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Chemically-driven convective dissolution

M. Jotkar, * L. Rongy and A. De Wit

When a solute A dissolves in a host phase with a given solubility, the resulting density stratification is

stable towards convection if the density profile increases monotonically along the gravity field. We

theoretically and numerically study the convective destabilization by reaction of this dissolution when

A reacts with a solute B present in the host phase to produce C via an A + B - C type of reaction. In

this reactive case, composition changes can give rise to non-monotonic density profiles with a local

maximum. A convective instability can then be triggered locally in the zone where the denser product

overlies the less dense bulk solution. First, we perform a linear stability analysis to identify the critical

conditions for this reaction-driven convective instability. Second, we perform nonlinear simulations and

compare the critical values of the control parameters for the onset of convection in these simulations

with those predicted by linear stability analysis. We further show that the asymptotic dissolution flux of

A can be increased in the convective regime by increasing the difference DRCB = RC � RB between

the Rayleigh numbers of the product C and reactant B above a critical value and by increasing the ratio

b = B0/A0 between the initial concentration B0 of reactant B and the solubility A0 of A. Our results

indicate that chemical reactions can not only initiate convective mixing but can also give rise to large

dissolution fluxes, which is advantageous for various geological applications.

1 Introduction

Dissolution-driven convection has recently received significant
attention owing to various geological applications such as CO2

capture and sequestration (CCS) techniques for instance.1 CCS
involves capturing CO2 at production sites and injecting it into
geological storage sites such as saline aquifers. After injection
under a cap rock, the less dense CO2 accumulates on top of the
denser brine. In this two-layer configuration, CO2 can dissolve
into the underlying brine. This results in denser CO2-rich brine
lying on top of the less dense resident brine giving rise to an
unstable density stratification, such that a buoyancy-driven
fingering instability can develop. The convective motion facili-
tates increased mixing, which is desirable for improving the
efficiency and safety of CO2 sequestration process.2–8 The effect
of chemical reactions on this nonlinear convective dissolution
dynamics has been the subject of recent investigations.9–24

In particular, it has been shown that A + B - C reactions can
accelerate or slow down dissolution-driven convection depending
on the relative contribution to density of each of the species
present in the host solution.11,12,16,19,21,22,24

In some cases however, dissolution in the absence of reac-
tion does not induce convection. This is the case either if the

dissolving species enters the host phase from above but
decreases density or, on the contrary, if it enters the host
solution from below but increases density. In these analogous
situations, the density increases monotonically along the gravity
field14 and diffusion remains the only transport process
observed. It has been shown that chemical reactions are able
to destabilize these situations and trigger convection by inducing
a local extremum in the density profile.14,15,19,23,25

Specifically, Loodts et al. conducted a linear stability analysis to
show that positive growth rates and thus destabilization can be
obtained when the reactive density profile features a local
maximum.14 The variety of possible density profiles in the case
where all species diffuse at different rates has been defined and
connections to experimental results have been discussed.15 As an
example, in a reaction involving the alkaline oxidation of glucose
with methylene blue as a catalyst, it was demonstrated experimen-
tally and theoretically that chemical reactions can induce convec-
tion in such an initially stable density stratification.26–29 Nonlinear
simulations of the problem have also shown that, in this reaction-
driven convective case, fingers develop not from the interface but
from the maximum of density located below the interface.19

Similar conclusions have been obtained recently using a different
boundary condition at the interface.23 However, the critical values
of the governing parameters for the onset of convection and the
dissolution fluxes have not been characterized yet.

In this context, several important questions remain unanswered:
in particular, how do the critical conditions for the onset of the
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convective instability obtained from nonlinear simulations
compare against the predictions of linear stability theory?
How do the asymptotic fluxes and the onset times for convec-
tion scale with the control parameters of the problem? Beyond
the critical conditions, how does increasing the key parameters
of the problem influence the convective dynamics?

To answer these questions, we study here theoretically such
reaction-driven convective dissolution in partially miscible
phases when the dissolving phase A lying above the host phase
decreases the density of the host solution upon dissolution and
reacts with a solute B to produce C via an A + B - C reaction. If
all three species contribute to the density of the solution, it is
possible to initiate buoyancy-driven convection depending on
the relative properties of the reactant B and product C for a
given A. We consider here equal diffusivities of the species to
focus on the solutal effects. In particular, we study the effect on
the asymptotic dissolution flux of A of varying the difference
DRCB = RC � RB in Rayleigh numbers of the product C and
reactant B and of the ratio b = B0/A0 of the initial concentration
B0 of B with respect to the solubility A0 of A. We first carry out a
linear stability analysis using a frozen time or quasi-steady-state
approximation to identify the critical conditions in the (b,DRCB)
parameter space above which chemical reactions destabilize
the density profiles and eventually lead to a convective instability.
More precisely, we obtain the critical condition DRcr as a function
of b, above which the infinitesimal perturbations grow in time
and destabilize the system. In a second part, we numerically
study the nonlinear convective dynamics and compare the critical
values of parameters for the onset of convection with those
predicted by the linear stability analysis. We analyze the spatio-
temporal dynamics using spacetime plots for the density and
the temporal evolution of the dissolution flux in the parameter
space. Finally, we show that the onset time for convection can be
reduced by orders of magnitude and the asymptotic dissolution
fluxes can be increased significantly upon increasing b and DRCB

