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Adsorption inhibition by swollen micelles may
cause multistability in active droplets

Matvey Morozov

Experiments indicate that microdroplets undergoing micellar solubilization in the bulk of surfactant

solution may excite Marangoni flows and self-propel spontaneously. Surprisingly, self-propulsion

emerges even when the critical micelle concentration is exceeded and the Marangoni effect should be

saturated. To explain this, we propose a novel model of a dissolving active droplet that is based on

two fundamental assumptions: (a) products of the solubilization may inhibit surfactant adsorption;

(b) solubilization prevents the formation of a monolayer of surfactant molecules at the droplet interface.

We use numerical simulations and asymptotic methods to demonstrate that our model indeed features

spontaneous droplet self-propulsion. Our key finding is that in the case of axisymmetric flow and

concentration fields, two qualitatively different types of droplet behavior may be stable for the same

values of the physical parameters: steady self-propulsion and steady symmetric pumping. Although

stability of these steady regimes is not guaranteed in the absence of axial symmetry, we argue that they

will retain their respective stable manifolds in the phase space of a fully 3D problem.

1 Introduction

Chemically active microdrops submerged in the bulk of reagent
solution may excite a flow in the surrounding fluid.1 For instance,
hydrolysis of fatty acid precursors may enable spontaneous self-
propulsion of microdroplets in the bulk of fatty acid solution,2

while spontaneous motion and emulsification was observed in
droplets producing amino acid-based surfactants.3 Motility of
microdroplets was also achieved in a wide class of systems
featuring micellar solubilization in the case of both normal4–6

and inverse emulsions.7 In experiments, dissolving droplets may
self-propel along a straight or chaotic trajectory,1,5–7 while
droplets of nematic liquid crystal also exhibit helical self-
propulsion regime.4,6 Multiple active drops ‘‘feel’’ each other’s
presence and adjust their behavior: they may form ordered
clusters,8,9 repel,5 or avoid crossing each other’s trails.4

Robust active behavior and potential biocompatibility7 of
active droplets makes them compelling building blocks for
active matter engineering. Accordingly, substantial theoretical effort
is aimed at developing reliable models of active droplets.7,10–16 State-
of-the-art models attribute spontaneous motion of active droplets to
the Marangoni effect, that is, an interfacial flow emerging due to a
chemically-induced gradient of the droplet surface tension.7,10–13,16

For simplicity, diffusion-controlled surfactant sorption kinetics is
typically postulated, when surfactant concentration at the interface
is proportional to the bulk concentration.7,11–15 Existing models also

assume that the chemical reaction at the interface is a 0th7,13–16

or 1st11,12 order reaction.
We argue that existing models impose a set of restrictive

assumptions that are violated when surfactant concentration
exceeds the critical micelle concentration (CMC). At the same
time, most observations of droplet motility due to micellar
solubilization were conducted at surfactant concentrations far
exceeding the CMC.4–7 In this case, concentration of the monomers
available for adsorption at the droplet interface should always be
close to the CMC and it is unclear how an active droplet establishes
the concentration gradient necessary for the onset of the Marangoni
flow. Moreover, high values of the surfactant concentration required
for the onset of the droplet motion hint that kinetics of the
corresponding reaction is highly nonlinear, as it is supposed to
be in the case of micelle assembly.17

In this paper, we construct a theoretical model linking the
spontaneous motion of a slowly dissolving microdrop with the
specifics of surfactant sorption and micelles production at its
interface. Our goal is to specifically consider micellar solubilization
in a highly concentrated surfactant solution and identify: (a) how
Marangoni flows may emerge at high surfactant concentrations,
(b) what is the effect of nonlinear micelle assembly kinetics on the
droplet dynamics, and (c) what is the effect of surfactant
aggregates on the behavior of active droplets. The paper is
organized as follows. We formulate the model and outline its
basic features in Section 2. In Section 3, we present the results of
our numerical simulations, while details of our numerical
methods and supporting asymptotic analysis are described in
Appendices C and D. Finally, we discuss our findings in Section 4.
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Bruxelles (ULB), CP231, 1050 Brussels, Belgium. E-mail: matvey.morozov@ulb.ac.be

Received 13th April 2020,
Accepted 4th June 2020

DOI: 10.1039/d0sm00662a

rsc.li/soft-matter-journal

Soft Matter

PAPER

http://orcid.org/0000-0003-3189-9138
http://crossmark.crossref.org/dialog/?doi=10.1039/d0sm00662a&domain=pdf&date_stamp=2020-06-11
http://rsc.li/soft-matter-journal


This journal is©The Royal Society of Chemistry 2020 Soft Matter, 2020, 16, 5624--5632 | 5625

2 Model formulation

We consider a spherical droplet that is submerged in the bulk of a
surfactant solution and undergoes gradual micellar solubilization, as
sketched in Fig. 1. When surfactant concentration exceeds the CMC,
there should be at least three distinct chemical species involved in
the solubilization process. The first are surfactant monomers; they
are adsorbed at the droplet interface and serve as building blocks for
the second species, swollen micelles, that carry a minuscule amount
of fluid from the drop and, thus, constitute the product of the
dissolution process. In addition, excess of monomers in the bulk
leads to formation of regular micelles that are the third species
contributing to the phenomena we aim to model. When droplet
dissolution is slow, it is natural to assume that monomers and
regular micelles remain in equilibrium, i.e., regular micelles are
constantly assembled or disassembled to keep the bulk con-
centration of monomers constant and equal to the critical micelle
concentration, CCMC. This assumption allows us to disregard the
bulk transport of monomers and regular micelles.

