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ABSTRACT
In the presence of advection at a constant flow rate in a rectilinear geometry, the properties of planar A + B → C reaction fronts feature
the same temporal scalings as in the pure reaction–diffusion case. In a radial injection geometry where A is injected into B radially at a
constant flow rate Q, temporal scalings are conserved, but the related coefficients depend on the injection flow rate Q and on the ratio γ of
initial concentrations of the reactants. We show here that this dependence of the front properties on the radial velocity allows us to tune the
amount of product obtained in the course of time by varying the flow rate. We compare theoretically the efficiency of the rectilinear and radial
geometries by computing the amount of product C generated in the course of time or per volume of reactant injected. We show that a curve
γc(Q) can be defined in the parameter space (γ, Q) below which, for similar experimental conditions, the total amount of C is larger in the
radial case. In addition, another curve γ∗(Q) < γc(Q) can be defined such that for γ < γ∗, the total amount of C produced is larger in the radial
geometry, even if the production of C per unit area of the contact interface between the two reactants is larger in the rectilinear case. This
comes from the fact that the length of the contact zone increases with the radius in the radial case, which allows us to produce in fine more
product C for a same injected volume of reactant or in reactors of a same volume than in the rectilinear case. These results pave the way to
the geometrical optimization of the properties of chemical fronts.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5135292., s

I. INTRODUCTION

Traveling chemical fronts are ubiquitously encountered in
numerous applications ranging from ecology, disease spreading,
environment, stock market dynamics, and also genuinely in chem-
ical and biological systems.1,2 In the vast class of chemical fronts,
A + B → C fronts have been extensively studied and characterized
theoretically because, depending on the interpretation of A and B,
they underline many applications.3–6 Such fronts typically develop
when a zone rich in A is put in contact along a given interface with
a zone rich in B. In the absence of any flow, the interplay between
the A + B → C kinetics and the diffusive transport of the reactants
toward the reaction zone induces a front, the properties of which
have been largely studied. In particular, Gálfi and Rácz have shown
that, for the rectilinear case in which the initial contact interface
between A and B is a line, the temporal evolution of the position
of the front xf scales as t1/2, while the production rate R and the

width of the front w vary as t−2/3 and t1/6, respectively.7 Mean-
while, these scalings have been well demonstrated experimentally.8,9

If such fronts are advected at a constant speed, the above scalings
remain unchanged in the reference frame moving at the imposed
speed.

Even though some experiments have noted that curvature can
have an influence on the properties of such A + B→C fronts,10–12 the
radial reaction–diffusion (RD) case where A diffuses out in a radial
way into a pool of B such that the contact interface is an expanding
circle has received less attention. This is related to the impossibility
to sustain indefinitively a constant concentration of A at the initial
point source because of diffusion and thus to find the asymptotic
properties of such radial fronts. Some stamp experiments have stud-
ied interesting transient reaction–diffusion patterns when gel stamps
of A of various shapes are put in contact with a gel containing B.13

Similarly, theoretical work has computed the transient reaction–
diffusion properties of a localized source of A that is finite (or acts
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FIG. 1. Three-dimensional schematics and top view of A + B → C reaction–diffusion–advection fronts. The red zone features the product C generated by the A + B → C
reaction. (a) Rectilinear geometry where the front moves at a constant speed, v̄ = v̄ ex , and where the constant contact area between the two reactants A and B reads
S̄lin = h̄L̄. (b) Radial geometry where the front moves with a speed that decreases with the radial distance, v̄ = v̄r(r̄) er with v̄r ∼ 1/r̄, and where the contact area between
the two reactants A and B increases with the radial distance: S̄rad = 2πh̄r̄f .

for a given finite time) consumed in a sea of B.4,14,15 Nevertheless, no
asymptotic scalings have been computed as the mathematical long
time limit problem of a point source of species A diffusing radially
in a sea of B is ill-posed.

Interest for radial A + B→ C fronts has sparked again recently,
thanks to experimental studies on precipitation patterns obtained
in confined geometries when a solution of a reactant A is injected
radially at a constant flow rate into a solution of reactant B and
a precipitation A + B → C(s) reaction takes place. Various com-
plex precipitation patterns have been observed,16–19 paving the way
to renewed interest for the effect of flows on reaction fronts. The
fact that A is injected continuously at the center of the quasi-2D
reactor initially filled with B allows to maintain a source of A with
constant concentration at the central point source boundary. Physi-
cally, this allows to feed the A + B→ C front with refreshed A while
it expands radially. Mathematically, injection solves the ill-posed
boundary condition at the source point of the pure RD problem
and allows to compute the long time asymptotic scalings of radi-
ally advected A + B → C fronts. In particular, it has been shown
that, for long times, the temporal scalings of the properties of two-
dimensional radial reaction–diffusion–advection (RDA) A + B→ C
fronts are the same as those of the rectilinear RD case, i.e., the radial
position of the front rf scales as t1/2, while the production rate R and
the width of the front w still vary as t−2/3 and t1/6, respectively.3,5

Advection, however, impacts the proportionality factors that are a
function of the flow rate Q, which suggests that tuning Q can pro-
vide flow control of the front properties. Recently, these results have
been extended to three-dimensional (3D) systems. The novelty for
a 3D radial spreading is that the dynamics eventually reaches a sta-
tionary state where the front position is fixed and the concentration
profiles of A and B do not depend on time. Before reaching this sta-
tionary state, the system evolves through an early-time regime and
a transient regime, both characterized by well-defined and different
scalings.6

In this context, we explore here the geometrical control of
A + B → C fronts in flow conditions by analyzing the difference in
the yield of the reaction in a 3D rectilinear displacement vs a radial
injection along an expanding cylinder (see Fig. 1). To do so, we

compute analytically the amount of product C generated when a
reactant A is injected into the other reactant B at a constant flow
rate in rectilinear and radial geometries, respectively. In rectilin-
ear systems, the quantity of product increases as t1/2 and is directly
proportional to the area of the contact zone between the two reac-
tants A and B. In the radial geometry, the area of the contact zone
increases with the radius of the expanding reaction circle at a speed
that depends on the injection flow rate and on the circle radius. As a
consequence, the quantity of product increases linearly in time. We
compute explicitly the way the amount of C produced changes with
time or with the volume of reactant A injected. We find that geom-
etry can have a profound influence on the efficiency of the reaction
such that the radial injection can eventually generate more C under
given conditions than the rectilinear case.

