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Connecting gene expression to cellular movement: A transport model for cell migration
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The adhesion properties and the mobility of biological cells play key roles in the propagation of cancer. These
properties are expected to depend on intracellular processes and on the concentrations of chemicals inside the
cell. While most existing reaction-diffusion models for cell migration consider that cell mobility and proliferation
rate are constant or depend on an external diffusing species, they do not include the gene expression dynamics
taking place in moving cells that affect cellular transport. In this work, we propose a multiscale model where
mobility and proliferation depend explicitly on the cell’s internal state. We focus more specifically on the case
of cellular mobility in epithelial tissues. Wound-healing experiments have demonstrated that the loss of a key
protein, E-cadherin, results in a significant increase in both mobility and invasiveness of epithelial cells, with
dramatic consequences on cancer progression. We can reproduce the results of these experiments under various
genetic conditions with a single set of parameters.
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I. INTRODUCTION

Detachment and dissemination of cancer cells from pri-
mary tumors are crucial steps of metastatic colony and malig-
nant progression [1,2]. The cell-biological program govern-
ing these steps is called epithelial-to-mesenchymal transition
(EMT) [3,4]. During EMT, adhesive cells lose contact and
acquire migratory and invasive abilities [5]. The loss of cell
adhesion is due to the downregulation of the transmembrane
protein E-cadherin occurring during the transition. This pro-
tein mediates cell contact and its loss is associated with
tumor invasiveness [6–8]. The EMT is orchestrated by several
transcription factors interacting with each other in a complex
gene regulation network [9,10]. Among these, SNAIL and
ZEB1 directly target CDH1, the gene that encodes E-cadherin,
and also repress several other proteins establishing cell-cell
junctions. In addition to transcription factors, potent extracel-
lular factors have the ability to initiate the EMT program,
among which TGFβ [11], IL-6, which triggers differentia-
tion in inflammatory conditions [12] and exosome-secreted
microRNAs (miR-34, miR-21, etc.) [13–16].

In this context, wound-healing assays are simple in vitro
experiments providing quantitative data on cell migration and
proliferation and can be used to characterize the influence
of a given gene on these phenomena [17]. The experimental
procedure consists in removing a section of a confluent cell
monolayer and in observing the dynamics of the regeneration
of the sheet of cells. This method was used to demonstrate that
the downregulation of E-cadherin could promote malignant
progression of prostate and breast cancers [18,19]. We note
that cell dissemination is, however, not always accompanied
by E-cadherin loss [20].

Reaction-diffusion-based models are often used to describe
the evolution of cell density in wound-healing assays. Fisher’s
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equation is, for example, commonly used to capture both
individual cell diffusion and proliferation, the two processes
being assumed to govern wound closure [21]. Depending on
the model, the cellular diffusivity is constant [22–25], function
of the cell density [26–29], or depends on an external factor
[30,31].

With a constant diffusion coefficient, the solution of
Fisher’s equation is a traveling wave moving at constant
velocity depending on the cell diffusivity. This velocity and
data for cell proliferation were used to measure cell diffusivity
[22]. Cai et al. considered cell contact inhibition using a
diffusivity function depending on cell density [26]. Khain
et al. also used wound-healing data to fit the parameters of
their discrete model which considers cell-cell adhesion and
the number of nearest neighbors [29]. These three models are
reaction-diffusion models in which the only variable is the cell
density. More complex models based on evolution equations
for the cell density and for an externally diffusing chemical
factor produced by the cell were also developed. In those
models, the cell proliferation rate and/or the cell diffusivity
are assumed to depend linearly on the chemical factor [30,31].

Although the latter models consider an external chemical
factor, none of the aforementioned approaches include the
gene expression dynamics taking place in cells, which is at the
very origin of changes in mobility. In particular, no model is
available in which cell diffusivity is function of the E-cadherin
level. Here, we present a multiscale modeling approach that
combines the description of gene expression dynamics, cellu-
lar mobility, and proliferation. We develop a discrete spatial
model capable of showing the impact of E-cadherin downreg-
ulation on the wound-healing process. Moreover, E-cadherin
regulation by a chemical factor is included, as well as the
secretion and diffusion of this factor in the extracellular matrix
and its capture by adjacent cells. Available wound-healing
experimental data quantifying the effect of E-cadherin on cell
mobility are used to fit the parameters of the model with
unique values, independent of the genetic conditions, and
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FIG. 1. Schematic of the system. E-cadherin mediates cell-cell
adhesion and is positively regulated by an external chemical factor
X . Each site of the system can be empty or occupied by a cell.
Cell hopping and cell proliferation are the two processes governing
cell dynamics. A hopping process and a proliferation process are
illustrated here on a 1D lattice.

to link gene expression dynamics to cell migratory abilities.
Furthermore, we show how the presented model is capable of
taking into account the spatial impact of cell division using a
nonlocal proliferation term, the influence of neighboring cells
on cell mobility, and finally the effect of E-cadherin on cell
proliferation rate.

II. MODEL FORMULATION

Collective cell spreading taking place during wound-
healing assays can be described as cells moving on a lattice
made of N0 nodes. Each site of the lattice can be occupied by
a single cell or either empty and each cell can carry, secrete,
or capture some biochemical species. Cell occupation can
change over time either by diffusive or proliferation processes
(see Fig. 1). A cell can hop from site i to a neighboring site
i′ if site i is occupied and site i′ is empty. After the transition,
site i is empty and site i′ is occupied. The transition frequency
associated to this process is expected to depend on the level
of E-cadherin in the cell. For a cell to proliferate, the same
condition of an occupied site i next to an empty site i′ has to
be fulfilled. After this process, both sites i and i′ are occupied.
E-cadherin, the protein mediating cell adhesion, is produced
and degraded in each cell. Its synthesis is activated by a
regulating factor also produced and degraded in the cell. This
regulating factor is secreted in the extracellular matrix where
it can be transported to other cells. This species could be an

exosome-secreted microRNA intervening in E-cadherin gene
expression network [16,32–34].