above the critical value. Our results indicate that chemical
reactions can not only induce convection but also enhance the
storage rate substantially.

The article is organized as follows. In Section 2, we explain
the numerical model used and classify the various convective
regimes in Section 3. In Section 4, we present the methodology
used for the linear stability analysis and the results obtained
including the dispersion curves, the structure of the least stable
eigenmode and the neutral stability boundary. Section 5 analyzes
the nonlinear convective dynamics in the (b,DRCB) parameter
space. Finally, we highlight the main findings of our work
in Section 6.

2 Problem formulation

Following previous works,19,24 we consider a homogeneous,
isotropic, isothermal porous medium in which two partially
miscible aqueous phases are initially separated by a horizontal
interface. The gravitational field g points downwards along
the vertical z axis and is perpendicular to the horizontal x axis.

The upper phase A dissolves into the lower host phase contain-
ing a reactant B with an initial concentration B0 and reacts
with B to produce C via a second order A + B - C reaction. All
species contribute to the density of the solution and are
assumed to diffuse at equal rates. We assume a local chemical
equilibrium such that the concentration of A at the interface
(z = 0) remains constant with time, and is equal to its finite
solubility A0 in the host phase. The concentrations of B and C
are assumed to be small enough to not affect this solubility.
The host phase extends from x0 = 0 to x0 = L0 in the horizontal
direction and from z0 = 0 to z0 = H0 in the vertical direction. We
focus on the density stratification problem which is stable in
absence of reactions i.e. the case where the species A, dissolving
from above, decreases the density of the host solution i.e. the
Rayleigh number quantifying its contribution to density is negative.
The problem is equivalent to the one where a species A increases
the density of the host phase upon dissolution from below.14

The solute concentrations, time, spatial coordinates and velocity
are non-dimensionalized using the following quantities:19

A = A0/A0, B = B0/A0 C = C0/A0 (1a)

t = t0/tc, z = z0/lc, u = u0/uc, (1b)

where the primes denote dimensional variables and we use the
chemical time scale tc = 1/(qA0) with q the kinetic constant of
the reaction A + B - C, the reaction–diffusion (RD) length scale

lc ¼
ffiffiffiffiffiffiffiffiffiffi
DAtc
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DA= qA0ð Þ

p
with DA the diffusion coefficient of A

and the velocity scale uc ¼ flc=tc ¼ f
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DAqA0

p
with f the poro-

sity of the medium.
The dimensionless reaction–diffusion–convection (RDC)

equations governing the temporal evolution of the solute
concentrations are

@A

@t
þ ðu � rÞA ¼ r2A� AB; (2a)

@C

@t
þ ðu � rÞC ¼ r2C þ AB; (2b)

where u is the two-dimensional velocity field. Since we assume
that all the species diffuse at the same rate and that initially the
host phase contains only B and no C, the dimensionless solute
concentration of B can be reconstructed through the following
conservation relation:

B = b � C, (3)

where b = B0/A0.19,24 As convective dissolution is of importance
in several applications in porous media, we consider here that
the evolution of u is given by Darcy’s law:

rp = �u + rez, (4)

with p the dimensionless pressure and ez the unit vector along
the gravity field.

Periodic boundary conditions are imposed at x = 0 and x = L,
no vertical flow and no flux conditions are used for A and C
at z = H (bottom boundary) while at z = 0 (upper interface),
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no vertical flow and no flux conditions for C are used along with
A = 1. We solve the RDC eqn (2) with the initial conditions

A(x, z = 0, t = 0) = 1 +e�rand(x); A(x, z 4 0, t = 0) = 0, (5a)

C(x, z, t = 0) = 0. (5b)

Perturbations shown in eqn (5a) are introduced in the initial
concentration of A at the interface in order to trigger the
instability.30,31 e { 1 is the amplitude of the perturbations,
here chosen as 10�3, and rand(x) is their modulation along x,
varying randomly between �1 and 1 (‘‘white noise’’).

