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ABSTRACT

Localized oscillations can develop thanks to the interplay of reaction and di�usion processes when two reactants A and B of an oscillating
reaction are placed in contact, meet by di�usion, and react. We study numerically the properties of such an A + B → oscillator con�gu-
ration using the Brusselator model. The in�uence of a hydrodynamic viscous �ngering instability on localized concentration oscillations is
next analyzed when the oscillating chemical reaction changes the viscosity of the solutions involved. Nonlinear simulations of the related
reaction–di�usion–convection equations with the �uid viscosity varying with the concentration of an intermediate oscillatory species show
an active coupling between the oscillatory kinetics and the viscously driven instability. The periodic oscillations in the concentration of the
intermediate species induce localized changes in the viscosity, which in turn can a�ect the �ngering instability. We show that the oscillating
kinetics can also trigger viscous �ngering in an initially viscously stable displacement, while localized changes in the viscosity pro�le can induce
oscillations in an initially nonoscillating reactive system.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5089028

Pattern formation and complex spatiotemporal dynamics are
ubiquitously observed in nature, including, in particular, in
hydrodynamic and chemical systems. In hydrodynamics, convec-
tive instabilities at interfaces can be due to gradients in density,
viscosity, or surface tension, for instance. As an example, viscous
�ngering (VF) occurs at an interface between two miscible �u-
ids when the less viscous �uid displaces the more viscous one.
It induces deformation of the interface in �ngerlike forms and
increases mixing between the two solutions. In chemical systems,
nonlinear feedback in the kinetics can be responsible for oscilla-
tions of concentrations and complex spatiotemporal dynamics in
spatially extended systems.We explore here the interplay between
chemical oscillations and viscous �ngering showing that the two
mechanisms of instability can a�ect one another, but also, more
strikingly, that concentration oscillations can trigger �ngering,
while viscous gradients can induce oscillations in situations that
are stable in the absence of chemohydrodynamic coupling.

I. INTRODUCTION

The interplay between chemical reactions and hydrodynam-
ics at the interface between two miscible solutions of reactants has

attracted increasing interest over the past few decades due to its appli-
cations in environmental issues as well as in petroleum and chemical
engineering.1 In chemohydrodynamics, pioneering work has been
developed by Showalter and colleagues in the 1990s, showing that
density gradients across autocatalytic fronts can deform and acceler-
ate the fronts.2–5 The self-organized reaction zone between reactants
and products of an autocatalytic reaction travels then in space and
provides the miscible interface across which convective �ows can
develop due to density di�erences. In the case of viscosity gradients
triggering a viscous �ngering instability, bistable reactions have been
shown to be able to produce droplets detaching from growing viscous
�ngers.6

For simple bimolecular A + B → C reactions, chemical reac-
tion–di�usion (RD) fronts can develop when a solution of A is put
in contact with a solution of B.7 Across such fronts, convective cur-
rents can develop due to density di�erences in the gravity �eld or
surface tension gradients.8 The interplay between viscous �nger-
ing and such A + B → C fronts has also been largely studied both
experimentally9–11 and theoretically12,13 when the chemical reaction
in�uences the viscosity gradient. Similarly, aggregation of nanopar-
ticles on the porous matrix can result in variations of the viscosity
gradient and can thus play a crucial role in the control of viscous
�ngering.14,15
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Recently, special attention has been put on understanding how
localized temporal oscillations of chemical concentrations can also
actively couple to hydrodynamic �ows to produce pulsatile �ows.16–18

Localized oscillations19 or stationary Turing patterns20,21 can be
obtained in autocatalytic reactions aroundA + B → oscillator fronts
when putting in contact two zones containing separate reactants A
and B of an oscillatory reaction.17,18,22,23 From the theoretical point
of view, it has been shown that localized oscillations and Turing
structures can interact with buoyancy-driven �ows when the reac-
tants A and B of the oscillatory Brusselator model are initially sep-
arated, meet by di�usion, and produce the intermediate X and Y
species locally, which changes the density.18 Experimentally, inter-
play between the oscillating Belousov–Zhabotinsky (BZ) reaction
and buoyancy-driven motions has been analyzed when two subsets
of the reactants are put in contact along a horizontal line in the gravity
�eld.16,24

With regard to the viscous �ngering instability occurring when
a less viscous solution displaces a more viscous one in a porous
medium or Hele-Shaw cell (two glass plates separated by a thin
gap), interplay with an oscillating reaction can be obtained only if
the reaction induces su�cient viscosity changes. Using pH-sensitive
polymers, Escala et al. have recently obtained a clock type change
of viscosity thanks to a coupling with a pH clock reaction.25 On this
basis, they have further shown that this reaction-driven viscosity
change is able to destabilize the otherwise hydrodynamically stable
displacement of a less viscous aqueous reactive solution by a more
viscous solution of a pH-sensitive polymer.26This experimental result
suggests that more complex dynamics could be obtained if viscous
�ngering can be coupled to temporal oscillations of pH.

The goal of this article is to move a step further and probe
the viscous destabilization of an initially stable system when an
A + B → oscillator front induces localized periodic variations of
viscosity. To do so, we explore numerically the interplay between
temporal oscillations of concentrations in the Brusselator model and
viscous �ngering when the viscosity of the solution varies with the
concentration of the Y intermediate species. We show that an oscil-
lating localized pattern can be sustained, in�uenced, and induced

by the viscous �ngering instability thanks to an interplay of chem-
istry and hydrodynamics. In particular, the striking prediction of our
study is that, if the chemical system and the hydrodynamic displace-
ment are stable on their own, a chemohydrodynamic instability can
arise due to the coupling of the autocatalytic kinetics with viscosity
gradients. Indeed, we show that subcritical oscillations can be �red by
viscous �ngers, while local viscosity gradients induced by oscillations
can trigger local �ngering in otherwise stable con�gurations.