The aforementioned processes are discrete events that oc-
cur with specific probabilities. The most natural level of de-
scription of such a system is thus stochastic. From the master
equation ruling the evolution of the underlying probability
distribution, we obtain a mean-field evolution equation for the
mean cell occupation of node i, ni, comprised between 0 and 1
as well as for the mean concentrations per site of E-cadherin,
Ei, of the regulating factor in the cell Xi and in the extracellular
matrix X ext

i :

dni

dt
= 1

2
[�i+1 ni+1 (1 − ni ) + �i−1 ni−1 (1 − ni )

− �i ni (1 − ni+1) − �i ni (1 − ni−1)

+ �i+1 ni+1 (1 − ni ) + �i−1 ni−1 (1 − ni )], (1)

dEi

dt
= nivE

X 0
i

K + X 0
i

− kE Ei

+ 1

2
[�i+1 ni+1 (1 − ni )Ei+1

+ �i−1 ni−1 (1 − ni )Ei−1

− �i ni (1 − ni+1)Ei − �i ni (1 − ni−1)Ei

+ �i+1 ni+1 (1 − ni )Ei+1

+ �i−1 ni−1 (1 − ni )Ei−1], (2)

dXi

dt
= vX ni − kX Xi − kout Xi + kin X ext

i ni

+ 1

2
[�i+1 ni+1 (1 − ni )Xi+1

+ �i−1 ni−1 (1 − ni )Xi−1

− �i ni (1 − ni+1)Xi − �i ni (1 − ni−1)Xi

+ �i+1 ni+1 (1 − ni )Xi+1

+ �i−1 ni−1 (1 − ni )Xi−1], (3)

and

dX ext
i

dt
= kout Xi − kin X ext

i ni

+ �X
(
X ext

i+1 + X ext
i−1 − 2 X ext

i

)
. (4)

These evolution equations are derived from the micro-
scopic rules governing cell movement (see Appendix A). We
discuss here the evolution equations in a one-dimensional
(1D) system for clarity but generalization to two-dimensional
(2D) lattices is straightforward. The first two terms in square
brackets in Eq. (1) represent the hopping processes from
neighboring sites to site i, with ni+1 (1 − ni ) and ni−1 (1 − ni )
quantifying the probability to have the required cell con-
figurations for the process to happen. Similarly, the third
and fourth terms in square brackets describe the hopping
processes from site i to adjacent sites. �i stands for the
hopping frequency at site i and is expected to depend on the
level of E-cadherin. As illustrated in Fig. 1, E-cadherin is
a transmembrane protein responsible for cell adhesion. The
hopping frequency must therefore be maximal when a cell
does not carry any E-cadherin and decrease with increasing
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E-cadherin concentration. We choose to write the hopping
frequency as

�i = �0 e−αE0
i , (5)

with �0 being the hopping frequency of a cell with no E-
cadherin, α an adhesion parameter, and E0

i = Ei/ni the con-
centration of E-cadherin per cell. The last two terms in square
brackets of Eq. (1) account for the proliferation of neighboring
cells. We first make the assumption that the proliferation
frequency �i remains constant (�i = �0) and will discuss
this hypothesis at the end of this article.

The first two terms of Eq. (2) represent the synthesis and
degradation of E-cadherin, with vE the maximum synthesis
rate of E-cadherin and kE its rate constant for degradation.
The activation of E-cadherin synthesis by the regulating
factor is assumed to obey Michaelis-Menten kinetics [35]
with the corresponding constant K and depends on the
concentration of the regulating factor per cell X 0

i = Xi/ni.
The level of E-cadherin can also vary due to changes in cell
occupation [third term of Eq. (2)]. For instance, the term
�i+1 ni+1 (1 − ni ) Ei+1 represents the variation of E-cadherin
level at site i, due to the hopping of a cell located in i + 1
and whose E-cadherin concentration is Ei+1. Similarly, the
term �i+1 ni+1 (1 − ni ) Ei+1 represents how E-cadherin
concentration at site i increases when a cell located on site
i + 1 gives birth to a cell at position i.

The regulating factor is expressed and degraded in each
cell, vX being its synthesis rate and kX its degradation con-
stant. The rate constants for the secretion and capture of the
regulating factor by the cell are kout and kin, respectively
[see Eqs. (3) and (4)]. Finally, �X is the hopping frequency
of the extracellular species from one site to one of its first
neighbors and is considered constant. Since microRNAs do
not undergo degradation in exosomes, no degradation term is
considered for the extracellular factor [36]. As for E-cadherin
concentration, the amount of regulating factor inside the cell
can change because of cell diffusion and cell proliferation
[fifth term of Eq. (3)].

III. PROLIFERATION-INDUCED CELL PROPAGATION

In order to compare with existing models, we consider the
continuous space limit of Eq. (1). We introduce the space
coordinate x = ia where a is the distance between two first
neighbors. Equation (1) becomes (see Appendix B)

∂n

∂t
= − ∂

∂x

[
−D

∂n

∂x
− n(1 − n)

∂D

∂x

]

+ � n (1 − n) + R (1 − n)
∂2n

∂x2
, (6)

where D = �a2

2 is a diffusion coefficient, � is the local E-

cadherin-dependent hopping frequency [Eq. (5)], and R = �a2

2
is a proliferation-induced transport coefficient. We obtain a
modified Fisher’s equation where the first term is a nonideal
diffusion term with an E-cadherin-dependent diffusion coeffi-
cient, the second term is a logistic growth term for the local
cell proliferation, and the third term arises from the nonlocal
character of cell proliferation. Indeed, cell proliferation leads
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FIG. 2. Velocity of the front as a function of cellular E-cadherin
concentration per cell E 0, obtained numerically (markers) and with
analytical predictions (color lines) for nonlocal (NLP) and local
proliferation (LP) as given by vNLP

min and vLP
min, respectively. E-cadherin

concentration is kept constant in space and time. A Heaviside
function is used as initial condition, a = 20 μm, �0 = 1.5 h−1, α =
0.1 nM−1, � = 0.1 h−1 with converged time step dt = 10−3 h.

to the creation of a new cell next to the mother cell which is
not a local event.