In contrast to the regular micelles, swollen micelles are filled
with liquid and can not be easily disassembled, as their
dissociation requires creation of a tiny droplet with a ‘‘clean’’
interface (which is equivalent to reversing the micellar solubilization
altogether). Based on this, we postulate that swollen micelles can
not be disassembled and forever dwell in the bulk fluid, where their
transport is governed by the advection–diffusion equation,

qt*M* + uo*�rM* = DMr2M*, (1)

where * is used to mark dimensional variables, t* is time, M*
denotes the concentration of swollen micelles, uo* is the flow
velocity outside of the drop, and DM is the swollen micelles
diffusivity. Since typical size of an active microdrop in experi-
ments is B10 mm,4–7 we may safely neglect inertia and employ
Stokes equations to describe the flow field within, ui*, and
around the drop, uo*. We also emphasize that in our model
neither of the chemical species may penetrate into the droplet.

Following Karapetsas et al., we model micelles production
rate at the droplet interface as,17

jr* = Kr(G*)d, (2)

where Kr is the rate constant, G* denotes concentration of
adsorbed monomers, and d is an integer corresponding to
the preferred number of monomers in a swollen micelle.18

We assume that swollen micelles are not accumulated at the

interface. In this case, desorption flux of swollen micelles at the
droplet interface yields,

�DMqr*M* = jr* at r* = R, (3)

where R is the droplet radius that is assumed to be constant,
as the time of total droplet dissolution is exceedingly large
compared to the typical timescale of the fluid flow.

Production of swollen micelles at the droplet interface is
sustained by adsorption of surfactant monomers from the bulk.
Here we employ a novel model of sorption kinetics that takes
swollen micelles into account. Specifically, experiments reveal
that self-propelling active droplets avoid crossing each other’s
paths.4 It is hypothesized that this feature is due to the trail of
swollen micelles that is left behind a self-propelling active drop. We
assume that swollen micelles may interfere with the distribution of
the monomers near the drop and, to incorporate this effect into the
model, postulate that the sorption flux, js, depends on micelles
concentration as follows,

js* = Kae�amM*CCMC at r* = R, (4)

where Ka and am are adsorption and inhibition coefficients,
respectively. In essence, eqn (4) posits that micelles act as an
adsorption inhibitor. This assumption is based on an intuition that
diffusive transport of swollen micelles (i.e., large aggregates) away
from the droplet interface is not efficient, while advection mainly
redistributes swollen micelles along the interface. For instance, in
the case of a self-propelling droplet, all of the produced swollen
micelles will be pushed towards the back pole of the moving drop,
creating a swollen micelle-rich zone. Since, swollen micelles can not
be easily disassembled, they simply occupy space in the sublayer
adjacent to the droplet interface and, thus, may partially block the
adsorption of monomers. We further assume that regular micelles
do not inhibit adsorption, since regular micelles may be disas-
sembled to compensate for the shortage of monomers. We also note
that desorption is disregarded in eqn (4) for simplicity.

Monomers adsorbed at the droplet interface are continually
consumed to produce swollen micelles. In this situation, although
the CMC is reached in the bulk, amount of adsorbed monomers
may still be insufficient for the formation of a continuous monolayer
that hinders interfacial mobility.19 Therefore, we assume that
monomer mobility along the interface is unrestricted and model
their interfacial transport using a 2D advection–diffusion equation,

qt*G* + r2�(u2*G*) = DGr2
2G* + js* � djr*, (5)

where r2 and u2* denote the interfacial gradient operator and
interfacial flow velocity, respectively, while DG is the interfacial
diffusivity. Accordingly, we also assume that flow velocity is
continuous at the droplet interface.

Since we postulate that interfacial mobility is unrestricted and
neglect possible adsorption of micelles, droplet surface tension
may only depend on the interfacial concentration of monomers,

g = g0 � gG(G* � G0), (6)

where g0, G0, and gG are constants. Uneven surface tension
contributes to the balance of stresses at the droplet interface via

Fig. 1 A spherical microdroplet gradually dissolving in the bulk of a
surfactant solution. In the course of the dissolution, surfactant monomers
adsorbed at the droplet interface form swollen micelles that carry away a
small portion of liquid from the drop.
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the Marangoni effect. Note that the droplet is assumed spherical at
all times and the balance of normal stresses may be disregarded.