The outline of the paper is as follows: In Sec. II, we describe
the reaction–di�usion–convection model with Brusselator kinetics
in an A + B → oscillator con�guration and viscosity changes cou-
pled to the concentration of the Y intermediate species. A discussion
of the numerical approach with stability and discretization consider-
ations is given next. In Sec. III, we discuss the numerical simulation
results evidencing the coupled in�uence of oscillating patterns with
the convective viscous �ngering instability. The paper is concluded
in Sec. IV.

II. CHEMOHYDRODYNAMIC MODEL

Our model system is a two-dimensional porous medium of
length Lx and width Ly �lled with a solution of the reactant A in con-
centrationA0 with viscosityµA. At a given time, a �nite slice of width
W containing both reactants A and B in concentration A0 and B0,
respectively, and of viscosity µs is injected in the system (Fig. 1) and
displaced at a constant speed U along the x axis by the solution of A.
The reactants A and B are then involved in the nonlinear kinetics of
the irreversible Brusselator model given by19,27–35

A
k1−→ X,

B + X
k2−→ Y + D,

2X + Y
k3−→ 3X,

X
k4−→ E.

(1)

(a) (b)

FIG. 1. Schematic of the spatial concentration profiles of (a) the Brusselator chemical reactants A and B at time t = 0 and (b) reactants A and B and intermediate species
X and Y some time after oscillations have started.
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Here, {ki, i = 1, 4} represent the set of rate constants, and X and Y
are the intermediate oscillating species, respectively. The Brusse-
lator model has been used previously to obtain localized oscil-
lations and Turing patterns within gradients of concentration of
reactants.18,19,22,31–35

Here, speci�cally, the initial concentrations of the various reac-
tant species in the con�guration described in Fig. 1 is

(A,X,Y)(x, y, t = 0) = (A0, 0, 0) ∀x, y, (2)

B(x, y, t = 0) =
{

B0 for x ∈ W,

0 elsewhere,
∀y. (3)

A. Reaction–diffusion–convection equations

Upon di�usion and reaction between the two reactants A
and B, nonlinear dynamics of the intermediate species X and Y
start to develop in the localized reaction zone of width W [see
Fig. 1(b)]. Assuming that the viscosity of the medium is a func-
tion of the concentration of species Y and that the �ow is governed
by Darcy’s law, the two-dimensional chemohydrodynamics of the
system is described by the following reaction–di�usion–convection
equations:

∇ · u = 0, (4)

∇p = −µ(Y)

κ
u, (5)

∂A

∂t
+ u · ∇A = −k1A + DA∇2A, (6)

∂B

∂t
+ u · ∇B = −k2BX + DB∇2B, (7)

∂X

∂t
+ u · ∇X = k1A − k2BX + k3X

2Y − k4X + DX∇2X, (8)

∂Y

∂t
+ u · ∇Y = k2BX − k3X

2Y + DY∇2Y . (9)

Here, u = (u, v) is the velocity �eld and DJ is the molecular
di�usion coe�cient of species J, which is supposed to be con-
stant. We assume that there are no buoyancy e�ects and that the
dynamic viscosity µ varies exponentially with the concentration
of Y as6

µ(Y) = µAe
R Y
Yc , (10)

where R = ln µs
µA

is the log-mobility ratio quantifying the ratio

between the viscosityµs of the sample whenY = Yc and the viscosity
µA of the displacing solution of A, where Yc is a reference concentra-
tion of Y . The equations are nondimensionalized using the following
scaling:

ũ = u/U, (x̃, ỹ) = (x/(U/k4), y/(U/k4)), t̃ = k4t,

D̃J = DJ/(U
2/k4), Ã = A/Ac, B̃ = B/Bc,

X̃ = X/Xc, Ỹ = Y/Yc,

where

Xc = Yc =
√

k4

k3
, Ac = k4

k1

√

k4

k3
, Bc = k4k2.

The resulting nondimensional governing equations in a frame of ref-
erence moving with the injection velocity are (after dropping the
tildes)

∇ · u = 0, (11)

∇p = −µ(Y)(u + ex), (12)

∂A

∂t
+ u · ∇A = −kAA + DA∇2A, (13)

∂B

∂t
+ u · ∇B = −kBBX + DB∇2B, (14)

∂X

∂t
+ u · ∇X = A − (B + 1)X + X2Y + DX∇2X, (15)

∂Y

∂t
+ u · ∇Y = BX − X2Y + DY∇2Y , (16)

µ = eRY , (17)

where kA = k1/k4, kB = k2/
√
k3k4, and ex is the unit vector along the

x-direction. In the remainder of the article, we assume that both reac-
tantsA andB have the same di�usivity and �xDA = DB = 1. In batch
conditions such that A and B are kept at constant concentrations A0

and B0 and no convective instability can occur, this model admits
a homogeneous steady-state solution Xs = A0, Ys = B0/A0, which is
unstable toward temporal oscillations of the intermediate species X
and Y when B0 > Bc = 1 + A2

0. In the absence of reactions but pro-
vided some Y species is present in the sample, VF can occur as soon
as R 6= 0. Here, we take R > 0 such that VF develops at the back left
part of the sample where the less viscous solution of A displaces the
more viscous sample.