The equations are closed by an equation of state for the
dimensionless density r, given as

r = RAA + DRCBC, (6)

where the Rayleigh numbers Ri (i = A, B, C) quantify the
contribution to density of the species i as

Ri ¼
aiA0gk

fn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DAqA0

p ; (7)

where ai ¼
1

r0

@r0

@ci
0 is the solutal expansion coefficient of

species i, r0 is the dimensional density of the solvent, k is the
permeability and n is the kinematic viscosity of the solvent. The
difference in the contribution to density of C and B, defined as,

DRCB = RC � RB (8)

and b = B0/A0 are the key parameters of the problem.
As shown previously,19 for equal diffusivities of the species

considered here, the problem is completely determined by the
three parameters: RA, DRCB and b. We recall that we focus here
on the initially stable density stratification problem where the
Rayleigh number of species A in eqn (7) is negative. We fix here
arbitrarily RA = �1 and study the effect of varying DRCB and b.

We solve the RDC eqn (2) numerically along with eqn (4) and (6)
and the relevant boundary conditions using the YALES32 software
with the DARCY_SOLVER module. We use the computational
domain width L = 3072 and height H = 2048 for most of the work
such that the results are independent of the domain size. For
particular destabilizing cases (mentioned later in Section 5), we
have used a larger domain height H = 4096. The reader may
refer to ref. 19 and 33 for further details on the numerics.

3 Classification of the density profiles

We recall that, when RA 4 0 and A dissolves from the top i.e. in
the case where the non-reactive case is already buoyantly unstable,
the various density profiles have already been classified in three
main regimes: I (non-monotonic and stabilizing), II (monotonic
and stabilizing) and III (monotonic and destabilizing).24 We
complement this classification for the RA o 0 case here.

In the absence of chemical reactions, when RA o 0 i.e. when
the dissolving species A decreases the density of the host
solution, the density profiles are monotonic and stable. In
the reactive case with RA o 0 and for equal diffusivities of the
species, it is possible to obtain non-monotonic density profiles

with a local maximum when DRCB 4 0.14 The density rI at the
interface (z = 0) where A = 1 and C = b is equal to rI = RA + bDRCB

while in the bulk, where A = C = 0, the initial density of the
host solution is rb = 0. In Fig. 1, the reaction–diffusion (RD)
density profiles are classified into four regimes in the (b,DRCB)
parameter space: regime IVA (monotonic, stable), regime IVB
(non-monotonic, stable), regime VA (non-monotonic, unstable with
rI o rb) and regime VB (non-monotonic, unstable with rI 4 rb).

When the product C is less dense than the reactant B
(DRCB o 0), the density profiles in regime IVA are monotonic
and buoyantly stable with the density at the interface smaller
than the initial density of the host solution i.e. rI o rb, similar to
the non-reactive equivalent. When C is denser than B (DRCB 4 0),
the density profiles are non-monotonic with a local maximum.
In regime IVB, the non-monotonic density profiles are stable and
dominated by diffusion, similar to regime IVA. For a given b,
above a certain critical value of DRCB, referred to as DRcr and
determined by the linear stability analysis (explained in the
following section and shown as the red dashed curve in
Fig. 1), the non-monotonic density profiles are unstable.

These unstable density profiles can be further differentiated
based on the amplitude of the end point values (rI,rb). The
condition rI = rb gives trivially the curve DR00 0 = �RA/b which
separates regime VA where DRcr r DRCB r DR00 0 and rI r rb

from regime VB where DRCB 4 DR00 0 and rI 4 rb.
We now analyze the effect of varying positive DRCB and b on

the RD density profiles. For a given b, the local maximum of the
density profile increases with increasing DRCB as seen in Fig. 2(a).
These profiles become unstable with respect to a buoyantly-driven
instability beyond a critical DRCB. As an example, the profiles
with DRCB = 0 and 0.2 are in the stable regime IVB while those
for DRCB = 0.5 and 1 belong to the unstable regime VA.

Fig. 1 Classification of the RD density profiles r(z) in the (b,DRCB) space:
regimes IVA (monotonic stable with rI o rb), IVB (non-monotonic stable
with rI o rb), VA (non-monotonic unstable with rI r rb) and VB (non-
monotonic unstable with rI 4 rb). The red dashed curve indicates the
critical condition for instability, the vertical blue dashed line at DRCB = 0
indicates the transition from regime IVA to IVB and the blue dashed curve
where DR00 0 = �RA/b indicates the transition from regime VA to VB
when rI = rb. Here, rI is the density at the interface while rb is the initial
density of the host solution.
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Similarly, the effect of increasing b for a given DRCB is shown in
Fig. 2(b), showing that the local maximum in the density profile
increases with b. The density at the interface rI = RA + bDRCB

increases with b for a given DRCB and RA.
In this section, we have classified the density profiles for

RA o 0 into different regimes. In the subsequent sections, we
identify the critical conditions for instability and study the
nonlinear convective dynamics in regimes VA and VB, above the
critical values of the parameters.