Similarly to Fisher’s equation, our model predicts traveling
waves of cell density. The front velocity was obtained after nu-
merical integration of Eq. (6) using finite differences method,
Euler’s explicit time integration scheme, and no flux boundary
conditions. We have studied the influence of E-cadherin con-
centration on the front velocity, considering E0

i to be constant
in space and time. We observe proliferation-induced front
propagation even for high E-cadherin concentration and thus
very low cell mobility, highlighting the importance of cell
proliferation as an additional transport process (see Fig. 2).
Indeed, cell proliferation is modeled in this work with non-
local terms [see fifth and sixth terms in the square brackets
of Eq. (1)]. The mechanism of this nonlocal proliferation is
schematized in Fig. 1. For a cell in site i to proliferate, one
of the neighboring sites must be empty. Proliferation leads
to the propagation of cell population in space, even in the
absence of mobility. It is thus not surprising that, using this
approach for modeling cell proliferation, we can observe front
propagation even when the cell hopping frequency is zero.
Similar process-induced propagation has been observed in
the case of nonlocal chemical reactions [37]. Following the
framework used in the latter study, the minimal velocity of the
traveling wave solutions of Eq. (6) can be obtained for Ei, Xi,
and X ext

i constant and reads as vNLP
min = 2

√
� (D + R) where

the superscript NLP stands for nonlocal proliferation.
The last term in the right-hand side of Eq. (6) does not

appear in previous reaction-diffusion models for cell mobility
where proliferation is seen as a local event. Those models
differ from one another only in the form of the cell diffusivity
(see Table I) and predict a traveling wave with constant
velocity satisfying vLP

min = 2
√

D� where the superscript LP
stands for local proliferation. We can reproduce those results
by integrating Eq. (6) without the last term. In that case, the
front velocity goes to zero at high E-cadherin concentration
(D → 0) and proliferation-induced front propagation cannot
be observed (Fig. 2).
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TABLE I. Cell diffusivity in existing reaction-diffusion models
for cell migration.

Fisher’s equation Reference

∂n
∂t = − ∂

∂x [−D(·) ∂n
∂x ] + � n (1 − n) [21]

Constant diffusivity
D(·) = D [22–25]
Contact inhibition models
D(·) = D0A/(A + n) [26–28]
D(·) = (1 − q)4n[1 + 4n(1 − n) ln(1 − q)]/4 [29]
where A and q are positive constants

IV. WOUND-HEALING CELL MIGRATION ASSAY

We focus now on the modeling of wound-healing as-
says [see Fig. 3(a)]. Considering the symmetry of such sys-
tems, we use a 1D lattice with no flux boundary condi-
tions. The size of the system (150 sites) is sufficiently large
to avoid boundary effect on wound-healing dynamics. We
consider the distance between two neighboring sites to be
a = 20 μm, a typical diameter for an epithelial cell [38],
and a wound of 16 sites (320 μm) at the beginning of the
simulation. Initial conditions for cell occupation are taken

to be n = 1 outside the wound region and n = 10−10 in
the wound, a value sufficiently small not to affect the heal-
ing dynamics on the timescales studied. Equations (1)–(4)
are integrated numerically using an explicit Euler method
with time step dt = 10−3 h. Initial concentration for Ei, Xi,
and X ext

i are the steady state values of the homogeneous
system.

Comparing numerical results with experimental wound-
healing data allows us to estimate the value of the proliferation
rate �0, the hopping rate of a cell with no E-cadherin �0,
and the adhesion parameter α. All other parameter values are
known from previous studies (Table II). The value of the rate
constant for E-cadherin degradation was found in the litera-
ture [39]. Its synthesis rate and the Michaelis-Menten constant
for the activation of E-cadherin by the regulating factor were
calibrated using CDH1 expression data in prostate cancer
tissue in the OASIS genomics database [40]. We averaged
CDH1 RNA-seq data for prostate adenocarcinoma tissues of
>300 samples normalized with β-actin level. RNA/protein
ratio provided by Schwanhäusser et al. was used to estimated
E-cadherin concentration (∼20 nM) and K was taken of the
same order of magnitude as X concentration (1 nM) [39]. vE

was adjusted accordingly to fit the expression data. For the
degradation constant and the synthesis rate of the regulating

(a) (b)

(d) (e)

(c)

FIG. 3. Comparison between experimental and numerical profiles. (a) Schematic of the wound-healing cell migration assay and data
processing. A section of a confluent cell monolayer is removed and the healing process due to cell diffusion and proliferation is monitored.
Images of the system are captured at 0, 12, and 24 h. Cell counting is used to extract cell density profiles from the images. On each image of
Fig. 2 from Fan et al. [18], we drew a square grid (80 μm × 80 μm) and cells were counted in each square. Averaging over the six rows of the
grid and normalizing with respect to the cell occupation at the boundaries, we obtained the 1D cell occupation profiles. (b)–(e) Experimental cell
occupations are obtained after wound-healing cell migration assay (plain lines and 95% confidence interval reconstructed from Fan et al. [18]).
The confidence intervals are due to the data processing procedure. Numerical cell occupation profiles are obtained with best fitting parameter
values using the E-cadherin-dependent diffusivity and constant proliferation model (red circles) and E-cadherin-dependent proliferation rate
model (blue squares). Fitted values of �0, α, �0, and ζ are shown in Table IV and all other parameter values are shown in Table II. Apart from
the synthesis rate of E-cadherin varied to mimic the experiments, all other parameters are the same in the four panels.
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TABLE II. Parameter symbols, definitions, units, and default values used in the simulations.