To do so, this article first presents the RDA equations describ-
ing the spatio-temporal evolution of A + B→C fronts and recalls the
initial and boundary conditions specific to the rectilinear and radial
geometries. After recalling also the classical scalings of RD A + B→C
fronts, we compute the total amount of C produced as a function of
time or volume injected in the presence of advection. Rectilinear and
radial cases are compared to conclude that the geometrical aspects
can be used to optimize the flow control of such reaction fronts.

II. REACTION–DIFFUSION–ADVECTION EQUATIONS
Let us consider a three-dimensional system in which a species A

in concentration ā0 is injected at a constant flow rate Q̄ into a domain
initially filled with B in concentration b̄0. Upon contact, A and B
react to produce C. In the presence of diffusion and advection by
a velocity field v̄, the spatio-temporal evolution of the dimensional
concentrations ā, b̄, and c̄ of the reactants A, B, and of the product
C, respectively, is the solution of the following RDA equations:

∂t̄ ā + v̄ ⋅∇ā = D∇2ā − kā b̄, (1a)

∂t̄ b̄ + v̄ ⋅∇b̄ = D∇2b̄ − kā b̄, (1b)

∂t̄ c̄ + v̄ ⋅∇c̄ = D∇2c̄ + kā b̄, (1c)
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where D is the diffusion coefficient assumed equal for all species and
k is the kinetic constant. Normalizing concentrations by ā0, time
by τ = 1/(kā0), and space by ℓ = (Dτ)1/2 leads to the dimensionless
equations of the problem,

∂ta + v ⋅∇a = ∇2a − a b, (2a)

∂tb + v ⋅∇b = ∇2b − a b, (2b)

∂tc + v ⋅∇c = ∇2c + a b. (2c)

Throughout this article, dimensional and dimensionless variables
are denoted with and without a bar, respectively (excepted in the
Introduction and Abstract). Depending on the geometry of the reac-
tor and of the injection, different initial and boundary conditions are
chosen to solve these equations.

III. RECTILINEAR GEOMETRY
In the rectilinear geometry depicted in Fig. 1(a), the three-

dimensional rectangular reactor has an infinite length along
the x̄ axis, a width L̄ along the transverse direction ȳ, and
a height h̄ along the third axis z̄. The initial condition in
dimensionless variables is such that (a, b, c) = (1, 0, 0) for
x ≤ x0 and (a, b, c) = (0, γ, 0) for x > x0 where γ = b̄0/ā0. The initial
contact surface between A and B is thus a rectangle of area S̄lin = h̄L̄
located at x = x0. Reactant A is injected along the x̄ direction at a
constant speed v̄ such that the flow rate Q̄ = S̄linv̄ [see Fig. 1(a)].
We assume a hydrodynamically stable, planar displacement with no
transverse modulation of the interface along the ȳ and z̄ axes. The
variables depend, therefore, only on x̄ and t̄ such that the equations
governing the dynamics are

∂ta + v ∂xa = ∂2
x a − a b, (3a)

∂tb + v ∂xb = ∂2
x b − a b, (3b)

∂tc + v ∂xc = ∂2
x c + a b. (3c)

The typical shapes of the concentration profiles a(x, t), b(x, t), and
c(x, t) and of the production rate R = ab are shown in Fig. 2. Note
that, in such a rectilinear geometry, a constant advection speed
perpendicular to the front does not affect the dynamics since the
problem can be described in the reference frame moving at speed

FIG. 2. Typical concentration profiles of a, b, and c and of the production rate
R = ab. The amplitude R(ξ) of the production rate is equal to its value at the front
position ξ = xf or ξ = r f according to the geometry considered. The width, w, of the
production rate is also shown.

v in which the equations reduce to the RD case considered by Gálfi
and Rácz.7 The role of advection is, thus, trivially to translate, at a
constant speed v, the well-known rectilinear RD solutions. Never-
theless, we explicitly consider advection here to be able to compare
eventually the properties of the rectilinear RDA front with those
obtained in the radial geometry. In particular, we will transform time
into injected volume by using the relation V̄ = Q̄t̄, where Q̄ will be
the same in both rectilinear and radial cases, in order to compare
efficiencies of the injection in converting the reactants into product
C depending on the geometry. Let us thus first recall the properties
of the rectilinear RDA front and derive the dimensional amount of
C produced when an A + B→ C front is displaced at a fixed velocity
in a rectilinear case.

A. Temporal scalings
Gálfi and Rácz7 showed that, in the long-time limit and for rec-

tilinear RD fronts, the front position, xf , the local production rate
Rlin(xf , t) = a(xf , t)b(xf , t), and the width wlin of the RD front scale
as

xf − x0 = 2 erf−1(1 − γ
1 + γ

)t1/2 ≡ αlin(γ)t1/2, (4a)

Rlin(xf , t) = 29
π4 K4/3

lin t−2/3 ≡ βlin(γ) t−2/3, (4b)

wlin = πK−1/3
lin t1/6 ≡ δlin(γ) t1/6, (4c)

where

Klin(γ) =
(1 + γ)

2
√
π

e−α
2
lin/4. (5)

The evolution of the coefficients αlin, βlin, and δlin as a function
of γ is shown in Fig. 3(a). We note that, when γ = 1, i.e., when
both reactant solutions have the same initial concentration, we have
αlin = 0 and Klin = 1/

√
π. In that case, the front remains sta-

tionary at the initial location of contact between the two solutions
(xf = x0) and the production rate and width of the front simply scale
as Rlin(xf , t) = 29(π7t)−2/3 and wlin = (π7t)1/6. If γ > 1, i.e., the solu-
tion of B is more concentrated than the solution of A, αlin and thus
xf − x0 are negative and the front invades A, whereas xf − x0 is posi-
tive and the front invades B when γ < 1, i.e., when A is more concen-
trated. Figure 3(a) also shows that, at a given time t, the amplitude
Rlin(xf ) of the production rate distribution increases with increasing
values of γ while becoming narrower since its width, wlin, decreases.
Nevertheless, the area of the production rate distribution, which is
proportional to Rlin(xf )wlin ∼ K lin, increases with increasing values
of γ (see Fig. 4).