Finally, when the coordinate system is co-moving with the drop,
far away from the drop the flow is unidirectional, uo* =�UN*, and
swollen micelles concentration vanishes, M* = 0. Here, UN*
denotes droplet self-propulsion velocity that is determined from
the condition that the total force acting on the drop is equal to 0.

To obtain dimensionless form of the model, we use R and
GCMC � KaCCMCR2/DG as a unit of distance and interfacial
concentration, respectively. Then we introduce a unit velocity,
V � gGGCMC/Zo, a unit of time, R/V, and a unit of the swollen
micelles concentration, KrRG

d
CMC/DM. Resulting dimensionless

model equations are shown in Appendix A and include six
parameters: swollen micelle size, Péclet number, diffusivity
contrast, viscosity contrast, and dimensionless inhibition and
rate constants, respectively,

d; Pe � VR

DM
; D � DM

DG
; Z � Zi

Zo
; (7)

km �
amKrRGd

CMC

DM
; kr �

KrR
2Gd�1

CMC

DG
: (8)

Note that in experiments, Péclet number is typically estimated
based on the droplet self-propulsion velocity, UN* � VUN. In our
model, this ‘‘experimental’’ Péclet number can be obtained as,
Peexp � PeUN.

3 Numerical simulations

For simplicity, we simulate the droplet dynamics in the case of
axisymmetric flow and concentration fields. To solve the model
equations numerically, we follow ref. 14 and employ truncated
expansions in Legendre harmonics. Our simulations involve two
steps: (a) the time-marching procedure is used to reach a steady flow
regime around the droplet, (b) the result of time-marching then
serves as an initial condition for the method of natural continuation
that we use to obtain steady flow and concentration fields for
different values of the problem parameters. We then numerically
assess the linear stability of these steady flows. Detailed description
of our numerical procedure in provided in Appendix D.

3.1 Spontaneous droplet self-propulsion requires small
diffusivity contrast

Similarly to the models from ref. 13, 14, 20 and 21, our model
features a symmetry-breaking instability that results in the
spontaneous self-propulsion of the droplet. This instability is
due to a positive feedback mechanism enabled by advection
of reagents in the bulk fluid. Specifically, advection carries
swollen micelles away from the front of the moving droplet,
thus enhancing the adsorption of surfactant monomers (as per
eqn (4)); in turn, increased surfactant adsorption causes a
decrease in interfacial tension at the droplet front, resulting
in the Marangoni flow that further boosts advection.

Unlike the models from ref. 13, 14, 20 and 21, our model
also accounts for the advection of adsorbed surfactant monomers
along the droplet interface, eqn (5). Physical intuition suggests

that interfacial advection should homogenize the interfacial con-
centration of the surfactant, dampen the Marangoni flow, and,
therefore, hinder the droplet self-propulsion. Consequently, a droplet
may self-propel only when the bulk advection ‘‘outperforms’’ its
interfacial counterpart. Since the velocity scale of the bulk and
interfacial flow is the same, the difference in efficiency of advective
transport must emerge due to different diffusivity of swollen micelles
and adsorbed monomers which is quantified by the diffusivity
contrast D. In Appendix C, we use linear stability analysis to obtain
the maximal value of D that allows for the droplet self-propulsion.
Specifically, we demonstrate that the critical Péclet number for
the onset of self-propulsion is given by,

Pe1 ¼
2ð2þ 3ZÞ 4þ krd

2k1�1=d 2þ kmkð Þ
� �
kmkrdk2 � 8Dk1=d

; (9)

where k�W(km/(dkr))/km and W(x) is Lambert W function. Since
the onset of self-propulsion requires a finite and positive Pe1,
eqn (9) implies that self-propulsion may only emerge when
D o kmkrdk

2�1/d/8. To comply with the latter requirement, we
assume D = 10�3 in our numerical simulations. We argue that a
value of D { 1 is realistic, as it implicates that the interfacial
diffusion of individual surfactant molecules is faster than the
bulk diffusion of large aggregates. Indeed, ref. 22 estimates
surface diffusivity of dodecanol molecules at the air-nitrobenzene
interface as DG B 10�9 m2 s�1. On the other hand, diffusivity of
CO2-swollen micelles in a polyol solution was measured to be
DM B 10�12 m2 s�1, or roughly 103 times lower than the
diffusivity of individual CO2 molecules.23

3.2 Two types of active behavior: steady self-propulsion and
pumping

In our time-marching simulations, spontaneous onset of the
flow around an active droplet resulted in one of the two steady
regimes shown in Fig. 2. Depending on the initial condition of
the particular simulation, the droplet was either self-propelling
with a constant velocity or pumping the fluid around in a
symmetric manner. Therefore, in what follows we focus on
the properties of these two steady regimes.