a Distance between first neighbors 20 μm [38]
�0 Hopping frequency of a cell with no E-cadherin 2.5 h−1 [26]
α Adhesion parameter 0.03 nM−1 Estimated
�0 Proliferation rate 0.1 h−1 [26]
vE Synthesis rate of E-cadherin 7 nM h−1 [40]
K Michaelis-Menten constant for E-cadherin synthesis activation 1 nM [40]
kE Rate constant for E-cadherin degradation rate 0.14 h−1 [39]
vX Synthesis rate of the regulating factor X 0.04 nM h−1 [41]
kX Rate constant for the regulating factor degradation 0.02 h−1 [41]
kout Rate constant for the secretion of the regulating factor 0.02 h−1 Estimated
kin Rate constant for the uptake of the extracellular regulating factor X ext 0.1 h−1 Estimated
�X Hopping frequency of the extracellular regulating factor X ext 1 h−1 [43]

factor, we took those of abundant circulating microRNAs,
such as miR-21 [41]. Typical values of degradation rates for
miRNAs are between 0.01 and 0.04 h−1 and we chose here
kX = 0.02 h−1. vX was estimated to obtain 2 nM for the basal
concentration of X , corresponding to ∼2000 copies per cell
[42]. The value of the diffusion coefficient of the extracellular
factor is that of exosomes in the extracellular matrix [43].

Fan et al. performed wound-healing assays to quantify
the influence of E-cadherin knockdown on cell migration
[18]. Small interfering RNAs were used to downregulate
E-cadherin expression. Images of wound-healing assays for
untransfected cells (high E-cadherin expression) and trans-
fected cells (low E-cadherin expression) demonstrated that
E-cadherin silencing causes an increase of cell mobility. Their
experimental images taken at 12 and 24 h were processed
in this study for comparison with our numerical results [see
Fig. 3(a)].

Transfected cells show an expression of E-cadherin three
times smaller than untransfected ones. To mimic this, we
set the synthesis rate of E-cadherin for transfected cells at
the third of the basal synthesis rate. We then simulate the
evolution of the cell occupation for high and low E-cadherin
expression and compare the numerical profiles obtained at 12
and 24 h with the corresponding experimental profiles. The
goodness of fit between experimental and numerical profiles
is measured by

χ2 =
4∑

j=1

12∑
l=1

(nl,expt − nl,num )2

σ 2
l,expt

, (7)

where l refers to the data points along the x axis, j to the
experimental parameters (12 or 24 h, high or low E-cadherin
expression), and σl,expt is the standard deviation associated
to each experimental data point. Minimizing χ2 gives the
best fitting parameter set for the four experimental condi-
tions simultaneously [Figs. 3(b)–3(e)]. We use a stochastic
optimization method to obtain the best parameter set [44]. It
consists of a large number of trials using randomly generated
parameter vectors (�0, α, �0). Each parameter value is picked
randomly with uniform probability distribution, between 0
and a maximum value above realistic values (see Table III).
The spatial profiles of cell occupation obtained with the best
parameter set (see Table IV) together with the experimental

profiles obtained after processing Fan et al.’s images are
shown in Figs. 3(b)–3(e) (see red curves).

The numerical simulations both at high and low E-cadherin
expression capture the main features of the experimental data.
In particular, the model is capable of reproducing the effect
of E-cadherin knockdown on cell mobility. Indeed, the four
numerical profiles are obtained with the same values of �0, α,
and �0. The dynamical changes are only due to the variation
of the synthesis rate of E-cadherin, which corresponds to the
procedure of the wound-healing assay.

In order to reproduce such wound-healing data with the
phenomenological models currently available, in which cell
diffusivity does not depend on an adhesion marker, one
needs different values of ad hoc cell transport coefficient and
proliferation rate. On the contrary, the approach proposed
here relies on a unique set of parameter values at both high
and low E-cadherin expression. Since wound-healing data are
scarce and the variability between different tissues can be
important, our model can be used to predict the influence of
each parameter on wound-healing dynamics.

A. Controlling wound-healing dynamics

For the parameter values listed in Table II, partial wound-
healing is observed after 24 h [see Fig. 4(a)]. The area beneath
the cell occupation profile in the initial wound region is
defined as the healed area [see gray area in Fig. 4(a)]. We
now look at the time evolution of this quantity for various
values of the major parameters of the model. Among those
parameters, the proliferation rate is essential since it induces
front propagation and thus wound healing. In the absence

TABLE III. Estimation of the parameter values of the model
comparing experimental and numerical cell occupation profiles:
range of variation of the parameter values for the stochastic opti-
mization method. β quantifies the strength of the interaction between
two molecules of E-cadherin and ζ , the effect of E-cadherin on cell
proliferation. Those parameters will be introduced later.

�0 0–4 h−1

α 0–0.2 nM−1

β 0–0.2 nM−2

�0 0–0.15 h−1

ζ −0.01–0.01 nM−1
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FIG. 4. Controlling wound-healing dynamics. (a) Cell occupation at 0 and 24 h for the values of the parameters listed in Table II. The
healed area is defined as the area beneath the cell occupation profile in the initial wound region (gray area). Time evolution of the healed area
for increasing values of (b) the cell proliferation rate �0 (bottom to top), (c) the hopping frequency of a cell with no E-cadherin �0 (right to
left), (d) the adhesion parameter α (left to right), (e) the synthesis rate of E-cadherin vE (left to right), and (f) the rate constant for the secretion
of the regulating factor kout (right to left). (g) Cell occupation, hopping frequency, and cellular E-cadherin concentration profiles after 30 h for
two different values of the rate of secretion kout. When not varied, the parameter values are as shown in Table II with a constant proliferation
rate.

of cell proliferation, healing is slow and cannot be achieved
totally [see red line in Fig. 4(b)]. Indeed, cell occupation
is progressively homogenized by diffusive processes while
the total cell occupation remains constant. Varying the pro-
liferation rate in a physiologically relevant range of values
[23,24,26,45] shows that the healing rate increases sharply
when increasing this parameter. This result is in agreement
with existing experiments showing the role of cell prolifer-
ation in the restoration of the initial cell density in wound-
healing assays [46].

