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Stochastic thermodynamics is an extension of classical nonequilibrium thermodynamics to small systems,
where fluctuations are expected to play an important role. A central difficulty met when developing such an
extension is how to define a nonequilibrium fluctuating entropy. Typically, the expression used is based on Gibbs’
formula for entropy at equilibrium. In this work, we show that one can construct an alternative framework for
stochastic thermodynamics based on an extension of Einstein’s formula connecting the probability of fluctuations
and entropy around equilibrium states. We compare the two approaches and discuss, in particular, how they lead
to different interpretations of what a stochastic entropy and entropy production represent.
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I. INTRODUCTION

Stochastic thermodynamics can be seen as an extension
of equilibrium statistical mechanics to systems placed under
nonequilibrium constraints. Its main purpose is to quantify the
extent to which fluctuations affect the laws of classical ther-
modynamics. Initially, stochastic thermodynamics was mainly
concerned with ensemble-averaged properties of Markovian
systems [1–5]. More recently, a growing attention has been
paid to the properties of thermodynamic quantities along
individual trajectories [6–14] and to non-Markovian systems
[15,16].

An important step in the development of stochastic ther-
modynamics is to define thermodynamic quantities in terms
of stochastic processes. This problem proves particularly del-
icate in the case of entropy and entropy production. Any
potential definition of these quantities must be such that (i)
macroscopic thermodynamics is recovered in the fluctuation-
free limit and (ii) the properties of equilibrium statistical
mechanics are correctly reproduced. The Gibbs-Shannon en-
tropy, which is an extension of Gibbs’ formula for entropy at
equilibrium, has been widely used for this purpose. Combin-
ing this definition of entropy and the master equation ruling
the time evolution of probabilities, it is possible to deduce a
form of entropy production for Markovian systems which is
always nonnegative and converges to the expected classical
expression in the macroscopic limit [2–4]. Because it is based
on Gibbs’ statistical definition, this choice of entropy also
leads to results that are consistent with the Gibbs ensemble
approach to equilibrium statistical mechanics.

The fact that the Gibbsian approach to stochastic ther-
modynamics satisfies all the necessary requirements does
not preclude the existence of other acceptable definitions of
stochastic entropy. Different definitions will lead to different
frameworks, which will give the same results in the macro-
scopic limit because of the requirement of compatibility with
classical thermodynamics. However, these frameworks can be
expected to predict different behaviors at small scale. In this
context, it would be important to point out these differences

and to assess which of the fluctuation-induced effects are
definition-dependent and which ones are “universal.”

As mentioned before, the Gibbs formulation has also led
to the development of a corresponding pathwise stochastic
thermodynamics. Fluctuation theorems for entropy produc-
tion, which can be seen as extensions of the second law
of thermodynamics to small systems, have been obtained in
this framework and one might again wonder whether these
theorems are definition-dependent. Moreover, the Gibbsian
definition of pathwise entropy can lead to results that are not
compatible with macroscopic thermodynamics. For example,
it predicts that the entropy production of systems with linear
(or linearized) evolution laws is zero in the macroscopic limit,
in contradiction with classical nonequilibrium thermodynam-
ics [12].

For all these reasons, the possibility of developing alter-
native frameworks for stochastic thermodynamics should be
pursued. We show here that the Gibbs-Shannon definition
is, indeed, not the only admissible one. Entropy can also be
defined from Einstein’s postulate connecting the probabil-
ity of equilibrium fluctuations to thermodynamic potentials.
This alternative approach is, from the outset, consistent with
equilibrium statistical mechanics in the sense that it leads to
Einstein’s celebrated formula for fluctuations around equilib-
rium. It gives birth to an expression for the stochastic entropy
production that differs from the one obtained with the Gibbs-
Shannon approach, but which is nevertheless consistent with
its macroscopic counterpart. This new formulation of stochas-
tic thermodynamics thus represents a legitimate alternative to
the previously developed approaches.

In the present work, we illustrate these ideas with the case
of open and spatially uniform reactive systems, maintained
at constant volume and constant temperature. The procedure
we use here can however be easily applied to systems with
different constraints. In Sec. II, we recall the main features
of the classical approach to nonequilibrium thermodynamics.
Section III is devoted to a presentation of the new approach to
stochastic thermodynamics. We show how Einstein’s formula
for the probability of fluctuations around equilibrium can
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be used to define entropy in the presence of nonequilibrium
constraints. Evolution laws for thermodynamic quantities of
interest are derived, based on the master equation and on
the previously introduced definition of stochastic entropy. A
simple example is provided to illustrate the proposed frame-
work. In Sec. IV, we discuss the main differences between
the present approach and the one based on the Gibbs-Shannon
definition of entropy. We finally summarize our results in
Sec. V, where we also point toward possible future develop-
ments of the present work.