We notice that in both self-propelling and pumping regimes,
droplet dissolution rate per unit area remains almost constant
in a wide range of Péclet numbers, Pe. Recall, that as per
eqn (3), dissolution rate is a function of the adsorbed surfactant
concentration, G; and in Fig. 2c, we illustrate that G per unit area
remains fixed in a wide interval of Pe. This observation is
consistent with experiments of Suga et al., who observed linear
decrease in diameter of dissolving active droplets.6 In turn, linear
decrease in diameter implies quadratic decay in the reaction
front area and, thus, roughly constant reaction rate per unit area.

Similarly to the models in ref. 14 and 21, droplet self-propulsion
velocity reaches a peak at a certain value of the Péclet number, as
illustrated in Fig. 3a. This peak corresponds to an optimal configu-
ration of the advective flow carrying swollen micelles from the front
towards the back of the propelling drop. Since dimensionless
velocity scales with the droplet size in our model, it is hard to argue
that a similar peak should be observed in experiments. However, as
the peak is positioned far from the instability threshold, it is clear
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that in an experimental setting this point should correspond to a
well-developed self-propelling flow. Since in experiments the
Péclet number is typically estimated based on the droplet self-
propulsion velocity, we utilize the peak velocity to assess the
typical ‘‘experimental’’ Péclet number, Peexp � PeUN, sufficient
for the droplet self-propulsion. As we illustrate in Fig. 3b, our
simulations yield a typical value of Peexp B 1, regardless of the
values of reaction coefficients km, kr, and swollen micelle size, d.

3.3 Self-propelling and pumping states may be multistable

Our simulations indicate that both self-propelling and pumping
flow regimes may be linearly stable for a given set of the
problem parameters. In particular, we observe that pumping
states bifurcate subcritically, but may regain stability at a higher
value of the Péclet number, as illustrated in Fig. 3c. In Fig. 4, we
further demonstrate that the multistability of self-propelling
and pumping states exists in a wide range of problem para-
meters. Our results suggest that multistability is promoted by
the adsorption inhibition, as higher value of the inhibition
coefficient, km, results in wider region of multistability. In turn,
higher reaction rate, kr, destabilizes pumping states, suggesting
that intense reaction makes it harder to establish a symmetric
surfactant distribution required for a stable pumping flow.

4 Discussion

In this paper, we propose a novel model of an active micro-
droplet that undergoes gradual micellar solubilization in the

bulk of a concentrated surfactant solution. To the best of our
knowledge, this model is the first attempt to explain how the
Marangoni effect may emerge at surfactant concentrations
exceeding the CMC, and what is the role of surfactant aggre-
gates in the dynamics of active microdrops. Our model is based
on two key assumptions: (a) swollen micelles released during
the dissolution occupy space in the sublayer adjacent to the
droplet interface and, thus, may inhibit surfactant adsorption,
eqn (4); (b) solubilization is fast enough to prevent the formation
of a monolayer of surfactant monomers at the interface and
interfacial transport may be modeled by advection–diffusion
equation, eqn (5).

Our numerical simulations suggest that regardless of the
values of adsorption and reaction coefficients, droplet self-
propulsion in experiments should be observed for Peexp B 1,
as illustrated in Fig. 3b. Modest estimated values of Peexp are in
stark contrast with the values of the Péclet number, Pe, used in
Fig. 2c, 3a, c, and 4. This contrast is due to fundamentally
different physical meaning of Pe and Peexp: Peexp is based on
the droplet velocity and quantifies how efficiently the flow stirs
micelles in the bulk fluid (and the estimation Peexp B 1 means
that advective and diffusive transport are about equally important),
while Pe involves intensity of the droplet surfactant intake and,
thus, is a measure of the droplet chemical activity.

Our model also highlights the antagonism between the
bulk and interfacial advection. Bulk advection carries swollen
micelles away from the front of a moving droplet, thus enhancing
surfactant adsorption. In turn, increased adsorption results in the

Fig. 2 Two types of steady behavior of a dissolving microdrop: (a) droplet self-propelling with constant velocity UN and (b) stationary droplet pumping
fluid around in a symmetric manner. (c) Average concentration of adsorbed surfactant, G, per unit area of the droplet for Z = 1, D = 10�3, km = 10, kr = 1,
and various swollen micelle sizes d. Solid lines correspond to steady self-propulsion; dashed lines represent pumping flows.