Two parameters are involved in the expression of the local
hopping frequency �i: the hopping frequency of a cell with
no E-cadherin (�0) and an adhesion parameter (α). Healing
is induced by nonlocal proliferation in absence of diffusion
(�0 = 0) and is accelerated when the hopping frequency of
an isolated cell increases [Fig. 4(c)]. On the other hand, the
rate of healing is notably faster in the absence of interaction

TABLE IV. Best fitting parameter set for the constant prolifera-
tion rate model, the neighbor-dependent hopping frequency model,
and the E-cadherin-dependent proliferation rate model obtained with
the stochastic optimization method.

Constant proliferation rate
�0 2.60 h−1

α 0.0294 nM−1

�0 0.893 h−1

χ 2 0.385
E-cadherin-dependent proliferation rate
�0 3.42 h−1

α 0.0400 nM−1

�0 0.0631 h−1

ζ 0.00180 nM−1

χ 2 0.361

between E-cadherin molecules (α = 0) and slows down with
increasing α [Fig. 4(d)].

Wound-healing assay is often used to understand the in-
fluence of a given gene on cell mobility by modifying its
expression [18,45,47–49]. In the same spirit, we have checked
how modifications of the synthesis rate of E-cadherin affect
the healing rate [Fig. 4(e)]. The absence of E-cadherin syn-
thesis in the cell (vE = 0) causes complete loss of cell-cell
contact, the hopping frequency is maximal (�i = �0 ∀ i) and
the healing is fast.

As mentioned earlier, the expression, degradation, and
regulating function of the chemical factor X take place in
the cell. The effect of its synthesis rate on healing dynamics
is very similar to that of E-cadherin. This molecule is also
an intercellular communication agent since it is secreted and
captured by cells and diffuses in the extracellular matrix. Al-
though there is a direct connection between the concentration
of the regulating factor and E-cadherin expression, changing
the secretion constant (kout) has no significant effect on the
rate of change of the healed area [Fig. 4(f)] but affects the
shape of the cell occupation profile [see Fig. 4(g)]. Indeed, in
the absence of secretion (kout = 0), the concentration of the
regulating factor and E-cadherin concentration are both high
in all cells and thus �i is low [see the green plain lines in
Fig. 4(g)]. When the regulating factor is secreted (kout > 0),
E-cadherin concentration decreases and �i increases every-
where [see pink dashed lines in Fig. 4(g)]. The modification
of the spatial profile of the hopping frequency affects cell
occupation profile, which shows the role of exosome secretion
in modifying the microenvironment of the cells [50]. We note
that the capture parameter kin has the exact opposite effect
on wound healing. The hopping frequency of the extracellular
factor �X was not varied because it represents the mobility
of exosomes-secreted species, which is not expected to vary
significantly [43].
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B. Neighbors-dependent hopping process

In Sec. II, we discussed the form of the hopping frequency
�i and its dependence on protein expression. Choosing �i to
depend on each cell’s E-cadherin content only is sufficient
to reproduce the wound-healing dynamics observed experi-
mentally. However, an E-cadherin protein from a given cell
mediates cell contact via homophilic interactions with another
E-cadherin protein from an adjacent cell [6]. Cell mobility
could thus also depend on the E-cadherin level of adjacent
cells. The presented model can be extended to include interac-
tions between E-cadherin proteins of neighboring cells in the
hopping frequency. The probability of a cell hopping to the
left is affected by the presence of a cell containing E-cadherin
on its right and, equivalently, a hopping process to the right is
affected by a cell on the left. We thus now write the hopping
frequency to the left and to the right as

�left
i = �0 e−αE0

i
[
1 + ni+1(e−βE0

i E0
i+1 − 1)

]
(8)

and

�
right
i = �0 e−αE0

i
[
1 + ni−1(e−βE0

i E0
i−1 − 1)

]
, (9)

where α has the same definition as before and reflects the
action of E-cadherin on the mobility of an isolated cell and β

reflects the influence of the interaction between two molecules
of E-cadherin. The details of the derivation leading to these
expressions and the corresponding evolution equations are
shown in Appendix C. The stochastic optimization method is
used to estimate the values of �0, α, β, and �0 from experi-
mental data. The range of values in which each parameter was
varied is shown in Table III. We obtain that none of the param-
eter sets tested can give a better fit than the parameter values
shown in Table IV (with constant proliferation rate) with
β = 0. In summary, having a hopping frequency depending on
each cell’s content in E-cadherin is sufficient to reproduce the
main dynamical features of the wound-healing experiments,
and a more complex expression for the hopping frequency
based on neighbor interactions cannot improve the fitting for
the available experimental data. Such a model might, however,
be crucial for explaining other experimental data. This result
supports the fact that E-cadherin, in addition to its mechanical
effect on cell adhesion, can have a signaling effect on cell
polarity and contact inhibition [51].