B. Total amount of product
The dimensionless total amount nlin,C of the product generated

in the wake of the rectilinear front is given by the integral of the
concentration distribution over the whole volume,

nlin,C(t) = ∫ c(x, t) dV = Slin ∫
∞

−∞

c(x, t)dx, (6)

where Slin is the dimensionless area of the rectangular contact zone
between the two semi-infinite pools of reactants A and B [Fig. 1(a)].
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FIG. 3. (a) Evolution of the coefficients αlin, βlin, and δlin defined by Eq. (4) as a function of γ. Evolution of the coefficients αrad, βrad, and δrad defined by Eq. (17) as a function
of γ for Q = 1 (b) and Q = 100 (c). The comparison between the radial and the rescaled rectilinear coefficients [see Eq. (20)] is also shown in panel (c).

The last integral can be obtained by integrating Eq. (3c) over x. Not-
ing that the terms related to the transport processes are equal to zero
as advection and diffusion do not produce any C, we find

1
Slin

∂tnlin,C = ∫
∞

−∞

Rlin dx,

expressing the fact that the temporal change of nlin,C comes from the
reaction via the production term Rlin. The total amount of product
is then obtained by performing the last integration over time, which
gives

nlin,C(t) = Slin ∫
t

0
dt′ ∫

∞

−∞

Rlin(x, t′)dx. (7)

To compute the integral of the production rate, we note that Rlin(x,
t) is a sharply peaked function with a width wlin whose maximum
Rlin(xf , t) is located at x = xf (see Fig. 2). Therefore, we can write

FIG. 4. Evolution of K lin, defined by Eq. (5), as a function of γ. Inset: Log–Log plot
of K lin together with its asymptotic expressions for small and large γ.

Rlin(x, t) = Rlin(xf , t)f lin((x − xf )/wlin), where f lin is a function sharply
peaked around its maximum (f lin(0) = 1 and f ′lin(0) = 0, where prime
is a derivative with respect to the argument). Using the change of
variables x̃ = (x − xf )/wlin, we have

∫
∞

−∞

Rlin(x, t)dx = ηlin wlin(t)Rlin(xf , t), (8a)

where
ηlin = ∫

∞

−∞

flin(x̃)dx̃ (8b)

is a constant related to the precise shape of the production rate Rlin.
Therefore, using Eq. (8), Eq. (7) becomes

nlin,C(t) = ηlinSlin ∫
t

0
wlin(t′)Rlin(xf , t′)dt′.

Using the scalings (4b) and (4c), this last relation gives

nlin,C(t) =
29
π3 ηlin Klin Slin ∫

t

0
(t′)−1/2 dt′

= 58
π3 ηlin Klin Slin t1/2 (9)

or equivalently

nlin,C(t) = σlin Slin t1/2, (10a)

σlin(γ) =
58
π3 ηlin Klin(γ). (10b)

We thus see from Eq. (10a) that the amount of product generated
in the course of time in a rectilinear geometry is directly propor-
tional to the area of contact Slin between the two reactant zones and
increases as t1/2 because of the diffusive growth along the x axis of
the contact zone between reactants. It also depends on the reac-
tant concentrations via the ratio γ of their initial values. If γ ≪ 1,
Klin = γ[ln(1/γ

√
2π)]1/2, while in the other limit, γ ≫ 1, we have

Klin = [ln(γ/
√

2π)]1/2. The evolution of K lin as a function of γ is
shown in Fig. 4 together with its two asymptotic expressions. We
see that this quantity, and thus the amount of C, increases mono-
tonically with increasing values of γ. This is logical as B is more
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concentrated than A and thus readily available to consume any new
A injected into the system. On the contrary, if γ is much smaller than
1, then the concentration of A injected is much larger than that of B
such that much less C is produced. Note that, using Eqs. (4a) and (5),
one can easily obtain the identity

Klin(γ) = γKlin(1/γ), (11)

which results from the invariance of Eqs. (3) when a and b are
exchanged.

Les us now turn to the analysis of the amount of C produced in
dimensional variables in order to appreciate how this quantity varies
with the volume of the reactant injected.

C. Dimensional total amount of product
In order to discuss the dimensional amount n̄lin,C of C produced

per dimensional injected volume V̄of reactant A, it is convenient to
express the dimensionless scaling (10a) in dimensional variables,

n̄lin,C(t̄)
ā0ℓ3 = σlin

S̄lin

ℓ2 (
t̄
τ
)

1/2

, (12)

where n̄lin,C is expressed in number of moles. This leads to

n̄lin,C(t̄) = σlin(γ) ā0S̄lin(Dt̄)1/2. (13)

Equation (13) shows that, logically, the larger the value ā0 of the ini-
tial concentration of the reactant A and the larger the surface S̄lin of
the contact area between them, the more C is generated. If the diffu-
sion coefficient D is larger, the flux of reactants toward the reaction
front is also larger, which increases n̄lin,C. Note that exchanging the
role of a and b should have no impact on the amount of C produced.
In this case, we have n̄lin,C(t̄) = σlin(1/γ) b̄0S̄lin(Dt̄)1/2. Using the
identity (11) together with the definition (10b) of σlin, we recover
Eq. (13) as it should be.