In order to analyze numerically the localization of such oscil-
lations for the initial conditions (2) and (3) and their coupling with
viscous �ngering, we use a stream-function formulation by introduc-
ing the stream function 9 de�ned as (u, v) = (∂9/∂y,−∂9/∂x).
The governing equations (11)–(17) reduce to

∇29 = −R(9xYx + 9yYy + Yy), (18)

At + 9yAx − 9xAy = −kAA + ∇2A, (19)

Bt + 9yBx − 9xBy = −kBBX + ∇2B, (20)

Xt + 9yXx − 9xXy = A − (B + 1)X + X2Y + DX∇2X, (21)

Yt + 9yYx − 9xYy = BX − X2Y + DY∇2Y , (22)

where subscripts indicate a derivative with regard to the subscript
variable. It is expected that this model will give localized oscilla-
tions in the sample when B0 > 1 + A2

0 and VF at the left part of the
sample36,37 when R > 0.

B. Numerical approach

Equations (18)–(22) are solved numerically using Fourier pseu-
dospectral techniques.38 In this technique, the variables A,B,Y ,X,
and 9 are transformed into Fourier space as

I(x, y, t) =
∑

p

∑

r

Îp,r(t)e
i(kpx+kry), (23)
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where i2 = −1, I(x, y, t) is the variable in real space while Î are
the Fourier coe�cients of I calculated at the discretized collocation
points, and kp and kr are the wave numbers of the Fouriermodes. The
Fourier discretization is uniform in space and is truncated at p = 0
and p = M − 1, r = 0 and r = N − 1, whereM and N are the num-
ber of grid points in the x and ydirections, respectively. The nonlinear
and variable coe�cient terms are calculated in real physical space.
The transformation between the real and the Fourier space is done
by using fast Fourier transformation with the order of complexity
N log2N, where N = M × N.

To apply the spectral technique, nonlinear terms are de�ned in
terms of Fourier coe�cients as

NY(x, y, t) = ∂9

∂x

∂Y

∂x
+ ∂9

∂y

∂Y

∂y
=

∑

p

∑

r

N̂Yp,r(t)e
i(kpx+kry), (24)

JA(x, y, t) = ∂9

∂y

∂A

∂x
− ∂9

∂x

∂A

∂y
+ kAA=

∑

p

∑

r

ĴAp,r(t)e
i(kpx+kry),

(25)

JB(x, y, t) = ∂9

∂y

∂B

∂x
− ∂9

∂x

∂B

∂y
+ kBBX=

∑

p

∑

r

ĴBp,r(t)e
i(kpx+kry),

(26)

JX(x, y, t) = ∂9

∂y

∂X

∂x
− ∂9

∂x

∂X

∂y
− A + (B + 1)X − X2Y

=
∑

p

∑

r

ĴXp,r(t)e
i(kpx+kry), (27)

JY(x, y, t) = ∂9

∂y

∂Y

∂x
− ∂9

∂x

∂Y

∂y
− BX + X2Y

=
∑

p

∑

r

ĴYp,r(t)e
i(kpx+kry). (28)

With the above representation, the equations become in Fourier
space a system of algebraic di�erential equations:

9̂p,r = R(N̂Yp,r + ikrŶp,r)/(kp
2 + kr

2
), (29)

dÂp,r

dt
= −ĴAp,r − (k2p + k2r )Âp,r , (30)

dB̂p,r

dt
= −ĴBp,r − (k2p + k2r )B̂p,r , (31)

dX̂p,r

dt
= −ĴXp,r − DX(k2p + k2r )X̂p,r , (32)

dŶp,r

dt
= −ĴYp,r − DY(k2p + k2r )Ŷp,r . (33)

The terms N̂Y , ĴA, ĴB, ĴX , and ĴY are evaluated by transforming

variables Â, B̂, 9̂ , X̂, and Ŷ to real physical space, computing all the
terms having nonlinear and variable coe�cients in the real physi-
cal space and then transforming back to Fourier space. The time-
stepping scheme is a predictor–corrector method with second order
Adams–Bashforth scheme corrected by using a trapezoidal rule.36,39

We investigate numerically the spatiotemporal dynamics of the
Brusselator model with a focus on the in�uence of viscous �ngering.

The robustness of the numerical scheme is established by obtaining
the stable state con�guration Xs,Ys for B0 < Bc and R = 0 as well as
classical VF of a localized sample36,37 if Y is kept locally constant in the
sample and R > 0. For computation purposes, the nondimensional
length and width of the domain are L = k4Lx/U and L′ = k4Ly/U,
respectively, with the nondimensional initial length of the sample
zone being Ws = k4W/U = 764. To apply the Fourier pseudospec-
tral method, periodic boundary conditions are employed along the
longitudinal and transverse direction.36,39 Our simulations are per-
formed on a rectangular domain discretized using a lattice of 2048
× 256 grid points with a spatial step size of 0.5 and a time step of 0.01.
We�x the valuesDX = DY = 0.3 and kA = kB = 10−6. The small val-
ues of kA and kB allow one to focus on oscillations before A and B are
all consumed by the �rst steps of the Brusselator kinetics (1). Taking
equal di�usion coe�cients for X andY allows to avoid a Turing insta-
bility. Keeping A0 = 0.1 throughout such that Bc = 1.01, we vary B0

and R such that the computed solution eventually settles in one of
the following states: spatially homogeneous steady state, oscillating
patterns or aperiodic oscillations, and viscous �ngering. The initial
widthWs of the sample is a crucial parameter, which determines the
spatiotemporalmorphology of the oscillating patterns. If the width of
the region is too small, then the oscillations die out before the onset
of viscous �ngering. Therefore, the width of the sample is taken here
large enough for the oscillations to be sustained on the time scale
needed for viscous �ngering to operate.