C. E-cadherin and cell proliferation

While it is established that E-cadherin has a negative effect
on cell mobility, its influence on cell proliferation is less
clear. Indeed, studies have shown that E-cadherin has no effect
on cell proliferation in metastatic prostate cancer cells [7],
decreases cell proliferation by blocking G1/S phase in mam-
mary epithelial cells [52], or increases cell proliferation in
gastric cancer cells [53]. The modeling framework presented
here can be used to investigate this unanswered question.
Indeed, we can make the proliferation rate depend on the
E-cadherin level and analyze how this change influences the
best fitting values for wound-healing experiments. Using a
linear dependence for simplicity, we write the proliferation
rate as

�i = �0 + ζE0
i , (10)

where ζ reflects the effect of E-cadherin on cell proliferation
and can be positive, negative, or equal to zero. The stochastic
optimization method is used again to estimate the sign and
value of ζ (see the range of variation in Table III). The best
fitting parameter set is shown in Table IV and the corre-
sponding numerical profiles of cell occupation are shown in
Figs. 3(b)–3(e) (see blue curves). The agreement between the
experimental and simulated profiles is qualitatively and quan-
titatively better with an E-cadherin-dependent cell prolifera-
tion than with a constant proliferation rate. The most striking
difference is observed at high E-cadherin level after 24 h.
The optimal value of ζ is positive, suggesting that E-cadherin
increases cell proliferation in the system studied by Fan et al.

V. DISCUSSION

Most existing models describing collective cell spreading
do not account for protein expression affecting cell mobility
and cell proliferation. The models mentioned above that re-
produce wound-healing assays are single-variable models for
the cell density based on Fisher’s equation [21].With the ap-
propriate set of parameter values, such models can reproduce
the results of experiments performed on a given cell line. Nev-
ertheless, in order to reproduce the results of a similar experi-
ment in which the genetic expression of this cell line has been
modified, parameter estimation must be performed again, and
the best fitting values of the parameters will be different. Here,
we have provided a mathematical model that overcomes the
need of ad hoc parameters by combining the descriptions of
cell density evolution, gene expression dynamics of epithelial-
to-mesenchymal transition (EMT) markers, and extracellular
regulating factor secretion. We have linked cell mobility and
EMT in a discrete model through an E-cadherin-dependent
hopping frequency of cells. Our model can reproduce the
results of experiments performed for cells with different levels
of E-cadherin expression, by changing the synthesis rate of
E-cadherin only. With this approach, we obtain a single set
of optimal values for adhesion, hopping, and proliferation
parameters that reproduces experiments done under various
genetic conditions.

We included in the model an exosomelike secretion of
a regulating species involved in the EMT network. Since
secretion rates are highly phenotype dependent [54], we have
varied this parameter and showed that exchanges between
cells and the extracellular matrix can locally modify gene
expression dynamics, thereby affecting cell diffusivity and
the spatial distribution of cells. This emphasizes the role of
exosomes in rearranging cell microenvironment.

Our model describes cell proliferation as a nonlocal pro-
cess and we thus observe proliferation-induced front propaga-
tion. This suggests that the role played by cell division as a
transport process cannot be neglected. Moreover, we propose
a model with an E-cadherin-dependent proliferation rate. This
model captures more accurately the dynamics of the wound-
healing experiments than with a constant proliferation rate
and predicts that cell proliferation increases with E-cadherin
concentration. This prediction of the model should be tested
against dedicated experiments to be validated.

Standard methods for quantifying wound-healing assays
involve measuring the distance between the two edges of the

032412-7



GRAU RIBES, DE DECKER, AND RONGY PHYSICAL REVIEW E 100, 032412 (2019)

wound every 12 and 24 hours. This method does not give
information on the local evolution of the cell density and
therefore does not allow estimating the contributions of the
different mechanisms governing cell spreading. Cell counting
techniques [25] would help establish whether a gene affects
cell migration, proliferation, or both processes at the same
time. They could also provide the conditions under which
proliferation can be described with purely local models or if
the nonlocal approach is needed.

Although we remained general and chose a simple gene
regulatory network, many possibilities for future investiga-
tions arise from this work. An extension of the proposed
model could account for the dependence of the proliferation
rate on the level of a cell cycle marker. A first step in this
direction was made in a recent model that accounts for the
dynamics of the cell cycle by differentiating cells with respect
to the mitosis phase in which they are [55]. Combining the
approach presented here with the latter model would help re-
fine the link between cell cycle and the proliferation-induced
cell transport phenomenon. Moreover, specific models can be
built upon the one presented here to include species of interest
involved upstream of E-cadherin in the complex regulatory
network orchestrating the EMT [10,16,47,56,57]. Finally, im-
mune and cancer tissues can show significant differences in
cell density and exosomal secretion [58]. The present model
can be extended to account for such heterogeneities and
understand mechanisms connecting tumor microenvironment
and cancer progression.
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APPENDIX A: FROM STOCHASTIC PROCESSES TO A
MEAN-FIELD MULTISCALE MODEL

In this Appendix, we provide details on how the mean-field
evolution equations (1)–(4) can be derived from a discrete
stochastic level of description. We restrict ourselves here to
one-dimensional systems, for the sake of clarity. Extension to
higher dimensional systems is straightforward.

The instantaneous spatial configuration of the system ω =
{ωi} is defined as the set of local stochastic processes ωi where
i = 1, 2 . . . L denotes the position in space, with

ωi = (
ni, Ẽi, X̃i, X̃ ext

i

)
. (A1)

In the above definition, ni is a Boolean variable accounting for
the occupation of site i by a cell: ni = 1 if there is a cell on this
site and is equal to 0 otherwise. Ẽi is the number of particles
of E-cadherin, X̃i the number of particles of intracellular X
factor, and X̃ ext

i the number of particles of extracellular factor.
We also associate to each site a volume V, which is assumed
to remain constant. The temporal evolution of the probability
P(ω, t ) to find the system in a configuration ω at time t is

TABLE V. Propensity functions.