Fig. 3 (a) Steady self-propulsion velocity versus Péclet number for Z = 1, D = 10�3, km = 10, kr = 1, and various swollen micelle sizes. (b) Drop velocity-
based Péclet number, Peexp � PeUN, corresponding to the peak of the dimensionless velocity in (a): ‘‘+’’ – km = 10 and kr = 1; ‘‘n’’ – km = 50 and kr = 1;
‘‘J’’ – km = 10 and kr = 5. Other parameters: Z = 1 and D = 10�3. Peak velocity for km = 10, kr = 5, and d 4 30 lies beyond Pe = 40 000 that was the
maximal value of the Péclet number considered in this paper. (c) Steady symmetric pumping flow velocity for Z = 1, D = 10�3, km = 10, kr = 1, and various
swollen micelle sizes. Dashed lines correspond to unstable pumping flows; solid lines represent stable pumping flows. Pumping flow velocity is defined as
the maximal velocity of the second squirming mode in eqn (26).
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gradient of adsorbed monomers that generates the Marangoni
flow and promotes the instability. On the other hand, interfacial
advection homogenizes the interfacial surfactant concentration,
hinders the Marangoni flow, and suppresses the instability.
Consequently, droplet chemical activity may result in the flow
only when bulk advection ‘‘outperforms’’ its interfacial counter-
part. In Appendix C, we demonstrate that the latter is possible
when interfacial diffusion of monomers is more efficient than
the bulk diffusion of swollen micelles.

Finally, our key finding is that in the case of an axisymmetric
flow and concentration fields, two qualitatively different types
of droplet behavior may be stable for the same values of the
problem parameters: steady self-propulsion (Fig. 2a) and steady
symmetric pumping (Fig. 2b). In this situation, temporal evolution
of the system may result in either of these two steady regimes,
depending on the initial conditions of the model equations.
Although stability of the steady regimes shown in Fig. 2 is not
guaranteed in the absence of axial symmetry, we argue that they
will retain their respective stable manifolds and, thus, appear at
least as saddles in the phase space of a fully 3D problem.
Simultaneous existence of two fixed points with stable manifolds
is crucial, as the competition between these attractors may con-
tribute to the large fluctuations of droplet self-propulsion velocity
reported in ref. 7. We further argue that a vast majority of the
contemporary models of active matter assume that individual
active agents typically remain in vicinity of the self-propelling
steady state.24 Our findings not only indicate that there is an
alternative steady state, but also that the latter state possesses a
stable manifold, so the active agents may be attracted to it. There-
fore, we call for a creation of a novel class of active matter models
that take possible bistability of the individual agents into account.
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A Dimensionless form of the model
equations

Dimensional governing equations of the model read,

qt*M* + uo*�rM* = DMr2M*, (10)

r�ui,o* = 0, rPi,o* = Zi,or2ui,o*, (11)

where u* is the flow velocity, P* is pressure, Z is the fluid
viscosity, while subscripts i and o mark the corresponding
quantity within and outside of the drop.

Dimensional boundary conditions at the droplet interface
(r* = R) read,

qt*G* + r2�(u2*G*) = DGr2
2G* + js* � djr*, (12)

n�(ti* � to*)�t = t�rg, (13)

ui*�t = uo*�t, ui*�n = uo*�n = 0, (14)

where r2 and u2* denote the interfacial gradient operator and
interfacial flow velocity, respectively, while DG is interfacial
diffusivity, and t* denotes viscous stress tensor.

We employ a coordinate system co-moving with the drop. In
this case, dimensional boundary conditions far away form the
drop read,

uo* = �UN*, Po* = PN, M* = 0 as r* - N, (15)

where UN* denotes droplet self-propulsion velocity that is
determined from the condition that the total force acting on
the drop is equal to 0.

To obtain dimensionless form of the model, we use R
as a unit of distance and define a unit of time, R/V,
based on the Marangoni flow velocity, V � gGGCMC/Zo, with
GCMC � KaCCMCR2/DG. Dimensionless pressure, viscous stresses,
and concentrations M and G, are defined, respectively, as,

Pi
� ! P1 þ

2g0
R
þ ZiV

R
; Po

� ! P1 þ
ZoV
R
; (16)

ti�; to�ð Þ ! ZoV
R

Zti; toð Þ; (17)

M� ! KrRGd
CMC

DM
M; G� ! GCMCG; (18)

where Z � Zi/Zo.
Dimensionless form of the governing equations reads,

r�ui,o = 0, rPi,o = r2ui,o, (19)

Pe(qtM + uo�rM) = r2M. (20)

Dimensionless boundary conditions at r = 1 may be
written as,

ui�t = uo�t, ui�n = uo�n = 0, (21)

Fig. 4 Stability maps of the steady flow regimes around an active microdroplet. Self-propulsion with constant velocity (Fig. 2a) is stable in the light gray
area; both self-propulsion (Fig. 2a) and symmetric pumping (Fig. 2b) are stable in the dark gray area; no spontaneous onset of the flow was observed in
the white area. Panel (a): km = 10 and kr = 1; (b): km = 50 and kr = 1; (c): km = 10 and kr = 5. Other parameters: Z = 1 and D = 10�3.
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qrM = �Gd, n�(Zti � to)�t = �t�rG, (22)

PeD(qtG + r2�(u2G)) = r2
2G + e�kmM � dkrG

d. (23)