4 Linear stability analysis

To obtain the critical conditions for the convective instability
i.e. the transition from the stable regime IVB to the unstable
regime VA in the (b,DRCB) parametric space when RA = �1, we
carry out a linear stability analysis.

4.1 Methodology

Several methods have been used for studying the linear stability
of time-dependent flows that involve different constraints or
drawbacks linked to the initial assumptions and give different
threshold times depending on how the perturbation growth is
defined and measured.31,34,35 Recently, it has been shown that
the onset time for convection measured experimentally during
dissolution of CO2 in pure water from above is well-captured by
nonlinear simulations, whereas the onset times predicted by

linear stability analyses are an order of magnitude lower than
the experimental findings.8 This indicates that the linear
stability analysis is useful to give information on the relative
stability of a given system when a parameter is varied but can
not necessarily give the absolute value of the onset time. The
technique of LSA is thus not crucial. We arbitrarily use here a
frozen time approximation or quasi-steady-state-approximation
(QSSA) and assume that the perturbations evolve much faster
than the base state solutions such that these solutions can be
considered to be frozen at a given time tf. The base state

profiles take the form (Ā, %B, %C, �c = 0) where C is the stream-
function such that u = �qC/qz and v = qC/qx. We then add
the modal form of perturbations to these base state profiles
as follows

(A,B,C,C)(x,z,t) = (Ā, %B, %C,0)(z,tf) + (â,b̂,ĉ,ikĉ)(z)es(t�tf)+ikx + c.c.,
(9)

with i2 = �1, c.c. the complex conjugate, k the wavenumber and
s the growth rate of the perturbation. We substitute the modal
form (9) in the reaction–diffusion–convection eqn (2)–(4)–(6)
and neglect the nonlinear terms for the perturbation to derive
the linearized governing equations.14 The derivatives in the
z-direction are discretized using the Chebyshev–Gauss–Lobatto
(CGL) collocation technique.36 The resultant discretized problem
is then solved as an eigenvalue problem

J � s ¼ ss; (10)

where s is the real eigenvalue and �s is the eigenvector. The
eigenvalues are computed using the Arnoldi algorithm which
reduces the original matrix J in the eigenvalue formulation (10) to
an upper Hessenberg matrix of a pre-specified dimension (m whose
value is chosen to be 100) using the Krylov subspace iteration.37

Typical values for the length of the numerical domain used is
500 and the number of CGL points used is 201, which are such
that the assumption of semi-infinite domain holds true and the
profiles are not affected by the lower boundary.

4.2 Dispersion curves

For b = 1, we find that DRcr = 0.15 is the critical value of DRCB

above which there exists at least one eigenmode with positive
growth rate i.e. s 4 0 and the system is unstable. Dispersion
curves representing the growth rate of the perturbation s as a
function of its wavenumber k for this critical value are shown in
Fig. 3 at the different frozen times tf indicated in the inset. The
system is initially stable to buoyancy-driven convection since
the growth rate s is negative for all modes. After some initial
transient, the buoyancy-driven instability is triggered when the
local maximum in the density profile becomes sufficiently large.
Subsequently, the growth rate s changes sign and becomes
positive for a given k. The maximum growth rate of the least stable
mode occurs at tf = 2000 and is of the order smax B 10�4 with a
corresponding wavenumber kmax E 0.01.

Typically, since the maximum growth rate for the critical
value DRcr is low (B10�4), the perturbation grows very slowly.
At these conditions, the diffusive time scales are larger than the

Fig. 2 Effect on the reaction–diffusion (RD) density profiles rRD of varying
(a) DRCB at a fixed b = 1 and (b) b for a fixed DRCB = 0.5.
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time needed for this instability to become of order unity.
Hence, the transport will continue to be diffusion-dominated.
Therefore, following ref. 14 and 38, we also compute a char-
acteristic growth rate smax*, defined as the maximum growth
rate at tf for which smax*tf = 1, such that the amplification factor
exp(smax*tf) of the perturbation at tf is large enough to trigger the
convective instability. The corresponding characteristic wavenum-
ber is referred to as kmax*. The critical value, referred to as DRcr

0, is
then the lowest value of DRCB for a given b for which smax*tf = 1.
For b = 1, the dispersion curves for this critical value DRcr

0 = 0.32
are shown in Fig. 4. The growth rates s are of the order B10�3

and change sign from negative to positive at tf E 200.
Using the dispersion curves at different frozen times, we

extract in Fig. 5 the maximum growth rate smax and the
corresponding least stable wavenumber kmax for increasing
DRCB indicated by the arrow for b = 1. Similar dispersion curves
and plots for the maximum growth rate of the least stable
eigenmode are obtained for different b as well (not shown here).
Typically, smax continues to grow with time up to a maximum
value and then decreases (Fig. 5(a)). This asymptotic decrease
occurs due to the weakening of the unstable density gradient by
diffusion as time goes by. Subsequently, the wavenumber kmax

associated with the maximum growth rate also decreases mono-
tonically as a function of time, as shown in Fig. 5(b).