III. RESULTS AND DISCUSSIONS

The chemohydrodynamic patterns studied here can be ana-
lyzed by following the evolution of the two-dimensional (2D)
X(x, y, t) and Y(x, y, t) concentration �elds of the oscillating inter-
mediate species. At successive times, these 2D concentration �elds
can be spatially averaged along the transverse y coordinate to
yield one-dimensional (1D) transversely averaged pro�les, i.e., X̄, Ȳ
de�ned as40

X̄(x, t) = 1

L′

∫ L′

0

X(x, y, t)dy, (34)

Ȳ(x, t) = 1

L′

∫ L′

0

Y(x, y, t)dy. (35)

The parameter space is classi�ed on the basis of the RD dynam-
ics controlled here by the initial reactant concentration A0,B0 and by
the contribution of Y to the viscous �ngering instability dynamics
controlled by the log-mobility ratio R. We begin with the reference
case R = 0 for which no viscous �ngering instability can develop
as the displaced sample has then the same viscosity as the displac-
ing solution of A. This reference oscillating situation is instructive to
next gradually characterize the oscillating pattern in the presence of
viscous �ngering instability obtained when R 6= 0.

A. Localized oscillations in the absence of VF (R = 0)

In the absence of any viscous �ngering (R = 0), the concentra-
tion of the intermediate species X and Y evolves within the sam-
ple toward the steady state value (Xs,Ys) = (A0,B0/A0) if B0 < Bc

= 1 + A2
0 = 1.01 [Figs. 2(a) and 2(b)]. On the contrary, for B0 > Bc,
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the steady state becomes unstable and the system features localized
periodic oscillations of X and Y within the sample [Figs. 2(c) and
2(d)]. These temporal oscillations can be best appreciated by look-
ing at the transversely averaged concentration pro�le Ȳ(xc, t) at three
di�erent �xed points xc within the �nite reaction zone (Fig. 3). The
xc points are chosen at positions that correspond to 0.1Ws, 0.5Ws,
and 0.9Ws, respectively, to analyze the dynamics at the left, middle,
and right of the sample, respectively. We see that the central point
maintains regular oscillationswith a �xed amplitude, while the lateral
points see a decrease in time of their amplitude because of di�usion of
B within the sea of A. The resulting local decrease of B at the edge of
the sample ultimately leads to fading of the oscillations in time at the
boundaries of the sample. In the absence of VF, the spatiotemporal
dynamics at the left and right of the sample feature symmetric behav-
iors (Fig. 3). The larger the sample, the longer regular oscillations are
maintained in its central part. Here, the initial sample width Ws is
always taken large enough for the interplay between chemistry and
hydrodynamics to occur before di�usive fading out of oscillations in
its central part.

As it is the location where oscillations are maintained for the
longest time, the center point of the reaction zone is used to measure
the amplitude of the oscillations Yamp. Figure 4(a) shows the tempo-
ral evolution of the transverse average concentrationȲ at this center
location for di�erent values of B0, while the related amplitude of the
oscillations, Yamp, is plotted as a function of B0 in Fig. 4(b). Clearly,
Yamp increases as B0 increases above Bc. For B0 = Bc, tiny little mod-
ulations of concentrations are observed, while the amplitude sharply
increases as soon as B0 > Bc because of the small value of A0 used
here.

FIG. 3. Temporal evolution of the transverse average concentration Ȳ(xc, t)
for B0 = 1.04,R = 0 at different fixed positions, xc, inside the sample, i.e.,
xc = 0.1Ws, 0.5Ws, and 0.9Ws.

These simulations show that localized temporal oscillations can
be controlled by the initial concentration of B within the sample.
Next, we examine how these oscillations couple to viscous �ngering
when the viscosity contrast between the displacing �uid A and the
sample is nonzero.

(a) (b)

(c) (d)

FIG. 2. Temporal evolution of the transversely averaged profiles of the intermediate species X and Y. In the nonoscillating case shown in the first line for B0 = 0.5, X evolves
to the steady state Xs = A0 (a), while Y asymptotes to Ys = B0/A0 (b) within the sample. For B0 = 1.04, i.e., for B0 > 1 + A

2
0, the variables X (c) and Y (d) start to oscillate

locally in the sample.
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(a) (b)

FIG. 4. (a) Temporal evolution of the transverse averaged concentration Ȳ for different values of B0 at the fixed position xc = 0.5Ws forR = 0. (b) Amplitude of the oscillations
of the Y species as a function of B0 computed either by direct numerical solution (DNS) of the Brusselator kinetics with no diffusion or at the central part of the sample.