B Axisymmetric Stokes flow past a
spherical drop

In this paper, we assume that the flow field is axisymmetric and
introduce axisymmetric spherical coordinates r� (r,y) with r = 0
corresponding to the droplet center. In the case of an axisymmetric
flow that is continuous at r = 1, Stokes equations (19) admit a
solution in the form of a superposition of orthogonal modes,25–27

Ciðt; rÞ ¼
3

4
a1ðtÞci;1ðrÞ þ

X1
n¼2

anðtÞci;nðrÞ; (24)

ci;nðrÞ ¼ rnþ1 1� r2
� �

1� m2
� �

Ln
0 ðmÞ; (25)

Coðt; rÞ ¼
X1
n¼1

anðtÞco;nðrÞ; (26)

co;nðrÞ ¼
1� r3
� �

1� m2
� �

= 2rð Þ n ¼ 1

1� r2
� �

1� m2
� �

Ln
0 ðmÞ=rn n4 1

8<
: ; (27)

where Ci and Co are the stream functions within and outside of the
droplet, respectively, whereas ci,n and co,n denote the n-th mode of
the corresponding flow decomposition, an(t) are time-dependent
amplitudes, m� cosy, and Ln denotes the n-th Legendre polynomial.
It should be noted that orthogonal modes (25) and (27) with
different n correspond to qualitatively different flow regimes. For
instance, co,1 represents the flow around a drop that self-propels
with velocity UN = a1ez, where ez is a unit vector along the symmetry
axis of the drop. In turn, co,2 describes a symmetric pumping flow
regimes that does not feature droplet self-propulsion.

C Asymptotic analysis

It is easy to see that dimensionless problem formulated by
eqn (19)–(23) admits the following trivial solution,

ui ¼ uo ¼ 0; M ¼ k
r
; G ¼ k1=d ; (28)

where k � W(km/(dkr))/km and W(x) is Lambert W function.
We now employ matched asymptotic expansions to seek for

the steady axisymmetric flow regimes that may emerge in
vicinity of the motionless base state and, consequently, may
be implemented as a time-independent asymptotic correction
to the trivial solution (28). Our approach closely follows the
algorithm developed in ref. 13. Accordingly, here we keep
technical discussion to minimum and focus on the physical
implications of the results instead.

For a steady flow in vicinity of the base state (28), amplitudes
an in eqn (24) and (26) should be time-independent and small.
Accordingly, we expand an in powers of e as follows,

an = ea(1)
n + e2a(2)

n + . . ., (29)

where 0 o e { 1. Although velocity of the flow is small, it does
not decay far away from the moving drop (recall that we use a
coordinate system co-moving with the droplet). This non-vanishing
flow makes it impossible to satisfy the far-field boundary conditions
(15) in the framework of regular asymptotic expansion. Instead,
matched asymptotic expansions are required in this case.28

The limit of weak advection around a spherical droplet allows
for a composite steady solution of the advection–diffusion
equation (20) comprising a near field part, N(r), valid for r { 1/e,
and a far field part, F(r), valid for r c 1,13,20,28

MðrÞ ¼
NðrÞ r� 1=e

FðrÞ r� 1

(
: (30)

Following ref. 13, we expand N(r) and F(r) as follows,

NðrÞ ¼ k
r
þ eNð1ÞðrÞ þ e2Nð2ÞðrÞ þ . . . ; (31)

F(q) = eF(1)(q) + e2F(2)(q) + . . ., (32)

where q � (r,y) = (er,y) is the stretched radius vector. Finally,
solution for the interfacial concentration G must conform with
expansion (31), namely,

G(m) = k1/d + eG(1)(m) + e2G(2)(m) + . . . (33)

C.1 Linear analysis (terms at e1)

We substitute expansions (29) and (31)–(33) into the dimension-
less problem formulated by eqn (19)–(23) and collect the terms
featuring equal powers of e. Naturally, collecting the terms at e1

is equivalent to linearization of the dimensionless problem near
the base state (28). Since we only consider time-independent
flows, the time-independent linear problem constituted by terms
at e1 corresponds to the situation when the small perturbations of
the base state are neither growing nor decaying. By definition,
this happens at the threshold of monotonic instability. Below, we
identify this threshold and obtain the corresponding instability
eigenmodes.