We can finally express the result in terms of the injected vol-
ume, V̄ = Q̄t̄, which will be useful in Sec. V where we compare the
total amount of product generated in both geometries,

n̄lin,C(V̄) = σlin ā0S̄lin[
DV̄
Q̄
]

1/2

. (14)

In the rectilinear case, the total amount of product formed varies
thus as a square root of the volume of reactant injected and scales
also as Q̄−1/2.

IV. RADIAL GEOMETRY
In the radial geometry shown in Fig. 1(b), the three-

dimensional reactor has an infinite length along the x̄ and ȳ axis,
and a height h̄ along the third axis z̄. In dimensionless variables, the
initial condition is such that (a, b, c) = (0, γ, 0) everywhere with,
here again, γ = b̄0/ā0. At time t = 0, a solution of A in concentration
a0 = 1 is injected radially with a constant flow rate at a vertical line,
which is the central line of the expanding cylinder of A. In effect,
we thus have a two-dimensional model for which the concentration
profiles do not depend on the vertical z-axis, as for the rectilinear

geometry. It is then convenient to switch to cylindrical coordinates
(r, θ, z) where r = 0 is the location of injection. We assume a hydro-
dynamically stable, radial displacement with no transverse modula-
tion along θ or z such that the velocity field reads v = (vr , 0, 0) with
the radial component vr = Q/r, where Q is the dimensionless flow
rate related to the dimensional one through the relation3

Q̄ = 2πh̄D Q. (15)

With those assumptions, the variables of the system depend, there-
fore, only on r and t. We thus get a one-dimensional problem as for
the rectilinear geometry. The dimensionless equations governing the
evolution of the concentration fields are obtained from the general
equations (2) by using the expression of the velocity field and of the
Laplacian operator in cylindrical coordinates,

∂ta + vr∂ra = (∂2
r + r−1∂r)a − a b, (16a)

∂tb + vr∂rb = (∂2
r + r−1∂r)b − a b, (16b)

∂tc + vr∂rc = (∂2
r + r−1∂r)c + a b. (16c)

At later time, the boundary conditions are a = 1, ∂rb = 0 at r→ 0 and
a = 0, b = γ at r →∞. Typical concentration profiles a(r, t), b(r, t),
and c(r, t), which are similar to those in the rectilinear geometry, are
shown in Fig. 2.

A. Temporal scalings
For the radial geometry, we have recently shown that, in

the long-time limit, the front position, rf , along the radial coor-
dinate, the local value of the production rate now defined as
Rrad(rf , t) = a(rf , t)b(rf , t), and the width wrad of the RDA front fea-
ture the same temporal scalings as in the rectilinear case.3 We have,
indeed, that

rf = 2K1/2
rad t1/2 ≡ αrad(Q, γ) t1/2, (17a)

Rrad(rf , t) = 29
π4 K4/3

rad t−2/3 ≡ βrad(Q, γ) t−2/3, (17b)

wrad = πK−1/3
rad t1/6 ≡ δrad(Q, γ) t1/6 (17c)

with

Krad(Q, γ) = Q−1(Q
2

,
γ

1 + γ
), (18)

where Q(A, X) = Γ(A, X)/Γ(A), Γ(A, X), and Γ(X) = Γ(0, X)
are the regularized incomplete, the incomplete, and the complete
gamma functions, respectively.20 The inverse function Q−1(A, X) is
the unique solution for Y of the equation X = Q(A, Y) (0 ≤ X ≤ 1,
A > 0, and Y ≥ 0). The coefficient Krad is defined by3

Krad(Q, γ) = (1 + γ)
Γ(Q/2) K

(Q−1)/2
rad e−Krad . (19)

Note that, even if the temporal scalings are the same as in the rec-
tilinear case, the coefficients αrad, βrad, and δrad are now a function
of the flow rate Q (and of γ), which shows that the flow conditions
can be used to control the properties of the front in a radial geome-
try. The evolution of these coefficients as a function of γ is shown in
Figs. 3(b) and 3(c) for two values of the flow rate.
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When the flow rate is large, i.e., Q ≫ 1, simple relationships
exist between the coefficients of the rectilinear scalings (4) and those
of the radial ones (17). Indeed, as shown in the supplementary
material, we then have

αrad(Q, γ) = (2Q)1/2 + 2−1/2αlin(γ), (20a)

βrad(γ) = 22/3βlin(γ), (20b)

δrad(γ) = 2−1/6δlin(γ). (20c)

Equation (20a) shows that, at large flow rates, the motion of the
RDA front is governed by two distinct contributions. The first term
is due to advection and results from a simple volume conservation
law: V̄ = Q̄t̄ = πr̄2

f h̄ leading to rf = (2Qt)1/2 by using Eq. (15).
The second term is the correction due to the reaction. When both
reactants have the same concentration, that is, when γ = 1, we have
αlin = 0 such that αrad = (2Q)1/2 and the front motion is purely
advective. If γ < 1 (A more concentrated than B), αlin > 0 such that
αrad > (2Q)1/2 and the front position is then slightly ahead of the posi-
tion expected from volume conservation, while it is slightly behind
it when γ > 1 and αrad < (2Q)1/2. For sufficiently large flow rates,
the radial geometry does not affect much the amplitude Rrad and
width wrad of the production rate as the coefficients βrad and δrad are
equal to those in the rectilinear case up to a constant scaling factor.
Figure 3(c) shows a comparison between the coefficients in the radial
case and the rescaled coefficients obtained in a rectilinear geometry.
At Q = 100, which corresponds to a flow rate Q̄ ≃ 0.04 ml/min in
a reactor of thickness h̄ = 1 mm (using D = 10−9 m2/s), the simple
relationships (20) are already well verified.

Substituting Eqs. (20) into Eqs. (17) and comparing the result
with Eqs. (4), we then obtain simple relationships between the
rectilinear and the radial dynamics,

rf − (2Qt)1/2 = 2−1/2(xf − x0), (21a)

Rrad(rf , t) = 22/3Rlin(xf , t), (21b)

wrad = 2−1/6wlin, (21c)

where xf is the position of the front in the comoving frame or with
Q = 0 in a rectilinear geometry. Equation (21a) shows that, once
the effect of advection has been removed, the motion of the front
is slightly slower in the radial geometry compared to the rectilinear
geometry. Equations (21b) and (21c) show that the amplitude and
width of the production rate should be similar in both geometries,
provided they are rescaled properly by constant factors. Figure 5
shows indeed that, upon proper rescaling, both production rates are
very similar.