4.3 Neutral boundary for instability

The results from the linear stability analysis are summarized in
Fig. 6. The two different critical conditions DRcr and DRcr

0 are
plotted in the (b,DRCB) parametric space. The neutral stability
boundary DRcr, where smax = 0, separates the unstable regimes
V from the stable regimes IV. For DRcr

0 at which smax*tf = 1, the
local maximum in the density profile is sufficiently large to
trigger the convective instability in a relatively short time. We
observe that both DRcr and DRcr

0 decrease with an increase in b,
shrinking the stable regime VA below since an increase in
either of these parameters leads to a larger local maximum in
the density profiles (Fig. 2). We then compare these critical
values for the convective instability obtained from linear stabi-
lity analysis with nonlinear simulations. In the following
section, we show that a good agreement is found for the critical
conditions for the onset of convective instability between the
simulations and the linear stability predictions given by DRcr

0.
We therefore refer to this value DRcr

0 denoted by blue circles
as the transition between regime IVB and VA in the rest of
the article.

Fig. 3 Dispersion curves at different frozen times tf indicated in the inset
(arrow indicates the increasing values of tf) for the critical value DRcr = 0.15
where smax = 0 for b = 1, RA = �1.

Fig. 4 Dispersion curves at different frozen times tf indicated in the
inset (arrow indicates the increasing values of tf) for the critical value
DRcr

0 = 0.32 where smax*tf = 1 for b = 1, RA = �1.

Fig. 5 (a) Growth rate smax and (b) wavenumber kmax of the least stable
mode as a function of the frozen time tf for increasing DRCB = 0.1, 0.15, 0.2,
0.3, 0.32, 0.4, 0.5, 0.6, 0.7, 1 as indicated by the arrow with b = 1 and
RA = �1. The blue solid curves correspond to the neutrally stable condition
DRcr = 0.15 in Fig. 3 where smax changes sign from negative to positive.
The red solid curves correspond to the critical condition DRcr

0 = 0.32,
where smax*tf = 1.
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The dashed blue curve here represents DR00 0, the transition
of the non-monotonic density profiles from regime VA (rI r rb)
to regime VB (rI 4 rb). In all the cases studied here, we note
that the transition DR00 0 from regime VA to VB occurs above the
critical value for the convective instability. This indicates that
the critical condition for the onset of the convection is solely
determined by the formation of a sufficiently denser fluid layer
locally overlying the less dense host phase below i.e. the
occurrence of the non-monotonic density profiles with a local
maximum of sufficiently large magnitude (regime VA).

To summarize this section, we have computed here the
critical DRCB as a function of b, referred to here as DRcr

0, above
which the convective instability occurs. In the next section, we
study in detail the nonlinear convective dynamics and verify the
predictions made by the linear stability analysis.

5 Nonlinear simulations

We now analyze the nonlinear convective dynamics in the
reaction-driven unstable cases. We first study the effect of
varying DRCB for a particular b and then examine the effect of
b in the subsequent subsection.

5.1 Convective dynamics for b = 1

For b = 1, the interface value rI of the non-monotonic density
profile is equal to the initial value of the host solution rb at
DR00 0 = 1. We find that in our nonlinear simulations, the critical
value of DRCB above which convection occurs is equal to 0.35.
Below this value, the dominant transport mechanism is the
diffusive one. This is in good agreement with the predictions
made by linear stability analysis, where DRcr

0 = 0.32 for b = 1.

We now look at the nonlinear dynamics in regime VA i.e.
when DRcr

0 o DRCB o DR00 0. Fig. 7 shows the density field at
different times for b = 1 and DRCB = 0.5. After the initial
diffusive transient (Fig. 7(a and b)), due to the existence of a
local maximum in the density profile the convective instability
begins to grow with fingers of a given wavelength (Fig. 7(c)) that
sink towards the bottom gradually (Fig. 7(d–f)). However, the
local maximum in the density profile has a relatively small
value and this limits the growth of the convective instability.
The number of regular fingers formed soon after the onset of
the instability is equal to 12, which is equivalent to a wave-
number k B 0.0245 and a wavelength of B256. It is to be noted
from the linear stability predictions that, for DRcr

0, the wave-
number for the fingering instability is k B 0.025.