II. CLASSICAL NONEQUILIBRIUM THERMODYNAMICS

We consider a spatially uniform system with constant
volume V and temperature T . This system is in contact with
external reservoirs at the same temperature and containing
c different types of particles whose chemical potentials μ =
(μ1, μ2 . . . μc) are constant as well. We moreover assume that
no external forces act on the system’s bulk properties.

The number of particles of each species k in the system
can change due to the occurrence of one of the r processes
taking place. These processes correspond either to a chemical
reaction or to an exchange of particles with the external
reservoirs. The state of the system is defined by the number
of particles of each species,

N = (N1, N2, . . . Nc). (1)

Each elementary process ρ = (1, 2, . . . r) can induce a change
in this state in the form of a jump,

N
ρ→ N + νρ, (2)

where νρ = (ν1ρ, ν2ρ, . . . νcρ ) is a vector of stoichiometric
coefficients, which are integers reflecting the process-induced
variation in the number of particles. Notice that there corre-
sponds to each process ρ a backward process −ρ such that

N
−ρ→ N − νρ. (3)

We now turn to the evaluation of thermodynamic quantities
of interest. We focus here more specifically on the time
evolution of entropy and on the rate of entropy production.
In classical nonequilibrium thermodynamics, the evolution
equations for state functions are obtained by assuming that
their dependence on the state variables under nonequilibrium
conditions is the same as in equilibrium [17,18]. Conse-
quently, the time evolution for the entropy S of a system with
the above-mentioned constraints is given by

dS

dt
=

∑
k

(
∂S

∂Nk

)
T,V,Nl �=k

dNk

dt

=
∑

k

sk
dNk

dt
, (4)

where we introduced the molar entropy sk . Evolution equa-
tions for the number of particles are needed to evaluate
entropy in the course of time. For macroscopic systems, these
equations are of the type

dNk

dt
=

∑
ρ

νkρ wρ. (5)

In the above expression, wρ is the rate of process ρ and
νkρ are the previously introduced stoichiometric coefficients.
Introducing Eq. (5) into Eq. (4) yields

dS

dt
=

∑
ρ

wρ �ρS, (6)

in which

�ρS =
∑

k

νkρ sk (7)

is called the entropy of process ρ.
We introduce at this stage the chemical potential of

species k,

μk =
(

∂F

∂Nk

)
T,V,Nl �=k

. (8)

F = U − T S is the Helmholtz free energy, where U is the
internal energy of the system. Consequently, the chemical
potential and the molar entropy are related by

sk = uk − μk

T
, (9)

in which

uk =
(

∂U

∂Nk

)
T,V,Nl �=k

(10)

is the partial internal energy of species k. Using relation (9) in
Eq. (7) leads to

�ρS = �ρU − �ρF

T
, (11)

where

�ρU =
∑

k

νkρ uk (12)

is the isochoric heat of the process and

�ρF =
∑

k

νkρ μk (13)

is the corresponding change in free energy.
Inserting Eq. (11) into Eq. (6) leads to a decomposition of

the rate of change in entropy into two distinct contributions:

dS

dt
= deS

dt
+ diS

dt
, (14)

where

deS

dt
=

∑
ρ

wρ

�ρU

T
(15)

is the entropy flux and

diS

dt
= −

∑
ρ

wρ

�ρF

T
(16)

is the entropy production. This entropy production term is
usually expressed in terms of the affinities,

Aρ = −�ρF, (17)
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which leads to
diS

dt
=

∑
ρ

wρ

Aρ

T
. (18)

The second law of thermodynamics stipulates that diS/dt � 0
for any spontaneously occurring macroscopic process, with
equality holding only at equilibrium. The rate and the affinity
of a process must thus have the same sign. For elementary
reactive processes, this constraint has the consequence that the
affinity can be rewritten in terms of the rates as

Aρ = kB T ln
wρ

w−ρ

, (19)

in which kB is Boltzmann’s constant, so that one has

diS

dt
= kB

2

∑
ρ

[wρ − w−ρ] ln
wρ

w−ρ

. (20)