B. Total amount of product
In the radial geometry, the total amount nrad,C of product C

generated in flow conditions has been computed in the long-time
limit in the supplementary material of Ref. 3. For the sake of com-
pleteness, we recall here the main steps of the calculation. As the
concentration profile c is invariant along θ and z, the dimensionless
total amount of product is given by

FIG. 5. Production rate profiles in rectilinear and radial geometries at t = 103

obtained by solving numerically Eqs. (3) and (16) with Q = 100 and γ = 1/2. The
dashed profile corresponds to the profile in the rectilinear geometry rescaled using
Eqs. (21b) and (21c).

nrad,C(t) = ∫ c(r, t)dr = 2πh∫
∞

0
c(r, t) r dr. (22)

Using Eq. (16c) and recalling that advection and diffusion do not
contribute to the production of c, we see that the amount of C
produced is related to the production rate as

nrad,C(t) = 2πh∫
t

0
dt′ ∫

∞

0
Rrad(r, t′) r dr. (23)

To compute the integral over the radial coordinate, we proceed as we
did for the rectilinear case by noting that Rrad(r, t) is a sharply peaked
function with a width wrad whose maximum Rrad(rf , t) is located at
r = rf (see Fig. 2). Therefore, we can write Rrad(r, t) = Rrad(rf , t)f rad
((r − rf )/wrad), where f rad is sharply peaked around its maximum
[f rad(0) = 1 and f ′rad(0) = 0, where prime is a derivative with respect
to the argument]. Using the change of variables ξ = (r − rf )/wrad, we
have

∫
∞

0
Rrad(r, t) r dr = Rrad(rf , t)wrad(t)

× ∫
∞

−

rf
wrad

frad(ξ)[rf (t) + wrad(t)ξ]dξ. (24)

Using the scalings (17), we note that, in the long-time limit t ≫
1, we have rf /wrad ∼ Q1/2t1/3 such that the lower limit of integra-
tion can be replaced by −∞ since the function f rad is sharply peaked
around ξ = 0 and vanishes quickly when |ξ| > 0. In addition, it has
been shown that, in the long-time limit, the production rate R is
symmetric with respect to its maximum, both in rectilinear7 and
in radial3 geometries (see also Figs. 2 and 5), such that the inte-
gral of ξf rad(ξ) on a symmetric interval vanishes. Therefore, Eq. (24)
reduces to

∫
∞

0
Rrad(r, t) r dr = ηradRrad(rf , t)wrad(t)rf (t), (25a)

where

ηrad = ∫
∞

−∞

frad(ξ)dξ (25b)
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is a constant. Consequently, using Eq. (25a), the expression (23) of
the total amount of product becomes

nrad,C(t) = 2πηrad h∫
t

0
Rrad(rf , t′)wrad(t′)rf (t′) dt′,

or, equivalently, using Eqs. (17),

nrad,C(t) =
116
π2 ηrad h Krad(Q, γ)K1/2

rad(Q, γ) t.

This last relation can finally be written as

nrad,C(t) = σrad 2πh t, (26a)

σrad(Q, γ) = 58
π3 ηrad Krad(Q, γ)K1/2

rad(Q, γ). (26b)

Comparison between Eqs. (10) and (26) shows that, despite the anal-
ogy of the formulas, we have nrad,C ∼ t, while nlin,C ∼ t1/2. This is
related to the fact that in the rectilinear case, the advection does not
impact the properties of the front such that the amount of C pro-
duced is diffusively controlled, imprinting a classical t1/2 signature
to nlin,C. On the contrary, in the radial geometry, the contact area
grows as rf ∼ t1/2, while diffusion acts also as t1/2. Overall, this gives
a linear dependence in time of the amount of C generated.

The evolution of σrad as a function of γ is shown in Fig. 6 for
several values of Q. The value of σrad saturates as γ increases, espe-
cially for small Q, indicating a weak possibility to control the yield of
the reaction if the initial concentration of B is increased much above
that of A. On the contrary, the smaller γ, the smaller σrad, which
shows that the efficiency of the front to produce C decreases when B
is much less concentrated than A. Interestingly, the larger the flow
rate Q for a given γ, the larger σrad, which evidences the efficiency of
the flow to bring the reactants into contact and thus favor the pro-
duction of C. In addition, we show in the supplementary material
that σrad ∼ Q1/2 at large flow rates.

FIG. 6. Evolution of σrad/ηrad, defined by Eq. (26b), as a function of γ for several
values of Q. Inset: Log–Log plot of σrad/ηrad.

C. Dimensional total amount of product
In dimensional variables, Eq. (26a) reads

n̄rad,C(t̄)
ā0ℓ3 = σrad 2π

h̄
ℓ

t̄
τ

, (27)

leading to

n̄rad,C = σrad 2πh̄ ā0D t̄ = σrad 2πh̄ ā0D
V̄
Q̄

. (28)

This equation shows that the amount of C produced logically
increases when the initial concentration ā0, the diffusion coefficient
D, or the height of the cell h̄ is increased. Similarly, increasing the
volume injected V̄ produces more C. Interestingly, we also see that,
if all parameters are kept constant, less C will be produced if the
flow rate Q̄ is increased. Indeed, σrad ∼ Q1/2 when Q ≫ 1 and thus
n̄rad,C ∼ Q̄−1/2. This is related to the fact that if the effect of advection
becomes more important, then A and B do not have time to meet
and react, so less C is generated.