B. Oscillating viscous fingering (R > 0)

WhenR > 0, the viscous �ngering instability is triggered here at
the rear, left part of the sample36,37 where the less viscous solution of
Awith viscosityµA displaces themore viscous sample of viscosityµs.
The 2D concentration �eld of speciesY is compared in Fig. 5 for both
nonoscillating (B0 < Bc) and oscillating (B0 > Bc) cases at R = 0.2
and 0.25. In the absence of oscillations, we see in Figs. 5(a) and 5(c)

the classical �ngering deformation of the rear interface where the
viscosity increases along the �ow direction. Within the sample, the
concentration of X and Y remains constant and equal to their steady-
state values Xs and Ys, while they dilute out by di�usion at the right
frontal interfacewhere the viscous gradient is stable. In the oscillating
case [Figs. 5(b) and 5(d)], the VF instability is observed to interplay
with the oscillating pattern. The �ngers still develop at the back of
the sample; however, they appear earlier, while later on, �ngering is

(c) (d)

(a) (b)

FIG. 5. Concentration fields of Y at three successive times t = 1000, 2000, and 2500 from top to bottom within a panel comparing viscous fingering in the nonoscillating
case when B = 0.5 in the left column with the corresponding oscillating case at B = 1.02 in the right column for R = 0.2 [(a) and (b)] and R = 0.25 [(c) and (d)].
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more intense leading to a more extended �ngered zone. Within the
sample, the concentration of Y oscillates in time; however, the oscil-
lations become progressively spatially desynchronized because of the
�ngering. This is a clear example of a chemohydrodynamic structure
in which the �nal pattern combines the properties of an oscillating
reaction and of a viscous �ngering instability. Let us further analyze
the impact of oscillations on �ngering and vice versa.

1. Influence of oscillations on VF

An important in�uence of the oscillations on �ngering is to
decrease the onset time of the hydrodynamic instability. For instance,
in Fig. 5(a), the onset time of nonoscillating �ngering for R = 0.2 is
around t = 2000, whereas for the equivalent oscillatory case, �nger-
ing is observed before t = 1000 as seen in Fig. 5(b). The rationale
behind the earlier onset of VF for the oscillating case is the fact that
the oscillations in the concentration of Y induce a pulsating behavior
of viscosity. These oscillations induce spatially traveling waves [see
Fig. 6(a)] in which, locally, steeper viscosity gradients are obtained.
This increases the viscous destabilization, inducing an earlier appear-
ance of the �ngers and a smaller wavelength. The extent of the
�ngered zone is also longer in the presence of oscillations as seen in
Fig. 7, featuring the temporal evolution of the mixing length L of the
concentration of Y calculated as the length of the interval in which
the transverse averaged concentration Ȳ(x, t) > 0.001. The oscillat-
ing cases show a signi�cant increase in mixing length in comparison
with the nonoscillating cases. Thus, earlier triggering of convection,
an increased number of �ngers, and a larger mixing zone are some of
the common features of VF in the presence of temporal oscillations
of viscosity triggered by an oscillatory kinetics.

2. Influence of VF on oscillations

If �ngering is a�ected by oscillations, the reverse is also true:
typically, the local amplitude of the oscillations is modi�ed in the
presence of VF. Indeed, more intense mixing induced by the con-
vective instability dilutes both the reactant B and the intermediate

FIG. 7. Temporal evolution of the mixing length L for oscillating (B = 1.02, full
curves) and nonoscillating (B0 = 0.5, dashed curves) systems withR = 0.2 (red)
and R = 0.25 (blue).

species X and Y of the oscillator. As a consequence, the oscillations
are more quickly damped in the presence of VF and the larger R, i.e.,
the more intense the �ngering, the quicker this e�ect. To see this, we
plot in Fig. 6(b) the transverse average concentration Ȳ as a func-
tion of time at the center position of the reaction zone. As explained
in Fig. 4, for R = 0, the oscillations of species Y maintain a quite
constant period and amplitude for the time scanned. For R = 0.2
and mild �ngering, the oscillations start to show a dephasing and a
small decrease in amplitude [Fig. 6(b)]. On further increasing R to
0.25, the dephasing occurs earlier with a signi�cant decrease in the
amplitude in comparison with R = 0. Thus, VF results in dampening
of the chemical oscillations and this dampening is accelerated with

(a) (b)

FIG. 6. (a) Transverse averaged viscosity profiles µ̄ for oscillating (solid curves) and nonoscillating (dashed curves) configurations at times t = 1000 and t = 2500 for

R = 0.2, illustrating the pulsatile changes of viscosity with larger viscosity gradients for the oscillating case. (b) Transverse averaged concentration Ȳ(xc, t) at the fixed
central position xc = 0.5Ws for different values of R and B0 = 1.02.
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FIG. 8. Evolution of the 2D concentration field of Y for B0 = 1.00 and (a) R = 0.15 and (b) R = 0.20 at the time indicated in the panel. As B < Bc, the central part of the
sample does not oscillate. Oscillations are triggered in the valley where a finger depleted in B (in blue here) protrudes in the zone rich in B (in red).

an increase in the viscosity ratio R between the reactants A and B
solutions.

The next question to be answered is whether VF could trigger
oscillations in an otherwise nonoscillating system. If yes, then under
what conditions can this be achieved and how do the induced oscilla-
tions get a�ected by a change in the viscosity contrast? As a corollary,
we also seek to understand whether oscillations can destabilize a
hydrodynamic stable displacement.