III. STOCHASTIC THERMODYNAMICS

The extension of nonequilibrium thermodynamics to fluc-
tuating systems is most often based on the assumption that
the underlying stochastic processes are Markovian. As a con-
sequence, the probability P(N, t ) to be in state N at time t
obeys a birth-and-death master equation of the form

d P(N, t )

dt
=

∑
ρ

[Wρ (N − νρ ) P(N − νρ, t )

−W−ρ (N) P(N, t )] ≡
∑

ρ

Jρ (N, t ). (21)

In this equation, the Wρs are the transition probabilities per
unit time associated with the various aforementioned pro-
cesses. A major step in stochastic thermodynamics is to de-
rive, from Eq. (21), an evolution equation for thermodynamic
quantities of interest. As mentioned earlier, this requires to
define entropy in terms of the state of the system.

A. Definition of entropy based on the Einstein formula

To define entropy, we first consider the equilibrium proba-
bility distribution. The equilibrium distribution is here defined
as the stationary solution of Eq. (21) in the special case where
all the probability flows Jρ are zero. Since we are considering
systems at constant T and V , this solution is nothing else but
the grand-canonical distribution [19]

P(N, eq) = Z(N) exp β

[
�eq +

∑
k

μk Nk

]
. (22)

In this equation, β = 1/kB T , Z (N) = Z (T,V, N) is the
canonical partition function, and �eq = �eq(T,V,μ) is the
grand potential, here evaluated at equilibrium. This potential
is related to the equilibrium values of the Helmholtz free
energy (Feq) and of the Gibbs free energy (Geq) appearing in
thermodynamics by the relation

�eq = Feq − Geq = Ueq − T Seq − Geq. (23)

We now want to use Eq. (22) to infer a definition for the
fluctuating (or statewise) entropy S(N). Inverting Boltzmann’s
famous expression for the microcanonical entropy, Einstein

proposed that for an isolated system, the equilibrium proba-
bility scales like [20,21]

P(N, eq) ∝ exp

(
�S

kB

)
, (24)

where �S = S(N) − Seq is a measure of the deviation of the
statewise entropy from its thermodynamic value. This expres-
sion shows that the probability of a fluctuation away from
the equilibrium state is dictated by the associated variation
of the thermodynamic potential, which in this case is entropy
because an isolated system has been considered. This idea can
be extended to closed and open systems [19]. In particular, for
systems at constant T and V one expects to have

P
(
N, eq

) ∝ exp −β ��, (25)

with

�� = �(N) − �eq (26)

being the difference between the statewise value �(N) taken
by the grand potential and its macroscopic value at equilib-
rium, �eq.

The grand-canonical distribution (22) can indeed be cast in
such a form. Introducing the statewise Gibbs free energy

G(N) =
∑

k

μk Nk (27)

in this equation, we note that it can be rewritten as

P(N, eq) = exp β [�eq + kB T ln Z (N) + G(N)]. (28)

Comparing Eqs. (28) and (25), we conclude that statewise
grand potential takes the form

�(N) = A − kB T ln Z (N) − G(N), (29)

where A = A(T,V,μ) is state-independent. Now, we also
have that

�(N) = F (N) − G(N). (30)

Combining Eqs. (29) and (30), we readily reach the conclu-
sion that

F (N) = A − kB T ln Z (N). (31)

This leads to the conclusion that the statewise entropy is given,
at equilibrium, by

S(N) = U (N) − F (N)

T
= U (N)

T
+ kB ln Z (N) − A

T
. (32)

Evaluating this quantity a priori requires having explicit
expressions for the internal energy of the system, for the
canonical partition function, and for the constant A.

To evaluate the time evolution of entropy and related
quantities (such as the entropy production), the definition (32)
must be extended to nonequilibrium situations. We will adopt
in the present work a “local equilibrium” assumption, with
which we suppose that the nonequilibrium expression for
S(N) should have the same structure as in equilibrium. This is,
in fact, exactly what is done in the more traditional approach
to stochastic thermodynamics, in which the equilibrium
Gibbsian form of entropy is used as such in nonequilibrium
cases (see Sec. IV for a more detailed discussion on this topic).
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With this definition, we can now turn to the evaluation of
stochastic thermodynamic functions out of equilibrium.