Linearity of the problem at e1 allows us to treat each of the
flow decomposition modes (25) and (27) separately. To this
end, we project the near field concentration of the swollen
micelles and the concentration of adsorbed monomers onto the
basis of Legendre polynomials,

Nð1ÞðrÞ ¼
X1
n¼0

Nð1Þn ðrÞLnðmÞ; (34)

Gð1ÞðmÞ ¼
X1
n¼0

Gð1Þn LnðmÞ: (35)

Substitution of expansions (34) and (35) in the problem at e1

splits it into a set of problems for each of the Legendre modes.
For instance, problem at L0 reads,

@rr þ
2

r
@r

� �
N
ð1Þ
0 ¼ 0; (36)
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qrN
(1)
0 = �dk1�1/dG(1)

0 at r = 1, (37)

kme�kmkN(1)
0 = �krd

2k1�1/dG(1)
0 at r = 1, (38)

while problem at L1 may be written as,

@rr þ
2

r
@r �

2

r2

� �
N
ð1Þ
1 ¼

Pekað1Þ1

r2
1� 1

r3

� �
; (39)

qrN
(1)
1 = �dk1�1/dG(1)

1 at r = 1, (40)

2G(1)
1 = 3(2 + 3Z)a(1)

1 at r = 1, (41)

dkrkmkN(1)
1 + (2 + dk1�1/d)G(1)

1 + 3PeDk1/da(1)
1 = 0 at r = 1.

(42)

Recall that N(1) given by superposition (34) is only valid for
r { 1/e. Far from the droplet, near field solution N(1) must
match the far field solution F(1) that satisfies the leading order
advection–diffusion equation in stretched coordinates,

Pea
ð1Þ
1 m;�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p� �
� rrF

ð1Þ ¼ rr
2F ð1Þ; (43)

where rr denotes the gradient in terms of the stretched radius
vector r � er.

Matching of the solution of eqn (43) with N(1)
0 and N(1)

1

obtained from eqn (36) and (39), respectively, yields,

N(1)
0 (r) = b(1)

0 /r � Peka(1)
1 /2, (44)

N(1)
1 (r) = b(1)

1 /r2 � Peka(1)
1 (1 + 2r3)/(4r3), (45)

F ð1ÞðqÞ ¼ ke�Pea
ð1Þ
1

r 1þmð Þ
	
2



r; (46)

where constant coefficients a(1)
1 , b(1)

0 , and b(1)
1 are to be deter-

mined from the boundary conditions. For simplicity, solution
(46) is written under assumption that a(1)

1 Z 0 (i.e., droplet self-
propels along ez). This assumption may be made without loss of
generality, since the problem under consideration is isotropic.
Also note that matching condition for N(1)

n with n 4 1 is simply

lim
r!1

N
ð1Þ
n ¼ 0, as shown in ref. 13.

Substitution of the matched solutions (44) and (45) into
boundary conditions (38), (41) and (42) yields a set of algebraic
equations for a(1)

1 , b(1)
0 , b(1)

1 , G(1)
0 , and G(1)

1 . Solvability condition
for this set of equations yields the monotonic instability thresh-
old which we express in terms of the critical Péclet number, Pe1.
We repeat the solution procedure outlined above for the n-th
term in the sum (34) and obtain the following expression for Pe1,

Pe1 ¼
2ð2þ 3ZÞ 4þ krd

2k1�1=d 2þ kmkð Þ
� �
kmkrdk2 � 8Dk1=d

(47)

and Pen with n 4 1,

Pen ¼
4 2nþ 1ð Þð1þ ZÞ n nþ 1ð Þ2þkrd2k1�1=d nþ 1þ kmkð Þ

� �
kmkrdk2 � 4Dk1=dn nþ 1ð Þ2

:

(48)

It is easy to see that for any values of the problem parameters,
Pe1 remains the lowest and, thus, most ‘‘dangerous’’ instability

threshold. Recall that Pe1 corresponds to the onset of the mode
co,1 that implements self-propulsion of the drop. In what
follows, we study the flow regimes emerging in vicinity of Pe1,
that is, near the onset of spontaneous droplet self-propulsion.

C.2 Weakly nonlinear analysis (terms at e2)

We now proceed with the analysis of the terms at e2 in the
expansion of the dimensionless problem (19)–(23). Our goal is
to study droplet behavior in vicinity of the monotonic instability
threshold Pe1. To this end, we also expand the Péclet number
as,

Pe = Pe1 + ed. (49)

By definition, terms at e2 should include quadratic inter-
actions of the linear solutions obtained in Section C.1. In
particular, general solution presented in eqn (44) and (45)
includes the modes proportional to L0 and L1 and can be
considered as a spectrum of monotonic perturbations at Pe = Pe1.
Properties of Legendre polynomials dictate that quadratic inter-
actions of these modes should include L0, L1, and L2. Specific
near and far field solutions may be written as,

Nð2ÞðrÞ ¼ c
ð2Þ
0 þ

b
ð2Þ
0

r
� Pe1a

ð1Þ
1 N

ð1Þ
1

12r4
þ kB
120r5

2þ 5r3 þ 20r6
� �

þ L1ðmÞ c
ð2Þ
1 rþ b

ð2Þ
1

r2
� 1þ 2r3

4r3
Pe1a

ð1Þ
1 N

ð1Þ
0 þ kA

� � !