Recalling that, from Eq. (17a), we have r̄f /ℓ = 2[Krad t̄/τ]1/2, we
can write r̄f = 2[KradDV̄/Q̄]1/2. As the area of the contact zone is
given by S̄rad = 2πh̄r̄f , this can also be written as

S̄rad = 4πh̄[KradDV̄/Q̄]1/2. (29)

Isolating K1/2
rad from this expression and replacing this quantity in

Eq. (26b) eventually allows us to write (28) as

n̄rad,C(V̄) = σ̃rad ā0S̄rad[
DV̄
Q̄
]

1/2

, (30a)

where

σ̃rad =
29
π3 ηradKrad(Q, γ). (30b)

Formula (30) show that in the radial case as well, the dimensional
amount of C produced grows proportionally to the initial concen-
tration ā0 of the reactant and to the area S̄rad of the contact zone
between the two reactants. Equation (30a) in the radial geometry is,
therefore, formally similar to Eq. (14) in the rectilinear one. How-
ever, the important difference between these two relations is that the
contact area S̄rad given by Eq. (29) grows as the radius of the expand-
ing front circle and thus with the volume injected. Therefore, we see
finally that the important practical result to recall is Eq. (28), which
takes this growth of S̄rad into account. Nevertheless, Eq. (30) will
be useful in Sec. V where we compare the total amount of product
generated in both geometries.

V. COMPARISON BETWEEN RECTILINEAR
AND RADIAL GEOMETRIES

Comparing Eqs. (10b), (14), and (30), we directly obtain

n̄rad,C

n̄lin,C
= 1

2
Krad S̄rad

Klin S̄lin
[ V̄rad

V̄lin
]

1/2

, (31)

where V̄rad (V̄lin) is the volume injected giving rise to a contact area
S̄rad (S̄lin) in the radial (rectilinear) geometry. To obtain Eq. (31), we
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have assumed ηrad = ηlin. Indeed, Fig. 5 shows that this assumption
is a good approximation since, upon proper rescaling, the produc-
tion rates in both geometries are described by essentially the same
function such that their integral is very close.

A. Yield per unit area of contact
Equation (31) shows that, in the end, if the same volume of

reactant A is injected (V̄rad = V̄lin), the production of C per unit
area in a radial geometry can be larger or smaller than in the rec-
tilinear case depending on the flow rate Q and the ratio of initial
concentrations γ. Indeed, in this case, the link between the radial and
rectilinear amounts of C produced per unit area of contact between
the reactants is

n̄rad,C

S̄rad
= [1

2
Krad(Q, γ)

Klin(γ)
] n̄lin,C

S̄lin
. (32)

If the factor between square brackets is larger than 1, the radial
geometry is more effective per unit area to generate the product of
the reaction. Figure 7(a) shows that this is the case if, at a given flow
rate, γ is larger than a critical value,

γ∗(Q) ≃ 1.3 Q3/4e3Q/8, (33)

which grows exponentially with Q [see Fig. 7(b)]. Note that, accord-
ing to Eq. (15), a dimensionless flow rate Q = 25 corresponds to a
dimensional flow rate Q̄ ≃ 0.01 ml/min in a reactor with a thick-
ness h̄ = 1 mm (and D = 10−9 m2/s). Therefore, even for moderate

FIG. 7. (a) Contour plot of K rad/(2K lin) as a function of Q and γ. (b) Evolution of
γ∗ for which the yield per unit of area is the same in the rectilinear and radial
geometries, i.e., K rad/(2K lin) = 1, as a function of Q together with the approximate
expression (33).

flow rates as used in many experiments, the rectilinear geometry
is intrinsically more efficient than the radial geometry to gener-
ate the product of the reaction, provided γ is not too large, i.e.,
γ < γ∗(Q). In particular, we show in the supplementary material that,
in the limit of large flow rate, i.e., Q ≫ 1, we have Krad =

√
2 Klin

such that the value of the factor in Eq. (32) is equal to 2−1/2 and
is thus indeed smaller than 1. The yield of reaction per unit area
of contact is thus more favorable at large flow rates in the recti-
linear geometry. Nevertheless, in the radial geometry, the growth
of the contact area between the two reactants as the injected vol-
ume of reactant A increases can eventually compensate the smaller
production of C per unit contact area compared to rectilinear geom-
etry and, as shown below, lead to a larger total amount of C
generated.

B. Yield per given volume injected
To quantify the difference of product generation on a concrete

case, let us compare the amount of product generated for a same
volume V̄ = V̄lin = V̄rad = Q̄t̄ injected in the two geometries.
For the rectilinear geometry, we consider a square reactor of size
L̄ and thickness h̄ such that S̄lin = h̄L̄. The experiment is stopped
when the front reaches the end of the reactor such that the reac-
tor is completely filled and a volume V̄ = V̄max = h̄L̄2 has been
injected. For the radial geometry, we consider a square reactor of
size 2L̄/

√
π and thickness h̄ and that the injection is performed at

the center of the reactor. Here, the experiment is stopped when
the circular front reaches the borders of the square reactor such
that the radius r̄f = L̄/

√
π and the injected volume are the same

than in the rectilinear geometry: V̄ = h̄π(L̄/
√
π)2 = h̄L̄2 = V̄max.

In contrast with the rectilinear case for which the contact area
remains constant throughout the experiment, the contact area in the
radial geometry, S̄rad, grows as the injected volume increases. Indeed,
using the dimensional form of Eq. (17a), together with V̄ = Q̄t̄,
we have

S̄rad = 2πh̄r̄f = 2πh̄αrad

¿
ÁÁÀDV̄

Q̄
.