B. Temporal evolution of entropy and entropy production

Consider the mean entropy

S =
∑

N

S(N) P(N, t ). (33)

Using the master equation (21), we conclude that its time
variation obeys

dS

dt
=

∑
N

S(N)
d P(N, t )

dt

=
∑
N,ρ

S(N) [Wρ (N − νρ ) P(N − νρ, t )

−W−ρ (N) P(N, t )]

=
∑
N,ρ

S(N) [Wρ (N − νρ ) P(N − νρ, t )

−Wρ (N) P(N, t )]

=
∑
N,ρ

[Wρ (N) �ρS] P(N, t ), (34)

in which one finds the variation of statewise entropy due to
process ρ,

�ρS = S(N + νρ ) − S(N). (35)

Notice that the structure of Eq. (34) is very similar to that of
its macroscopic counterpart, Eq. (6).

A major issue in nonequilibrium thermodynamics consists
in choosing a way to decompose the evolution equation (34)
into an entropy flow and an entropy production terms. As we
have seen in Sec. II, entropy production should be defined in
such a way that it measures the total change in free energy
due to the various processes taking place. We thus introduce
the stochastic free energy of process ρ with

�ρF = F (N + νρ ) − F (N), (36)

where F is defined by Eq. (31). The Evolution law (34) can
thus be split into a flux and a production of entropy,

dS

dt
= deS

dt
+ di S

dt
, (37)

where the entropy flux reads

deS

dt
=

∑
N,ρ

[
Wρ (N)

�ρU

T

]
P(N, t ), (38)

in which

�ρU = U (N + νρ ) − U (N) (39)

is the corresponding change in internal energy at constant T
and V , while the production term is given by

diS

dt
= −

∑
N,ρ

[
Wρ (N)

�ρF

T

]
P(N, t ). (40)

In analogy with the macroscopic formulation, we can intro-
duce the mesoscopic affinity

Ãρ = −�ρF (41)

and express Eq. (40) as

diS

dt
=

∑
N,ρ

[
Wρ (N)

Ãρ

T

]
P(N, t ). (42)

We will focus here on the properties of entropy production.
Using Eq. (31) in the definition (41) of the affinities Ãρ , we
find that

Ãρ = kB T ln
Z (N + νρ )

Z (N)
. (43)

Now, the ratio of canonical distribution functions can be
related to transition probabilities per unit time. Indeed, be-
cause at equilibrium all the probability currents Jρ vanish, the
transition probabilities must be such that

ln
Wρ (N)

W−ρ (N + νρ )
= ln

P(N + νρ, eq)

P(N, eq)
= ln

Z (N + νρ )

Z (N)
.

(44)

Note that we used Eq. (22) together with the fact that, by
definition,

∑
k νkr μk = 0 at equilibrium for each reaction.

Equation (43) can thus be rewritten as

Ãρ = kB T ln
Wρ (N)

W−ρ (N + νρ )
. (45)

The corresponding entropy production reads

diS

dt
= kB

∑
N,ρ

Wρ (N) P(N, t )

[
ln

Wρ (N)

W−ρ (N + νρ )

]

= kB

∑
N,ρ

W−ρ (N) P(N, t )

[
ln

W−ρ (N)

Wρ (N − νρ )

]

= kB

∑
N,ρ

Wρ (N − νρ ) P(N − νρ, t )

[
ln

Wρ (N − νρ )

W−ρ (N)

]

= kB

2

∑
N,ρ

Jρ (N, t )

[
ln

Wρ

(
N − νρ

)
W−ρ (N)

]
. (46)

This expression will obviously lead to the correct macro-
scopic equation (20). Indeed, in the limit of infinite size
N − νρ ≈ N and the probability distribution is a Kronecker δ

function centered on the macroscopic solution Nm(t ). Equa-
tion (46) thus becomes equal to Eq. (20), provided that
limV →∞ Wρ[Nm(t )] = wρ . It is moreover based on a defi-
nition of the Helmholtz free energy that is consistent with
Einstein’s statistical mechanics, in the sense that Eq. (31)
ensures that the Einstein formula (25) is satisfied. The two
necessary constraints (agreement with equilibrium statistical
mechanics and with macroscopic thermodynamics) are thus
respected in this “Einstein-Boltzmann” approach to stochastic
thermodynamics.