We now analyze the effect of increasing DRCB. Fig. 8 shows
the density fields for b = 1 and DRCB = 2 in regime VB
(DRCB 4 DR00 0) with density profiles such that rI 4 rb. After
the initial diffusive transient, the fingering instability occurs
sooner at t B 600 (Fig. 8(a)). The number of regular fingers
formed is 54, which is equivalent to a wavelength B57 and
wavenumber k B 0.11. The intensity of the local maximum in
the density profiles is stronger than that for DRCB = 0.5. This
gives rise to a rapid merging of the fingers that sink towards the
bottom (Fig. 8(b–e)). The fingering pattern primarily occurs due
to the sinking of the dense product C towards the bottom and
by continuity, the displacement of B from the bottom towards
the reaction front.19 This implies the presence of more reactant
B at the reaction front to react with A and consequently an
increase in the dissolution flux of A. Rapid merging and birth of

Fig. 6 Comparison of the stability boundaries in the (b,DRCB) parameter
space given by the linear stability analysis (LSA) and the nonlinear (NL)
simulations. The dashed red line corresponds to the neutral stability
boundary DRcr, where smax = 0 separating the stable region below the
curve and the unstable one above it. The solid blue circles indicate the
critical values DRcr

0 at which smax*tf = 1. The red dots indicate the critical
values of DRCB above which convection occurs in the nonlinear simula-
tions. The dashed blue curve corresponds to the transition DR00 0 = �RA/b
from regime VA with rI r rb to regime VB with rI 4 rb.

Fig. 7 Regime VA: density field at different times for b = 1, DRCB = 0.5 and
RA = �1. The scale varies between 0 (blue) and 0.73 (red).
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new fingers that join the old ones, known as protoplumes, is seen to
occur. This facilitates enhanced convection and improved mixing.
Eventually, the fingers reach the bottom (Fig. 8(f) and (g)) and the
system transitions to a shut-down regime. In order to compute the
asymptotic properties of the dynamics, we carry out simulations
using a larger domain height i.e. H = 4096. We note that the
evolution of the convective dynamics is qualitatively similar to
that seen for the non-reactive case5 and for the reactive case when
the dissolving species A increases the density of the host solution
and product C is denser than reactant B (DRCB 4 0).19,24

We have seen that above the critical value DRcr
0 for a given b,

an increase in DRCB fastens the convective dynamics signifi-
cantly. Next, we analyze the effect of varying b.

5.2 Effect of b on the convective dynamics

The effect of b (and DRCB) on the spatio-temporal dynamics can
be visualized in Fig. 9 in terms of the spacetime plots of the

density computed at location z = 128 below the interface for
b = 0.5, 1 and 1.5 and DRCB = 0.5 and 1.5. This location is chosen
such that it is sufficiently below the stable boundary layer to
follow the convective dynamics. For b = 0.5, the lowest value of
DRCB at which convection occurs is equal to 0.7 and the
dominance of diffusion as the transport mechanism is evident
here for DRCB = 0.5 whereas for DRCB = 1.5, the convective
instability grows slowly at t B 5000 in the form of fingers
that sink towards the bottom and start merging at t B 10 000.
As mentioned in the previous subsection, the critical value for
the onset of convection for b = 1 is DRCB = 0.35 that is smaller
than the critical value for b = 0.5. In that case, the convective
instability occurs sooner followed by a rapid merging of the
fingers for DRCB = 1.5. For b = 1.5, the fingering instability
occurs even sooner followed by a rapid merging of the fingers
with a lower critical value of DRCB = 0.25. This confirms the
destabilizing effect of both increasing DRCB and b on the

Fig. 8 Regime VB: density field at different times for b = 1, DRCB = 2 and RA = �1 for height H = 4096. The scale varies between 0 (blue) and 2 (red).
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convective dynamics. For a given b, the critical values above
which convection occurs are compared with the predictions
made by the linear stability analysis in Fig. 6 to find a good
agreement between the two. With an increase in b, the critical
value of DRCB for the onset of convection drops, shrinking the
stable region below, similar to the behaviour observed for DRcr

and DRcr
0.