Using S̄lin = (V̄maxh̄)1/2 together with Eq. (15), the ratio between the
two contact areas reads

S̄rad

S̄lin
=
√

2π
αrad√

Q

√
V̄

V̄max
. (34)

Finally, substituting relation (34) into Eq. (31) together with
V̄ = V̄lin = V̄rad, we get

n̄rad,C

n̄lin,C
=
√π

2
Krad αrad

Klin
√

Q

√
V̄

V̄max
. (35)

Figure 8(a) shows the evolution of the ratio of the dimensional
total amount of C generated in radial and rectilinear geometries,
given by Eq. (35), as a function of the dimensional volume of
reactant A injected for several values of γ and Q. To interpret
more easily this evolution, we can use the expression (20a) of αrad

together with Krad =
√

2 Klin, both valid at large flow rates. We then
obtain
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FIG. 8. (a) Evolution of the ratio n̄rad,C/n̄lin,C, defined by Eq. (35), as a function of the volume of reactant A injected for several values of γ and Q. Q = 25 and Q = 103

correspond, respectively, to Q̄ ≃ 0.01 ml/min and Q̄ ≃ 0.4 ml/min for h̄ = 1 mm and D = 10−9 m2/s. (b) Evolution of the ratio V̄c/V̄max, defined by Eq. (37), as a function of
γ for several flow rates. (c) Evolution of the ratio n̄rad,C/n̄lin,C evaluated at V̄ = V̄max [see Eq. (38)] as a function of γ for several flow rates.

n̄rad,C

n̄lin,C
=

Q≫1
[
√

2π +
√

π
2Q

αlin(γ)]
√

V̄
V̄max

. (36)

When γ = 1, αlin = 0 [see Eq. (4a) and Fig. 3(a)] and the growth
of the ratio n̄rad,C/n̄lin,C is independent of the flow rate, provided
it is sufficiently large. Indeed, Fig. 8(a) shows that the evolution of
this ratio with V̄ is essentially insensitive to the value of Q when
γ = 1. When γ < 1, αlin > 0 such that the ratio of C produced
is larger compared to the case where γ = 1. On the contrary, this
ratio is smaller compared to the case γ = 1 when γ > 1 because
αlin < 0. We note that the term involving the flow rate in Eq. (36)
decreases as the flow rate increases. Therefore, the evolution of the
ratio n̄rad,C/n̄lin,C tends to the evolution obtained when γ = 1 as
Q →∞. This is logical because the reactor is filled more quickly as
the flow rate increases, giving less time to the reaction to influence
the dynamics. Of course, as Q increases, less product is generated in
the reactor.

C. Radial vs rectilinear efficient regimes
Interestingly, Fig. 8(a) also shows that more product C is gen-

erated in the radial geometry compared to the rectilinear geometry,
i.e., n̄rad,C/n̄lin,C > 1, provided the volume injected is larger than
some critical value V̄c. Indeed, Eq. (35) can be written as

n̄rad,C

n̄lin,C
=
√

V̄
V̄c

with
V̄c

V̄max
= 2K2

linQ
πK2

radα
2
rad

. (37)

This relation shows that, for two similar experiments for which the
same reactants A and B in the same concentration are displaced with
the same injection rate, as soon as the injected volume V̄ is larger
than a critical volume V̄c, the radial geometry produces more C than
the rectilinear geometry. If V̄ > V̄c, we are thus in a regime where
radial injection is most efficient to produce C. Let us call this case
the radial efficient regime. On the contrary, if V̄ < V̄c, we are in
the rectilinear efficient regime for which n̄lin,C > n̄rad,C. The exis-
tence of this critical volume is expected from the evolution of n̄C in

both geometries. Indeed, Eq. (14) shows that n̄lin,C ∼ V̄1/2, whereas
Eq. (28) shows that n̄rad,C ∼ V̄ . Therefore, for small enough V̄ , we
should have n̄lin,C > n̄rad,C, whereas n̄lin,C < n̄rad,C at large enough V̄ .
Equation (37) rationalizes this argument and gives the volume V̄c at
which the transition occurs as a function of the parameters of the
system. The evolution of the ratio V̄c/V̄max as a function γ is shown
in Fig. 8(b) for several flow rates. It shows that the required volume
to inject in order to produce more C in a radial geometry grows
monotonically as γ increases. However, it has an essentially constant
value at γ = 1, which tends to V̄c/V̄max = (2π)−1 ≃ 0.16 at large flow
rates because αlin(1) = 0 [see Eq. (36)]. As the flow rate increases, the
evolution of V̄c becomes flatter and tends to the constant value 0.16
obtained at γ = 1 and Q≫ 1.

At the end of the two experiments, when all reactant A has been
injected, i.e., V̄ = V̄max, we have from Eqs. (35) and (36),

n̄rad,C

n̄lin,C
=
√π

2
Krad αrad

Klin
√

Q
=

Q≫1

√
2π +

√
π

2Q
αlin. (38)

The evolution of this ratio as a function of γ is shown in Fig. 8(c)
for various flow rates. The important feature to note is that this
ratio of yields of reaction is always large than one, provided γ
is not extremely large (see below). This evidences the efficiency
of radial injection over the rectilinear one in producing C. For
example, when γ = 1 and Q ≫ 1, such that αlin = 0, we simply
have

n̄rad,C =
√

2π n̄lin,C ≃ 2.5 n̄lin,C. (39)

This shows that the radial geometry can produce 250% more C than
the rectilinear geometry in this case. When γ < 1, such that αlin > 0,
even more C is produced at the end of the experiment in the radial
geometry compared to the case γ = 1. In contrast, less C is produced,
compared to the case γ = 1, when γ > 1 because αlin < 0. Figure 8(c)
also shows that, as the flow rate increases, the evolution of the ratio
n̄rad,C/n̄lin,C becomes flatter and tends to the constant ratio obtained
when γ = 1 and Q≫ 1.
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In all cases reported in Fig. 8(c), more C is produced in the
radial geometry compared to the rectilinear geometry. Neverthe-
less, for a very large γ or low flow rate, the rectilinear geometry can
still be more favorable. Indeed, in these cases, the front motion due
to the reaction balances advection and prevents the growth of the
contact area in the radial geometry such that the rectilinear geom-
etry produces more C. The critical value γ = γc(Q) separating the
regimes of radial vs rectilinear optimal efficiency is found by equat-
ing the right-hand side of Eq. (38) to 1. The evolution of the numer-
ical solution of this equation as a function of Q is shown in Fig. 9.
A simple fit of this evolution can be obtained by using expression
(38) valid at large Q together with the definition (4a) of αlin and
the expression of the error function valid for large arguments, i.e.,
erf(x) = 1−e−x2

/(
√
πx) for x≫ 1.20 We then obtain γc = c1Q1/2 ec2Q,

where c1 and c2 are constants. Adjusting those constants leads to the
following expression:

γc = 2Q1/2e3Q/2, (40)

which fits well with the numerical data, as shown in Fig. 9. We thus
see that γc grows exponentially with Q such that for Q = 1 we obtain
γc ≃ 9.2 and for Q = 10, we have γc ≃ 2.2 × 107.