032143-4



STOCHASTIC THERMODYNAMICS BASED ON AN … PHYSICAL REVIEW E 99, 032143 (2019)

C. Example

In this subsection, we discuss a simple example of nonequi-
librium reaction to illustrate the proposed framework. Con-
sider the reaction scheme

A � X � B, (47)

where the concentrations of A and B are fixed. The system
is considered ideal and all kinetic constants are set to 1, for
simplicity. The associated transition probabilities thus read

W1(N ) = NA, W−1(N + 1) = N + 1, (48)

W2(N ) = N, W−2(N − 1) = NB, (49)

where NA, NB, and N are the number of particles of species A,
B, and X , respectively. The mesoscopic affinities are given by

Ã1 = kB T ln
NA

N + 1
, Ã−1 = kB T ln

N

NA
, (50)

Ã2 = kB T ln
N

NB
, Ã−2 = kB T ln

NB

N + 1
. (51)

and the entropy production is given by

diS

dt
= kB

∑
N

[NA P(N, t ) − (N + 1) P(N + 1, t )] ln
NA

N + 1

+ kB

∑
N

[NB P(N, t ) − (N + 1) P(N + 1, t )] ln
NB

N + 1
.

(52)

Generally speaking, Eq. (52) will not be equal to the
macroscopic expression, which reads here

diS

dt
= kB [NA − N (t )] ln

NA

N (t )
+ kB [NB − N (t )] ln

NB

N (t )
,

(53)

where N (t ) = Nm(t ) obeys

dN (t )

dt
= A + B − 2 N (t ). (54)

For large enough systems, however, we can expect that states
for which N � 1 are the most probable, and the stochastic
entropy production reduces to

diS

dt
≈ kB

∑
N

[
(NA − N ) ln

NA

N
+ (NB − N ) ln

NB

N

]
P(N, t ).

(55)

As mentioned before, in the macroscopic limit P(N, t ) is a
Kronecker δ centered on the macroscopic solution for all
times, provided that it is initially so. Equation (52) will thus
converge to Eq. (53), as expected. It should also be noted
that because of the linearity of transition probabilities in the
present example, diS/dt will also be equal to its macroscopic
expression for all steady states, irrespective of the size of
the system. Indeed, this linearity has the consequence that
the steady-state solution for the probability distribution is

Poissonian:

P(N, st) = N
N

e−N

N!
. (56)

Replacing N + 1 with N P(N, st)/P(N + 1, st) in Eq. (52)
leads to Eq. (53), since at steady state∑

N,ρ

ln
P(N, t )

P(N + νρ, t )
Wρ (N) P(N, t )

= −
∑

N

ln P(N, t )
dP(N, t )

dt
= 0. (57)

The conclusion that the macroscopic solution for entropy
production is recovered at steady state is intimately related
to the fact that the probability distribution is Poissonian. For
systems with nonlinearities, the probability will not be a
Poisson distribution at steady state and deviations from the
macroscopic value of entropy production should be expected
for finite-size systems.

IV. COMPARISON WITH THE GIBBS-SHANNON
APPROACH

We mentioned on several occasions that stochastic thermo-
dynamics usually rests on a different definition of entropy.
More precisely, the Gibbs-Shannon expression is typically
used:

S =
∑

N

[S0(N) − kB ln P(N, t )] P(N, t ). (58)

One finds in this definition two contributions to entropy: a
part S0 representing the entropy of a system with a fixed
number of particles, and a logarithmic part accounting for
the variability of the system by assigning to the number of
particles a probability distribution. Choosing this expression
amounts to defining the statewise entropy by

S(N) = S0(N) − kB ln P(N, t ). (59)

Consequently, the statewise Helmholtz free energy reads

F (N) = F 0(N) + kB T ln P(N, t ), (60)

in which

F 0(N) = U (N) − T S0(N) (61)

can be interpreted as the free energy of a system with fixed
composition. Just like our choice, these definitions can be said
to be consistent with equilibrium statistical mechanics, albeit
in a different sense, as we will show now.