þ L2ðmÞ c
ð2Þ
2 r2 þ b

ð2Þ
2

r3
� 1þ 2r3

6r4
Pe1a

ð1Þ
1 N

ð1Þ
1

 

þ Bk
168r5

5þ 35r3 þ 14r6
� �

� 2þ 3r2

2r4
Pe1ka

ð2Þ
2

�
;

(50)

F ð2ÞðqÞ ¼ �kAð1þ mÞ
2

þ Pe1kmk2

2rð1þ kmkÞ

� �
e�Pe1a

ð1Þ
1

r 1þmð Þ=2; (51)

where A � da(1)
1 + Pe1a(2)

1 , B � (Pe1a(1)
1 )2, whereas constant

coefficients c(2)
n and b(2)

n are to be determined from matching
and boundary conditions. Following the algorithm developed in
ref. 13, we match N(2)(r) and F(2)(q) and substitute the result into
the boundary conditions at e2 to obtain a set of algebraic
equations for the coefficients a(1)

1 , a(2)
n , and b(2)

n . Solvability
condition of this set of equations in the limit of D - 0 reads,

a(1)
1 (a(1)

1 � as) = 0 (52)

with

as �
dð1þ kmkÞ

Pe1 Pe1 þ k�1=d 2þ 3Zð Þ 2 d � 1ð Þ þ kmk 2d � 1ð Þð Þð Þ: (53)

It is easy to see that solvability condition (52) admits two
solutions. The first, a(1)

1 = 0, is trivial and corresponds to the
motionless base state (28). The second describes a droplet that
self-propels above the instability threshold (d4 0) with a steady
velocity.
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D Numerical method

Numerical method employed in this paper is based on the
spectral method used in ref. 14. In particular, we approximate
the concentration of swollen micelles in the bulk and con-
centration of the adsorbed monomers using a truncated series
of Legendre harmonics,

Mðt; r; mÞ ¼
XNmod

n¼0
Mnðt; rÞLnðmÞ; (54)

Gðt; mÞ ¼
XNmod

n¼0
GnðtÞLnðmÞ: (55)

Note that the value of Nmod determines the angular resolution
of the numerical scheme. In particular, this resolution limits the
degree of nonlinearity of the chemical reaction (2) that may be
resolved numerically. As a result, micelles with d r 50 were
considered in this paper.

We substitute expansions (54) and (55) along with truncated
expansion for the flow field (24) and (26) into dimensionless
bulk (20) and surface (23) advection–diffusion equations
and obtain a set of 2n evolution equations for each of the
component of the Legendre spectrum,

@tMn þ
2nþ 1

2r2

XNmod

i¼1

XNmod

j¼0
ai iði þ 1ÞIijnfi@rMj þ JijnMj@rfi

� �

¼ 1

Pe
@rr þ

2@r
r
� nðnþ 1Þ

r2

� �
Mn;

(56)

@tGn þ
2nþ 1

2

XNmod

i¼1

XNmod

j¼0
�iði þ 1ÞIijn þ Jijn
� �

aiGj@rfi

¼ 1

Pe
�nðnþ 1ÞGn þ rnð Þ at r ¼ 1;

(57)

where

fn ¼
1� r3
� �

= 2rð Þ n ¼ 1

1� r2
� �

=rn n4 1

8<
: ; (58)

Iijn ¼
ð1
�1
dmLiLjLn; Jijn ¼

ð1
�1
dm 1� m2
� �

Li0Lj0Ln; (59)

rn ¼
2nþ 1

2

ð1
�1
dm e�kmM � dkrGd
� �

Ln at r ¼ 1: (60)

To obtain the values of ai appearing in (56) and (57), we
substitute expansion (55) into boundary condition for tangential
stresses and obtain,

anðtÞ ¼
2= 3ð2þ 3ZÞð Þ n ¼ 1

1= 2ð2nþ 1Þð1þ ZÞð Þ n4 1:

(
(61)

Two numerical techniques are used in this paper: time
marching and natural continuation. Our time-marching scheme

is identical to the one described in ref. 14. Specifically, we
introduce an exponentially stretched spatial grid in r and treat
nonlinear terms of eqn (56) and (57) explicitly, while Crank–
Nicholson scheme is used to integrate linear terms. Steady solutions
reached in the course of the time-marching are employed to
initialize the method of natural continuation. In particular, we
refine the steady solution using Newton’s iterations, and then
use the result as an initial guess for the numerical solution with
slightly different values of problem parameters. We repeat the
procedure to scan the parameter space of the problem. To
generate the stability maps shown in Fig. 4, we assessed the
linear stability of the resulting steady solutions numerically. To
this end, eigenvalues of the Jacobian of the model equations
were computed. Steady solution was considered stable when the
Jacobian only had eigenvalues with negative real parts.

To validate the results of our simulations, we repeat the
computations for Nmod = 20 and 80 grid points in r; and Nmod =
30 and 120 grid points in r. In Fig. 5 we also compare our
numerical results with the predictions of asymptotic analysis
developed in Appendix C.
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