C. Oscillations induced by VF

We recall that, as A = 0.1 everywhere here, the threshold for
oscillations is Bc = 1.01. Thus, when B0 < Bc, no oscillations are
expected in the system.We �nd, however, that, in the presence of vis-
cous �ngering, subcritical oscillations can be triggered locally. This
is shown in Fig. 8(a) for B0 = 1.00 < Bc and R = 0.15. At the begin-
ning, the system is stable toward oscillations and VF develops at the

FIG. 9. (a) The transversed averaged evolution profile for Y with B0 = 1.00 for (a) R = 0.15 and (b) R = 0.2 with the corresponding space-time plots in (c) and (d).
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FIG. 10. Amplitude of oscillations as a function of B0, for different values of R.

rear, left part of the sample in which Y equals its steady-state value.
However, at some point, we observe that an oscillation starts at the
trough of a �nger, at the location where the blue �nger of A, poor in
B, X, and Y enters the sample rich in these three species. This local
oscillation next triggers a wave that propagates across the sample. A
second oscillation starts then again at the valley of the same �nger
generating a second wave. After the passage of this wave, the sample
restores the constant steady state concentration in the middle of the
sample.

This dynamics can be appreciated also in Fig. 8(b) where simi-
lar �ngering-induced subcritical oscillations are obtained for a larger
R = 0.20. Here, VF occurs sooner, is more intense, and has a smaller
wavelength because R is larger. Oscillations and the related waves are
also triggered at the tip of the �ngers of the displacing �uid invad-
ing the sample. The oscillations are not �red at regular intervals as
this occurs only when good conditions are met within invading �n-
gers. Therefore, we see sometimes that oscillations disappear and the
steady state is restored within the sample once classical merging of
�ngers leads to homogenization. Oscillations are triggered back only
much later again, once a single �nger is formed allowing for the blue
�nger to protrude again in the red sample.

(a) (b)

(c) (d)

FIG. 11. Concentration fields of Y (top) showing additional viscous destabilization on the right part of the sample when a local nonmonotonic viscosity variation triggers VF
and related viscosity profiles (bottom) at three different times for R = 0.2 and [(a) and (c)] B0 = 1 and (b) B0 = 1.02. The inset of the lower panels shows the local peaks
in the viscosity responsible for the oscillation-driven fingering.
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A summary of these dynamics in which subcritical oscilla-
tions are triggered by �ngering is given by the space-time maps of
Fig. 9, where the aperiodic oscillations due to the in�uence of VF
can be seen. We appreciate that at R = 0.15, the system needs quite
a long time for �ngering to develop enough to �re the oscillation.
At R = 0.2, oscillations are triggered earlier because �ngering starts
more rapidly. After three waves are triggered, a transient is needed
for a new �nger to build up and �ring of oscillations to start again.

To understand the mechanism of the onset of the subcriti-
cal oscillations, we have to remind that di�usion of species occurs
perpendicular to the interface between the two solutions. At the tip
of a red, backward moving �nger of the sample invading the blue A
solution, the B, X, and Y species spread out radially such that, ahead
of the �nger, the reactant B and the intermediate species X and Y get
more diluted than for a corresponding �at interface. The system is
thus locally less able to oscillate. On the contrary, when B, X, and Y
di�use out of the sample in a valley of the red zone toward the tip of a
blue �nger protruding forward in the sample, they are more concen-
trated than in a planar case. Following scheme (1), the autocatalytic
kinetics at the origin of the oscillatory bifurcation is therefore rein-
forced in the blue valleys where, locally, oscillations can be triggered
for a value of B slightly lower than Bc.

Following this idea, we can anticipate that oscillations will be
triggered earlier and at lower values of B0 < Bc if �ngers of A extend
more easily in the sample and if the curvature of a local �nger is
larger. This is possible if the system ismore unstable toward �ngering,
i.e., if R increases. This is indeed what we observe, as seen in Fig. 10
where we plot the amplitude of the transversely averaged concentra-
tion Ȳ(xc, t) at the center position of the reaction zone as a function
of B0 for di�erent values of R. From Fig. 10, we clearly see that VF is
able to trigger subcritical oscillations in a zone of control parameter
increasing when R increases.

D. VF induced by oscillations

The coupling between viscosity gradients and the oscillatory
concentration dynamics of the intermediates can also induce a vis-
cous destabilization of otherwise stable zones as seen in Fig. 11 from
two examples: in the case of VF-induced subcritical oscillations for
B0 < Bc [Figs. 11(a) and 11(c)] and for the oscillating VF when
B0 > Bc [Figs. 11(b) and 11(d)]. At the left of the sample, we have the
classical VF described above, due to the displacement of the more
viscous sample by the less viscous solution of A (R > 0). However,
the right part of the sample should be stable as, there, the more vis-
cous sample is injected into the less viscous carrier �uid.37Weobserve
nevertheless that, in the presence of oscillations of viscosity due to
local oscillations of concentration, we can locally have tiny transverse
modulations of this right stable zone. This is due to the presence in
the oscillating traveling wave of local peaks of viscosity [see circled
areas in Figs. 11(c) and 11(d)] in which a less viscous zone displaces
a more viscous one, triggering VF locally in the right initially stable
part of the sample thanks to the oscillations. As the concentration
of Y is pulsating in the course of time [see Figs. 11(a) and 11(b)],
so does the viscosity pro�le [Figs. 11(c) and 11(d)] in which some
maxima form and vanish regularly, thus activating and suppressing
successively the driving force for VF. As a consequence, convective
�ngers triggered by the oscillations form, grow, and fade away at

irregular intervals. Note that, as �ngering develops on the left and
right part of the sample because of local adverse viscosity gradients
that are not correlated, the respective oscillations are not necessarily
in phase.