A. The Gibbs-Shannon approach

Consider the equilibrium value of the mean of the
Helmholtz free energy:

F =
∑

N

F (N) P(N, eq). (62)

We wish to define F 0(N) in Eq. (60) in such a way that
the means of the statewise thermodynamic functions coincide
with their macroscopic values at equilibrium:

F = Feq, G = Geq, � = �eq. (63)
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This leads to

F = G + �eq. (64)

Such constraint can be fulfilled by choosing

F (N) =
∑

k

μk Nk + �eq

or, using Eq. (22),

F (N) = −kB T ln Z (N) + kB T ln P(N, eq). (65)

Comparing Eqs. (60) and (65), one readily arrives to the
conclusion that imposing F 0 = −kB T ln Z leads to the cor-
rect result. This result makes sense from the point of view
of statistical mechanics: In the Gibbs-Shannon approach, F 0

can be interpreted as the Helmholtz free energy of a system
with fixed composition, and −kB T ln Z is the expression for
this quantity in the canonical ensemble, where the number of
particles are constant.

To extend this result to nonequilibrium situations, we sim-
ply need to invoke again the same form of “local equilibrium”
hypothesis as the one we used for the Einstein-formula in-
spired definition of entropy. We suppose that the nonequilib-
rium expression for F should have the same structure as in
equilibrium,

F (N) = −kB T ln Z (N) + kB T ln P(N, t ), (66)

the only difference with Eq. (65) being that the probabil-
ity distribution does not need to be the equilibrium grand-
canonical expression (22). Note that this choice also has the
consequence that

S0(N) = U (N)

T
+ kB ln Z (N) (67)

in the Gibbs-Shannon entropy (58). These expressions allow
us to estimate the rate of change in entropy and entropy
production explicitly. Focusing again on entropy production,
we note that the above definition of F leads to a mesoscopic
affinity of the form

Ãρ = F (N) − F (N + νρ ) = kB T ln
Z (N + νρ ) P(N, t )

Z (N) P(N + νρ, t )

= kB T ln
W (N) P(N, t )

W (N + νρ ) P(N + νρ, t )
. (68)

This expression leads to the most commonly used formula for
entropy production [2,3],

diS

dt
= kB

∑
N,ρ

Wρ (N) P(N, t )

[
ln

Wρ (N) P(N, t )

W−ρ (N + νρ ) P(N + νρ, t )

]

= kB

2

∑
N,ρ

Jρ (N, t )

[
ln

Wρ (N − νρ ) P(N − νρ, t )

W−ρ (N) P(N, t )

]
, (69)

which was first proposed by Schnakenberg [22]. It should
be noticed that this stochastic entropy production is always
nonnegative because of the inequality (a − b) ln(a/b) � 0. It
is zero only when the system is at equilibrium, because of the
condition of detailed balance.

Just like the expression derived earlier, Eq. (46), the
entropy production (69) can be considered a satisfactory

stochastic extension of its macroscopic counterpart. It is in-
deed based on definitions of thermodynamic quantities that
are, by construction, consistent with Gibbsian equilibrium
statistical mechanics. Moreover, the stochastic affinity (68)
converges to the macroscopic expression (19) in the limit of
large systems, which has the consequence that the stochastic
entropy production converges to its macroscopic value as well
[3].

The possibility to construct two acceptable stochastic ex-
tensions of thermodynamics naturally leads to the question of
what the main differences are between these two approaches,
and the consequences that the different choices have in terms
of interpretation of stochastic thermodynamics.

B. The equilibrium state

The two approaches are based on different thermodynamic
interpretations of the functions appearing in the equilibrium
probability distribution. This means that these two approaches
also differ in what they consider to be an equilibrium state.

In the Gibbsian approach, equilibrium is attained when-
ever the probability distribution reaches its equilibrium form,
Eq. (22). It thus coincides with the detailed balance condition
for the master equation, Eq. (44). In the Einstein-Boltzmann
approach, we introduce a thermodynamic potential �(N).
Consequently, equilibrium is there restricted to the set of
values taken by N for which this potential is extremal and
coincides with its equilibrium value. This has the consequence
that equilibrium corresponds to the set of variables Neq that
maximizes the equilibrium probability distribution.

A major consequence of this difference is that the Gibbsian
approach includes in the equilibrium state many configu-
rations which, in the Einstein-Boltzmann approach, would
be considered as being out of equilibrium. Consider as an
illustration the simple example (47). In classical thermody-
namics, the equilibrium state corresponds to N/NB = N/NA =
1, which can be satisfied only if NA = NB = N , i.e., whenever
μA = μB = μX . In the Gibbsian framework, equilibrium cor-
responds to the double condition

NA P(N, eq) = (N + 1) P(N + 1, eq) (70)

(N + 1) P(N + 1, eq) = NB P(N, eq). (71)

As a consequence, equilibrium is solely defined by NA =
NB and no restriction is being put on N . All N values are
considered acceptable equilibrium states as long as they have a
nonzero probability in the equilibrium distribution P(N, eq).
What equilibrium imposes here is the relative probability of
the different possible values.