Process Transition probability

Cell hopping to the left �i /2 × ni(1 − ni−1)
Cell hopping to the right �i /2 × ni(1 − ni+1)
(with �i = �0 exp [−α Ẽi/V ])
Cell proliferation to the left �i/2 × ni(1 − ni−1)
Cell proliferation to the right �i/2 × ni(1 − ni+1)
E-cadherin synthesis V ve( X̃i

V K ni+X̃i
) ni

E-cadherin degradation ke Ẽi

Chemical factor synthesis V vX ni

Chemical factor degradation kX X̃i

Chemical factor secretion kout X̃i

Chemical factor uptake kin X̃ ext
i

Chemical factor hopping �X /2 × X̃ ext
i

assumed to obey a master equation

dP(ω, t )

dt
=

∑
i,ρ

[
W i

ρ (ω|ω′) P(ω′, t ) − W i
ρ (ω′|ω) P(ω, t )

]
,

(A2)

in which the {W i
ρ} stand for the local transition probabilities

per unit time of the various processes ρ. This choice amounts
to assuming that the stochastic processes are Markovian.

Table V summarizes our choices for the local transition
probabilities of the different events. Using these expressions,
evolution equations for the means of ni, Ẽi, X̃i, and X̃ ext

i
can be obtained by multiplying both sides of (A2) with the
appropriate variable and by summing over the configurations
ω. This gives, for the mean occupation number 〈ni〉,

d〈ni〉
dt

=
〈
�i+1

2
ni+1 (1 − ni )

〉
+

〈
�i−1

2
ni−1 (1 − ni )

〉

−
〈
�i

2
ni (2 − ni+1 − ni−1)

〉

+
〈
�i+1

2
ni+1 (1 − ni )

〉
+

〈
�i−1

2
ni−1 (1 − ni )

〉
.

(A3)

Note that angular brackets represent ensemble averages. A
similar procedure can be used to extract the evolution equation
for the mean density of E-cadherin, 〈Ei〉 ≡ 〈Ẽi/V 〉:

d〈Ei〉
dt

= ve

〈
Xi

K ni + Xi
ni

〉
− ke 〈Ei〉

+
〈
�i+1

2
ni+1 (1 − ni ) Ei+1

〉

+
〈
�i−1

2
ni−1 (1 − ni ) Ei−1

〉

−
〈
�i

2
ni (2 − ni+1 − ni−1) Ei

〉

+
〈
�i+1

2
ni+1 (1 − ni ) Ei+1

〉

+
〈
�i−1

2
ni−1 (1 − ni ) Ei−1

〉
, (A4)
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in which Xi = X̃i/V is the concentration of factor X in site i.
The evolution equation for the mean of this local concentra-
tion reads as

d〈Xi〉
dt

= vX 〈ni〉 − kX 〈Xi〉 + kin
〈
X ext

i

〉 − kout 〈Xi〉

+
〈
�i+1

2
ni+1 (1 − ni ) Xi+1

〉

+
〈
�i−1

2
ni−1 (1 − ni ) Xi−1

〉

−
〈
�i

2
ni (2 − ni+1 − ni−1) Xi

〉

+
〈
�i+1

2
ni+1 (1 − ni ) Xi+1

〉

+
〈
�i−1

2
ni−1 (1 − ni ) Xi−1

〉
. (A5)

Finally, we obtain for 〈X ext
i 〉 = 〈X̃ ext

i /V 〉,
d
〈
X ext

i

〉
dt

= kout 〈Xi〉 − kin
〈
X ext

i

〉

+ �X

2

〈
X ext

i+1 + X ext
i−1 − 2 X ext

i

〉
. (A6)

To obtain the evolution equations (1)–(4) presented in the
main text, we first note that the variables entering the local
state vector ωi are expected to be strongly correlated to each
other. For example, Ẽi must always be zero whenever ni is
zero; a similar remark holds for X̃i. We thus switch to new
variables by introducing the amount of E-cadherin and of fac-
tor X per cell, Ẽ0

i ≡ Ẽi/ni and X̃ 0
i ≡ X̃i/ni, respectively. This

defines a new local configuration ω∗ = (ni, Ẽ0
i , X̃ 0

i , X̃ ext
i ), and

a probability distribution P(ω∗, t ). We then make the assump-
tion that this probability can be factorized as

P(ω∗, t ) =
∏

i

P(ω∗
i , t ) (A7)

and that, in turn,

P(ω∗
i , t ) = P(ni, t ) P

(
Ẽ0

i , t
)

P
(
X̃ 0

i , t
)

P
(
X̃ ext

i , t
)
. (A8)

Using this mean-field assumption, we find for the evolution
equation for the cell occupation probability

dni

dt
= 1

2
[�i+1 ni+1 (1 − ni ) + �i−1 ni−1 (1 − ni )

− �i ni (1 − ni+1) − �i ni (1 − ni−1)

+ �i+1 ni+1 (1 − ni ) + �_i − 1 ni−1 (1 − ni )].
(A9)

Note that we do not write the brackets representing the means
anymore, for clarity. We obtain for the other previously intro-
duced concentrations

dEi

dt
= ni vE

X 0
i

K + X 0
i

− kE Ei

+ 1

2
[�i+1 ni+1 (1 − ni )Ei+1

+ �i−1 ni−1 (1 − ni )Ei−1

− �i ni (1 − ni+1)Ei − �i ni (1 − ni−1)Ei

+ �i+1 ni+1 (1 − ni )Ei+1

+ �i−1 ni−1 (1 − ni )Ei−1], (A10)

dXi

dt
= vX ni − kX Xi − kout Xi + kin X ext

i ni

+ 1

2
[�i+1 ni+1 (1 − ni )Xi+1

+ �i−1 ni−1 (1 − ni )Xi−1

− �i ni (1 − ni+1)Xi − �i ni (1 − ni−1)Xi

+ �i+1 ni+1 (1 − ni )Xi+1

+ �i−1 ni−1 (1 − ni )Xi−1], (A11)

and

dX ext
i

dt
= kout Xi − kin X ext

i ni

+ �X
(
X ext

i+1 + X ext
i−1 − 2 X ext

i

)
. (A12)