Provided γ < γc(Q), we are in the radial efficient regime such
that more C is produced in the radial geometry compared to the rec-
tilinear one. This result can be combined with Fig. 7(b) giving the
value γ∗ comparing the yield per unit area of contact. This allows us
to define three regions as shown in Fig. 9. In region (1), probably the
most relevant in terms of experimental conditions, more C is pro-
duced in the radial geometry compared to the rectilinear case, even
if the production per unit area is lower in the radial geometry. In
this case, the growth of the contact area in the radial geometry over-
comes the lower production per unit area. In region (2), above a first
critical value for the ratio of initial concentrations, γ∗(Q), more C
is produced in the radial geometry and the production per unit area
is also larger than the one in the rectilinear geometry. In region (3),
above a second critical value, γc(Q), even if the production per unit
area in the radial geometry is larger than the one in the rectilinear

FIG. 9. Evolution of γc , defined such that n̄rad,C = n̄lin,C when V̄ = V̄max, as a
function of Q. The approximate expression (40) is also shown. The evolution of
γ∗ shown in Fig. 7(b) is also displayed, together with the approximate expression
(33), and allows us to define the three regions discussed in the text.

geometry, γ is so large and the reaction is so intense that the front
cannot grow sufficiently to produce more C than in the rectilinear
geometry.

D. Yield per reactor size
Note that in the example of Sec. V B, for the radial geome-

try, the reactor has an area 4/π times larger than the one used in
the rectilinear geometry. Thus, a slight increase in the reactor size
by 27% can lead to a significant increase in produced C (250% for
γ = 1, for example) for a same volume of reactant A injected. If the
same reactor of size L̄ is used in both geometries, then, at the end of
both experiments, S̄lin = h̄L̄ and V̄lin = h̄L̄2 are unchanged, whereas
when γ = 1 and Q ≫ 1, S̄rad = πh̄L̄ and V̄rad = πh̄L̄2/4 such that
Eq. (35) now gives

n̄rad,C = [
π
2
]

3/2
n̄lin,C ≃ 1.97 n̄lin,C. (41)

The gain is smaller than in the previous case because the injected
volume is now smaller in the radial geometry compared to the one
in the rectilinear geometry, but the gain is still close to 200%.

Therefore, we see that, even if the production of C per unit area
of the interface between A and B can be smaller in the radial geome-
try than in the rectilinear one, in practice, if γ is not excessively large
and/or the flow rate is large enough, the contact area grows suffi-
ciently in time in the radial geometry to overcome this difference
at some point and to finally lead to an increased production of C
compared to the rectilinear geometry.

To conclude this section, we mention that the study presented
in this work is based on long-time analyses that are valid provided
the volume injected is sufficiently large, i.e., for sufficiently long
time.3,7 A discussion of the implication in terms of kinetic constant
of the reaction is given in the supplementary material.

VI. CONCLUSIONS
We have theoretically compared the properties of A + B → C

fronts in, respectively, rectilinear and radial geometries when a solu-
tion of A is injected into a solution of B at a constant flow rate.
While the scalings in time of the front position, its width, and the
local production rate evaluated at the front position are the same in
both cases, the coefficients of these scalings can be tuned by the flow
rate in the radial case. We explore here the power of this flow control
of radial front properties by comparing the yield of the reaction in
radial vs rectilinear advection regimes. To do so, we have computed
the scalings of the evolution of the amount of product C generated by
the reaction as a function of time or volume of the reactant injected.
In the rectilinear case, the surface of the contact area between the two
solutions remains constant and therefore the dimensional rectilinear
amount of product, n̄lin,C, scales as t̄1/2, i.e., proportionally to the dif-
fusive growth of the reaction zone. In the radial case, the area of the
circular contact zone between A and B increases with the radius of
the front circle, which depends primarily on the injection flow rate.
As a consequence of this geometrical effect, we find that the radial
amount of product n̄rad,C evolves linearly in time. Similarly, in terms
of the dimensional volume injected V̄ and dimensional flow rate Q̄,
we have n̄lin,C ∼ (V̄/Q̄)1/2 while n̄rad,C ∼ V̄/Q̄. Thanks to these dif-
ferences related to geometry, the radial case can eventually produce
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more C for a same volume of reactant A injected or for a reactor
of the same size. Indeed, the growth in time of the contact area
in the radial geometry can at some point overcome the fact that
the production of C per unit area of the contact interface can be
smaller in the radial geometry compared to the rectilinear one. We
have explicitly computed the critical value γc(Q) above which the
radial injection is more efficient than the rectilinear one in terms of
the total amount of C produced per unit area of contact. We have
also defined the curve γ∗(Q) below which the radial injection yields
more product C ultimately, thanks to the radial growth even if the
radial yield per unit area of contact is lower than in the rectilinear
case.

Future theoretical work could, for instance, address the case of
reactants with different diffusion coefficients21 or other geometries
in 2D and 3D for which curvature and advection can influence the
yield of the reaction. Experimental work using simple A + B → C
chemical reactions should attempt to verify the theoretical predic-
tions proposed here in order to be able to generalize the concept
of geometrical control of reaction–diffusion–advection fronts in the
wide class of generic A + B→ C systems.

SUPPLEMENTARY MATERIAL

See the supplementary material for a detailed derivation of
some coefficients of the scalings at large flow rates as well as a
discussion of the limit of the long time analysis.
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