To quantify the storage capacity of species A in the host
solution, we compute the dissolution flux J as

J ¼ �1
L

ðL
0

@A

@z

����
z¼0

dx: (11)

The equivalent for the non-reactive case is purely diffusive and

given as JNR ¼ JD ¼ 1=
ffiffiffiffiffi
pt
p

. The temporal evolution of the
dissolution flux J is shown in Fig. 10 for different b and DRCB.
One curve represents the average over 15 realizations with
different initial noise of a given amplitude shown in eqn (5a).
The 95% confidence interval shown as lighter areas around the
curves represents the variability due to the random noise on the
initial condition. Initially, the flux follows the non-reactive one
as long as diffusion remains the dominant transport mecha-
nism. After some time, if DRCB is above the critical value, the
flux deviates from the diffusive one due to the onset of convec-
tion and eventually fluctuates around an asymptotic value J*.
For b = 0.5, shown in Fig. 10(a), the convection begins above
DRCB = 0.7 and the dissolution flux differs slightly from the

diffusive one. Thereafter, with an increase in DRCB, the convec-
tion sets in at earlier times. For higher values of b, typically,
after the initial diffusive transient the flux peaks at two values
before reaching a steady regime, which is similar to that seen
for the unstable stratifications (RA 4 0) with19,24 or without
reactions.5 This trend in the dissolution flux can be seen for
b = 1, shown in Fig. 10(b) for DRCB = 1, 1.2 and 1.5 whereas the

Fig. 9 Spacetime plot of the density computed at z = 128 below the interface for different b and left: DRCB = 0.5, right: DRCB = 1.5. An increase in DRCB

has a destabilizing effect which results in a decrease of the wavelength of the fingers. This effect is amplified by increasing b.

Fig. 10 Temporal evolution of the dissolution flux J for different DRCB

indicated in the inset and (a) b = 0.5, (b) b = 1, (c) b = 1.5. The critical DRCB

above which convection occurs for 0.7, 0.35, 0.25, respectively. The 95%
confidence interval is shown by the lighter areas around the curves.
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second peak in J is rather mild for DRCB = 0.7 and J deviates only
slightly from the diffusive one for DRCB = 0.5. As seen earlier,
for b = 1, the critical value above which convection occurs is
DRCB = 0.35. Similarly, the peaks in the values of J can be seen
for b = 1.5, shown in Fig. 10(c) for all the values of DRCB except
for DRCB = 0.5, where the second peak is rather mild.

We now analyze the onset time t0 of the convective instability,
defined based on the magnitude of the velocity field computed

as U2ðtÞ ¼
ÐH
0

Ð L
0 u2ðx; z; tÞ þ v2ðx; z; tÞ
� �

dxdz. For any value of
DRCB above the critical DRcr

0, U2 first decreases until a given
onset time t0 when it reaches its minimum before it begins to
grow5,19 due to the onset of the convective instability. The onset
time t0 for this instability is shown in Fig. 11 for various values of
DRCB and b. An increase in DRCB for a given b leads to a decrease
in the values of t0 by orders of magnitude and this effect is even
stronger with larger b.

Next, we quantify in Fig. 12 the asymptotic dissolution
flux J* for all the cases studied here with RA = �1. As b - 0
and DRCB - 0, the dynamics are similar to the non-reactive one,
where diffusion is the dominant transport mechanism. We only
plot here the asymptotic dissolution flux for the cases where
convection occurs. The asymptotic dissolution flux J* increases

with an increase in b and DRCB. This increase in J* can be
explained as follows. When the contribution to density of the
product C is significantly larger than that of the reactant B,
convection occurs at earlier times and the dense fingers formed
reach the bottom rapidly, causing a depletion of B at the reaction
front and due to continuity, more reactant B is then transported
from the bottom to the reaction front to react with A. The strong
convective motions leads to improved mixing and a conse-
quently faster dissolution flux of A into the host solution. This
motion can be further enhanced and the asymptotic dissolution
flux can be increased by an order of magnitude by increasing b.

To summarize this section, we have shown by nonlinear
simulations that in a stable density stratification where dis-
solution is entirely controlled by diffusion in the non-reactive
case, A + B - C reactions can trigger convection. Specifically,
increasing the difference DRCB in the contribution to density
between the product C and reactant B above a critical value, it is
possible to initiate the convective instability and achieve
enhanced asymptotic dissolution fluxes. For a given b, the
critical values of DRCB above which convection develops in
the nonlinear simulations are in good agreement with those
predicted by the linear stability analysis, DRcr

0. This critical
value for the onset of convection can be reduced by increasing
b. Thus, both b and DRCB have a destabilizing effect on the
convective dynamics of the process.