APPENDIX B: CONTINUOUS-SPACE LIMIT

To obtain an evolution equation for the cell occupation in
the continuous-space limit, we introduce the space coordinate
x = ia where a is the distance between two first neighbors.
Equation (1) becomes

∂n(x, t )

∂t
= 1

2
{�(x + a, t ) n(x + a, t ) [1 − n(x, t )]

+ �(x − a, t ) n(x − a, t ) [1 − n(x, t )]

− �(x, t ) n(x, t ) [1 − n(x + a, t )]

− �(x, t ) n(x, t ) [1 − n(x − a, t )]

+ � n(x + a, t ) [1 − n(x, t )]

+ � n(x − a, t ) [1 − n(x, t )] }. (B1)

In the limit where a is small compared to the characteristic
length scale of spatial profiles, one can expand the cell occu-
pation as

n(x ± a, t ) ≈ n(x, t ) ± a
∂n(x, t )

∂x

+ a2

2

∂2n(x, t )

∂x2
+ · · · . (B2)

Keeping terms up to the second order in a, the rate of
change of the cell occupation due to diffusive processes reads
as

∂n

∂t

∣∣∣∣
diffusion

=
[
�a2

2

∂2n

∂x2
+ n

∂2

∂x2

(
�a2

2

)
− n2 ∂2

∂x2

(
�a2

2

)

+ ∂n

∂x

∂

∂x
(�a2) + n

∂n

∂x

∂

∂x
(�a2)

]

= − ∂

∂x

[
−D

∂n

∂x
− n(1 − n)

∂D

∂x

]
, (B3)

032412-9



GRAU RIBES, DE DECKER, AND RONGY PHYSICAL REVIEW E 100, 032412 (2019)

where D = �a2

2 is the diffusion coefficient of the cell. Simi-
larly, the proliferation terms in the evolution equation for cell
occupation can be written as

∂n

∂t

∣∣∣∣
proliferation

= �

2

[(
n + a

∂n

∂x
+ a2

2

∂2n

∂x2

)
(1 − n)

+
(

n − a
∂n

∂x
+ a2

2

∂2n

∂x2

)
(1 − n)

]

= � n (1 − n) + R(1 − n)
∂2n

∂x2
, (B4)

where R = �a2

2 is a proliferation-induced transport coeffi-
cient. Summing Eqs. (B3) and (B4), we obtain the evolution
equation for the cell occupation in the continuous-space limit
[Eq. (6)]:

∂n

∂t
= ∂n

∂t

∣∣∣∣
diffusion

+ ∂n

∂t

∣∣∣∣
proliferation

= − ∂

∂x

[
−D

∂n

∂x
− n(1 − n)

∂D

∂x

]

+ � n (1 − n) + R (1 − n)
∂2n

∂x2
. (B5)

APPENDIX C: NEIGHBOR-DEPENDENT
HOPPING FREQUENCY

We first write the stochastic hopping frequencies to the left
and to the right as

�left
i = �0 e−αẼi−βẼi Ẽi+1 (C1)

and

�
right
i = �0 e−αẼi−βẼi Ẽi−1 , (C2)

where α reflects the action of E-cadherin on the mobility of
a simple cell and β reflects the strength of the interaction
between two molecules of E-cadherin belonging to two neigh-
boring cells. A hopping process to the left is affected by the
presence of a cell on the right, and a hopping process to the
right is affected by the presence of a cell on the left.

The mean hopping frequency to the left to insert in the evo-
lution equation of the mean cell occupation can be obtained
by considering the average probability of having a cell at site

i hopping to the left:〈
�left

i ni (1 − ni−1)
〉 = 〈�0 e−αẼi−βẼi Ẽi+1 ni (1 − ni−1)〉
=

∑
ω

�0 e−αẼi−βẼi Ẽi+1 ni (1 − ni−1) P(ω).

(C3)

Using the mean-field assumptions (A7) and (A8), this expres-
sion becomes〈

�left
i ni (1 − ni−1)

〉
= �0 e−αE0

i
[
1 + ni+1

(
e−βE0

i E0
i+1 − 1

)]
ni (1 − ni−1). (C4)

The same derivation can be applied to the hopping frequency
to the right and one obtains〈

�
right
i ni (1 − ni+1)

〉
= �0 e−αE0

i
[
1 + ni−1

(
e−βE0

i E0
i−1 − 1

)]
ni (1 − ni+1). (C5)

Again, we do not write the brackets representing the means
anymore, for clarity. The mean-field evolution equations for
ni, Ei, and Xi become

dni

dt
= 1

2

[
�left

i+1 ni+1 (1 − ni ) + �
right
i−1 ni−1 (1 − ni )

− �
right
i ni (1 − ni+1) − �left

i ni (1 − ni−1)

+ �i+1 ni+1 (1 − ni ) + �i−1 ni−1 (1 − ni )
]
, (C6)

dEi

dt
= ni vE

X 0
i

K + X 0
i

− kE Ei

+ 1

2

[
�left

i+1ni+1(1 − ni )Ei+1 + �
right
i−1 ni−1(1 − ni )Ei−1

− �
right
i ni (1 − ni+1)Ei − �left

i ni (1 − ni−1)Ei

+ �i+1 ni+1 (1 − ni )Ei+1 + �i−1 ni−1 (1 − ni )Ei−1
]
,

(C7)

and
dXi

dt
= vX ni − kX Xi − kout Xi + kin X ext

i ni

+ 1

2

[
�left

i+1ni+1(1 − ni )Xi+1 + �
right
i−1 ni−1(1 − ni )Xi−1

− �
right
i ni (1 − ni+1)Xi − �left

i ni (1 − ni−1)Xi

+ �i+1 ni+1 (1 − ni )Xi+1 + �i−1 ni−1 (1 − ni )Xi−1
]
.

(C8)
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