tends to destabilize the system while, in the limit of low Pe, reactive VF is
softened and tends to stabilize as compared to the nonreactive case.

C. Effect of Damköhler number, Da

To study the effect of varying the Damköhler number on the stabilization of fingering thanks to
reactions decreasing the viscosity, Fig. 13 depicts the concentrations, ln(μ), and the reaction rate
R at successive times for three values of Da. We see that, when Da increases (i.e., the reaction
occurs faster), the viscosity minimum develops more quickly [see also RD profiles of viscosity in
Fig. 14(a)], the amount of product C formed at a given time increases, and the reaction rate R
decays faster because the regions that are depleted in A and/or B which have reacted and have been
replaced by C become wider. As a consequence, when Da increases, the miscible interface between
A and C stabilizes faster and the steady value of La decreases [Fig. 14(c)]. In parallel, the interface
between B and C becomes uniform in time, and the corresponding values of Lb and Lc saturate (see
Fig. 15). The reactive system is thus globally more stable at low Pe when Da is larger.

We conclude thus from this parametric study that the displacement tends to stabilize (destabilize)
at lower Pe (high Pe) for Rc < 0, and larger Da (smaller Da). The optimal conditions to avoid
fingering can thus be achieved when the viscosity is decreasing by a fast chemical reaction provided
the Pe number is kept as low as possible to allow the minimum in viscosity to build up.

V. CONCLUSION AND OUTLOOK

We have here analyzed the influence of varying the Pe number on reactive VF driven by a
simple A + B → C type chemical reaction decreasing the viscosity in situ. To do so, we have
numerically integrated Darcy’s law for the evolution of the flow velocity and RDC equations for
the concentrations coupled by a viscosity profile depending dynamically on the concentration
of the chemical species. The relative importance of advection and diffusion has been varied by
changing the values of the dimensionless parameter Pe. Nonlinear simulations have been performed
to characterize the properties of reactive VF when a solution of a reactant A displaces a solution
of B to produce the less viscous product C at the miscible reactive interface. At lower Pe, the VF
instability is less intense in both reactive and nonreactive cases because the viscosity gradients
are smoothed out by diffusion. The reactive VF pattern covers nevertheless a larger area; i.e., it
is spatially denser than the nonreactive pattern. These observations are in good agreement with
experiments [20,29]. Similarly to the nonreactive case, at higher Pe, VF is enhanced in reactive
systems when the viscosity minimum does not have time to build up. Less-dense fingering patterns
and more mixing are then observed. In other words, the fingering patterns at high Pe cover a smaller
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area than at low Pe. In terms of displacement efficiency, the presence of a viscosity minimum at
lower Pe is found to optimize a homogeneous and regular displacement with less convective mixing.

Our study provides a theoretical framework to control VF in many geophysical processes,
e.g., reactive pollutant displacement, CO2 sequestration, and EOR. Recently, it has been shown
that fingering instabilities in the application of EOR can be controlled by introducing a viscosity
minimum in the zone of contact between the two fluids via the formation of foam between the
injected gas and displaced oil [9]. In this context, the present study (i) provides a connection between
viscosity minimum and stabilization, (ii) introduces a way to control VF by controlling the value of
the Péclet number, and (iii) shows that, at low Pe, the reactive VF improves the sweep efficiency in
comparison to the nonreactive conditions.
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