6 Conclusions

We have numerically studied the reaction-driven convective
dynamics developing when a species A dissolves into a host
solution containing a solute B to produce C via an A + B - C
type of reaction and all the species diffuse at equal rates. We
have focussed here on the case where the dissolving species
decreases the density of the host phase upon dissolution
(RA o 0) and the density stratification is stable in the absence
of reactions. While it is known that reactions induce convection
in such stable stratifications19 when C is denser than B, we have
obtained here the critical conditions for the onset of convection
as a function of the difference DRCB = RC � RB in the contribu-
tion to density between the product C and the reactant B and
the ratio b = B0/A0 of the initial concentrations of the reactant B
and the solubility of A using linear stability analysis and non-
linear simulations. We have further analyzed the convective
dynamics and dissolution fluxes for different values of DRCB

and b to show that chemical reactions can increase storage
rates with regard to the non-reactive case.

The monotonically decreasing density profiles for the non-
reactive equivalent can be modified, with the help of reactions,
to exhibit a local maximum when C is denser than B. These
non-monotonic profiles of the stable regime IVB transition to
the unstable regime V above a critical value of DRCB = RC � RB

for a given b. The unstable non-monotonic density profiles can
be classified based on the amplitude of the end point values rI

and rb such that in regime VA the density at the interface rI is
smaller than or equal to the initial density rb of the host phase

Fig. 11 Onset time for convection t0 as a function of DRCB for the
different b indicated in the inset.

Fig. 12 Asymptotic dissolution flux J* as a function of DRCB above the
critical value for different b indicated in the inset for RA = �1. The
corresponding non-reactive case is purely diffusive and is given by

JNR ¼ 1=
ffiffiffiffiffi
pt
p

.
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whereas, in regime VB, we have rI 4 rb. However, for all the
values of parameters studied here, the critical condition for the
onset of convection occurs when rI o rb i.e. in regime VA.

First, we studied the linear stability of the non-monotonic
density profiles using a frozen time or quasi-steady-state
approximation to identify the critical conditions for the con-
vective instability. We computed the neutral stability boundary,
denoted by DRcr, above which the growth rate is positive and
the system is linearly unstable to infinitesimal perturbations.
However, slightly above this critical value, the growth rate of the
least stable eigenmode is too small, of the order 10�4, and a
large time is needed for this instability to develop. Therefore,
we also computed a characteristic growth rate, defined as the
maximum growth rate at a frozen time tf for which the
amplification factor of the perturbation is of order unity. More
precisely, the critical condition for which smax*tf = 1 is referred
to as DRcr

0. Above this critical value, a sufficiently dense layer of
fluid is formed locally overlying the host solution such that it is
able to trigger the convective instability. We found that
both DRcr and DRcr

0 decrease with an increase in b. Thus, the
linear stability results suggest that increasing DRCB or b has a
destabilizing effect.

Next, we performed nonlinear simulations to identify the
critical values of DRCB above which convection occurs for
the different b studied here and found a good agreement with
the predictions made by the linear stability analysis for DRcr

0.
This suggests that the onset of convection in nonlinear simula-
tions is better captured by searching for a criterion such as
smax*tf = 1 in the LSA rather than simply s = 0. Similar
conclusions have been discussed in an experimental analysis
of the onset of convection driven by the dissolution of CO2 in
water and salt solutions.8

When the difference between the contribution to density of
the product C and reactant B is increased above the critical
value DRcr

0, the local maximum in the density stratification
becomes stronger and gives rise to an earlier onset of the
fingering instability and rapid mixing. The critical value of
DRCB above which convection occurs drops with an increase in
b and for a larger b the destabilizing effect of increasing DRCB is
even stronger. Thus, upon increasing DRCB and b, it is possible
to amplify the intensity of the local maximum in the density
profiles, which in turn leads to enhanced convection. This
destabilizing effect can be seen in the temporal evolution of
the dissolution flux of species A, where the departure from
a diffusive regime occurs sooner with increased asymptotic
dissolution flux J* for increasing b and DRCB. An order of
magnitude increase in the asymptotic dissolution flux can be
achieved. Similarly, the onset time t0 for convection reduces by
orders of magnitude when b and DRCB are increased. Conver-
sely, when b - 0, the non-reactive case is recovered where
diffusion is the dominant transport mechanism.

Our results show that chemical reactions have a strong
potential to initiate convection beyond a certain critical value
of DRCB and impact the convective dissolution process signifi-
cantly leading to improved mixing in various geological situa-
tions that involve initially stable density stratifications. In the

context of CO2 sequestration, such stratifications occur either
when there exist pockets of dense CO2-rich brine underneath
the less dense brine or when CO2 is pumped at the bottom of
aquifers as opposed to at the top. Reactions can then enhance
the dissolution fluxes and increase the storage rates by an
order of magnitude. Thus, the chemical composition of the
geological storage site is an important factor in determining the
success of the sequestration technique. The results presented
here open an avenue for experimentalists to verify our theore-
tical predictions.
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