IV. CONCLUSION

Wehave numerically studied reaction-driven oscillating viscous
�ngering occurring when a viscous sample containing the reactants
of the oscillatory Brusselator model is displaced by a less viscous
solution of one of the reactants. Above the critical threshold for
oscillations, the concentration of the intermediate species X and Y
oscillates within the sample triggering oscillations of the viscosity
of the solution varying with the concentration of Y. When oscilla-
tions interplay with viscous �ngering, we �nd that �ngering occurs
earlier, with a smaller wavelength and is more intense with larger
mixing zones than in the nonoscillating situation. This is due to the
fact that oscillations of the concentration of Y trigger oscillations of
viscosity and that, as a consequence, locally stronger viscosity gra-
dients are experienced within the pulsatile viscosity �eld. This e�ect
increases when the log-mobility ratio R controlling VF is increased.
Viscous �ngering can also in�uence the oscillations leading to amore
rapid dilution and fading out of the oscillations because ofmore rapid
convective mixing.

Most interestingly, the chemohydrodynamic coupling also
induces new dynamic regimes that can only be obtained thanks to
the interplay of chemistry and hydrodynamics. The �rst possibility is
to obtain subcritical oscillatory behavior triggered by VF.We observe
indeed that, when a �nger of the solution of A protrudes within the
sample rich in reactant B and intermediate species X and Y, a local
oscillation can be triggered at the tip of the �nger even if the initial
concentration B0 of the control parameter is smaller than its critical
value to be reached to have oscillations in batch conditions. This is
supposed to be due to the fact that the local curvature in the �nger
concentrates the concentration of species B, X, andY locally such that
an oscillation and a subsequent traveling wave can be triggered. The
second possibility is that the oscillating dynamics is able to induce
VF at the initially hydrodynamically stable interface where the more
viscous sample pushes the less viscous solution of the reactant. This
occurs thanks to the formation of nonmonotonic pulsatile viscosity
pro�les in which a local maximum can trigger the VF instability.

Our results evidence thus the rich wealth of possible new
chemohydrodynamic behaviors that can be obtained thanks to the
interplay between the symmetry-breaking properties of both hydro-
dynamic and chemical systems. From a theoretical point of view, a
possible extension of the present work will include the study of the
interplay of VF with Turing patterns using the model above when
the X and Y intermediate species have di�erent di�usion coe�cients,
along the line of what has already been done with buoyancy-driven
convection.18

To search for experimental evidence of our predicted oscillat-
ing viscous �ngering dynamics, the recent viscous �ngering obtained
using a clock reaction26 with pH-changing properties25 is a good
starting point. The fact that front dynamics in A + B → oscilla-
tor con�gurations also start to be experimentally available in pH
oscillators23 enriches the possibility of trying to tune �ngering using
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pH-sensitive polymers.10,11 It would be very nice to be able to couple
viscous e�ects with the canonical oscillating Belousov–Zhabotinky
reaction around an A + B → oscillator con�guration.17 While cou-
pling of BZ localized oscillations in this con�guration has already
been done successfully for buoyancy-driven e�ects,16,24 it still remains
to see how to obtain large viscosity changes in the BZ system.
We hope that the current work will trigger future e�orts in this
direction.

ACKNOWLEDGMENTS

C.R. and A.D.W. acknowledge the �nancial support of the FRS-
FNRS PDR CONTROL program.

REFERENCES
1A. De Wit, Philos. Trans. R. Soc. A 374, 20150419 (2016).
2R. Kapral and K. Showalter, Chemical Waves and Patterns (Springer, The Nether-
lands, 2012).
3I. R. Epstein and J. A. Pojman, An Introduction to Nonlinear Chemical Dynamics:
Oscillations, Waves, Patterns, and Chaos (Oxford University Press, 1998).
4J. A. Pojman, I. R. Epstein, T. J. McManus, and K. Showalter, J. Phys. Chem. 95,
1299 (1991).
5J. Masere, D. A. Vasquez, B. F. Edwards, J. W. Wilder, and K. Showalter, J. Phys.
Chem. 98, 6505 (1994).
6A. De Wit and G. M. Homsy, Phys. Fluids 11, 949 (1999).
7L. Gál� and Z. Rácz, Phys. Rev. A 38, 3151 (1988).
8R. Tiani, A. De Wit, and L. Rongy, Adv. Colloid Interface Sci. 225, 76 (2018).
9T. Podgorski, M. C. Sostarecz, S. Zorman, and A. Belmonte, Phys. Rev. E 79,
016202 (2007).
10Y. Nagatsu, K. Matsuda, Y. Kato, and Y. Tada, J. Fluid Mech. 571, 475 (2007).
11L. A. Riolfo, Y. Nagatsu, S. Iwata, R.Maes, P.M. J. Trevelyan, andA. DeWit, Phys.
Rev. E 85, 015304(R) (2012).
12T. Gérard and A. De Wit, Phys. Rev. E 79, 016308 (2009).
13S. H. Hejazi, P. M. J. Trevelyan, J. Azaiez, and A. De Wit, J. Fluid Mech. 652, 501
(2010).

14N. Sabet, H. Hassanzadeh, and J. Abedi, Phys. Rev. E 96, 063114 (2017).
15N. Sabet, S. M. Jafari Raad, H. Hassanzadeh, and J. Abedi, Phys. Rev. Appl. 10,
054033 (2018).
16D. M. Escala, J. Carballido-Landeira, A. De Wit, and A. P. Muñuzuri, J. Phys.
Chem. Lett. 5, 413 (2014).
17M.A. Budroni, L. Lemaigre, D.M. Escala, A. P.Muñuzuri, andA.DeWit, J. Phys.
Chem. A 120, 851–860 (2016).
18M. A. Budroni and A. De Wit, Chaos 27, 104617 (2017).
19G. Nicolis and I. Prigogine, Self-Organization in Nonequilibrium Systems (Wiley,
New York, 1977).
20A. M. Turing, Philos. Trans. R. Soc. B Biol. Sci. 237, 37 (1952).
21V. Castets, E. Dulos, J. Boissonade, and P. De Kepper, Phys. Rev. Lett. 64, 2953
(1990).
22M. A. Budroni and A. De Wit, Phys. Rev. E 93, 062207 (2016).
23B. Dúzs and I. Szalai, Reac. Kinet. Mech. Cat. 123, 335 (2018).
24L. Lemaigre, “Convective patterns triggered by chemical reactions, dissolution
and cross-di�usion: An experimental study,” Ph.D. thesis (Université libre de
Bruxelles, 2016).
25D.M.Escala, A. P.Muñuzuri, A.DeWit, and J. Carballido-Landeira, Phys. Chem.
Chem. Phys. 19, 11914 (2017).
26D. M. Escala, A. De Wit, J. Carballido-Landeira, and A. P. Muñuzuri, Langmuir
35(11), 4182–4188 (2019).
27I. Prigogine and R. Lefever, J. Chem. Phys. 48, 1695 (1968).
28R. Lefever and G. Nicolis, J. Theor. Biol. 30, 267 (1971).
29R. Lefever, G. Nicolis, and P. Borckmans, J. Chem. Soc. Faraday Trans. 84, 1013
(1988).
30I. Prigogine and G. Nicolis, Q. Rev. Biophys. 4, 107 (1971).
31M. Herschkowitz-Kaufman and G. Nicolis, J. Chem. Phys. 56, 1890 (1972).
32J. Boissonade, J. Phys. France 49, 541 (1988).
33G. Dewel and P. Borckmans, Phys. Lett. A 138, 189 (1989).
34P. Borckmans, A. De Wit, and G. Dewel, Physica A 188, 137–157 (1992).
35G. Dewel, P. Borckmans, A. De Wit, B. Rudovics, J.-J. Perraud, E. Dulos,
J. Boissonade, and P. De Kepper, Physica A 213, 181–198 (1995).
36A. De Wit, Y. Bertho, and M. Martin, Phys. Fluids 17, 054114 (2005).
37M. Mishra, M. Martin, and A. De Wit, Phys. Rev. E 78, 066306 (2008).
38D. Gottlieb and S. A. Orszag,Numerical Analysis of Spectral Methods (Society for
Industrial and Applied Mathematics, 1989).
39C. T. Tan and G. M. Homsy, Phys. Fluids 31, 1330 (1988).
40A. De Wit, Phys. Fluids 16, 163 (2004).

Chaos 29, 043115 (2019); doi: 10.1063/1.5089028 29, 043115-11

Published under license by AIP Publishing.

https://aip.scitation.org/journal/cha
https://doi.org/10.1098/rsta.2015.0419
https://doi.org/10.1021/j100156a049
https://doi.org/10.1021/j100077a014
https://doi.org/10.1063/1.869988
https://doi.org/10.1103/PhysRevA.38.3151
https://doi.org/10.1016/j.cis.2017.07.020
https://doi.org/10.1103/PhysRevE.76.016202
https://doi.org/10.1017/S0022112006003636
https://doi.org/10.1103/PhysRevE.85.015304
https://doi.org/10.1103/PhysRevE.79.016308
https://doi.org/10.1017/S0022112010000327
https://doi.org/10.1103/PhysRevE.96.063114
https://doi.org/10.1103/PhysRevApplied.10.054033
https://doi.org/10.1021/jz402625z
https://doi.org/10.1021/acs.jpca.5b10802
https://doi.org/10.1063/1.4990740
https://doi.org/10.1098/rstb.1952.0012
https://doi.org/10.1103/PhysRevLett.64.2953
https://doi.org/10.1103/PhysRevE.93.062207
https://doi.org/10.1007/s11144-017-1329-1
https://doi.org/10.1039/C7CP00426E
https://doi.org/10.1021/acs.langmuir.8b03834
https://doi.org/10.1063/1.1668896
https://doi.org/10.1016/0022-5193(71)90054-3
https://doi.org/10.1039/f19888401013
https://doi.org/10.1017/S0033583500000615
https://doi.org/10.1063/1.1677471
https://doi.org/10.1051/jphys:01988004903054100
https://doi.org/10.1016/0375-9601(89)90025-X
https://doi.org/10.1016/0378-4371(92)90261-N
https://doi.org/10.1016/0378-4371(94)00160-U
https://doi.org/10.1063/1.1909188
https://doi.org/10.1103/PhysRevE.78.066306
https://doi.org/10.1063/1.866726
https://doi.org/10.1063/1.1630576

	I. INTRODUCTION
	II. CHEMOHYDRODYNAMIC MODEL
	A. Reaction–diffusion–convection equations
	B. Numerical approach

	III. RESULTS AND DISCUSSIONS
	A. Localized oscillations in the absence of VF (bold0mu mumu R=0R=0R=0R=0R=0R=0)
	B. Oscillating viscous fingering (bold0mu mumu R>0R>0R>0R>0R>0R>0)
	1. Influence of oscillations on VF
	2. Influence of VF on oscillations

	C. Oscillations induced by VF
	D. VF induced by oscillations

	IV. CONCLUSION
	ACKNOWLEDGMENTS