In the Einstein-Boltzmann approach, equilibrium is at-
tained whenever the grand potential � = F − G is extremal.
In the present example, we have

�(N ) = −kB T ln Z (N ) − μA NA − μB NB − μ N. (72)

In the above equation, Z is the canonical partition function of
an ideal mixture,

Z (N ) = ζ
NA
A ζ

NB
B ζ N

NA! NB ! N!
, (73)
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in which the ζ s are the molecular partition functions.
Differentiating � with respect to N (and using Stirling’s
approximation ln N! ≈ N ln N − N) leads to the conclusion
that

Neq = exp (β μ + ln ζ ) (74)

must hold at equilibrium. Using standard expressions from
equilibrium statistical thermodynamics one readily arrives
to the conclusion that, for the Einstein-Boltzmann approach
equilibrium is defined by

Neq = K NA = NA, (75)

where K is the equilibrium constant for the reaction A � X ,
which is here equal to 1 in view of our choice of parameters.
A similar relation holds between N and NB, Neq = NB. The
equilibrium state thus corresponds to a single, well-defined
value for the number of X particles. Any value of N that
does not respect N = NA = NB is considered to correspond
to a system out of equilibrium. This includes, among others,
values respecting the detailed balance condition.

To summarize, one could say that the Einstein-Boltzmann
approach defines an equilibrium state while the Gibbsian
approach defines an equilibrium distribution of states.

C. Entropy

Comparing expressions (67) and (32), one reaches the
conclusion that up to a constant term

SGS(N) = SEB(N) − kB ln P(N, t ) (76)

or, equivalently,

SGS = SEB − kB

∑
N

P(N, t ) ln P(N, t ). (77)

The subscripts GS and EB stand for Gibbs-Shannon
and Einstein-Boltzmann interpretations, respectively. The
Einstein-Boltzmann entropy can thus be seen as the part S0

of the Gibbs-Shannon entropy that accounts for the entropy of
the system at fixed number of particles.

How can this result be interpreted? The Gibbs-Shannon
entropy is known to represent the amount of information re-
quired to specify the state of a system. Since in this approach,
a state is actually a distribution of states, this information
includes a contribution related to the variability of the num-
ber of particles. In the Einstein-Boltzmann approach, a state
corresponds to a precise configuration N. S0 can thus still be
interpreted as a measure of information, but only the informa-
tion pertaining to “hidden” degrees of freedom that are not set
when fixing the number of particles. It does not, consequently,
have a privileged connection with the probability distribution
of the number of particles, contrary to the Gibbs-Shannon
expression.

A direct consequence of all this is that the Gibbs-Shannon
entropy will always be larger than the Einstein-Boltzmann
entropy, since it includes information on the distribution of
states. It is only in the macroscopic limit that these quantities
become equal, because the logarithmic part of the Gibbs-
Shannon entropy vanishes (there is no more variability in the
number of particles). Differences also appear in the rate of

change of these two entropies. Indeed,(
dS

dt

)
GS

=
(

dS

dt

)
EB

− kB

∑
N

ln P(N, t )
dP(N, t )

dt
. (78)

The Gibbs-Shannon evolution equation contains, in compar-
ison with the Einstein-Boltzmann one, an additional term
accounting for the relaxation of the probability distribution
toward its steady-state. Consider again the example (47) for
illustration. The probability distribution P(N, t ) is known to
be Poissonian all along the evolution of the system as soon as
it is so at t = 0. Using Eq. (56) one obtains from Eq. (78)(

dS

dt

)
GS

=
(

dS

dt

)
EB

− kB
dN (t )

dt

∑
N

ln
N (t )

N + 1
P(N, t ).

(79)

Introducing the deviation from the mean, �N = N − N and
keeping the dominant terms in �N in Eq. (79) yields(

dS

dt

)
GS

≈
(

dS

dt

)
EB

+ kB

2

d ln N (t )

dt
. (80)

Notice that the difference between the two rates has no definite
sign, i.e., the Gibbs-Shannon entropy can vary more rapidly or
more slowly than the other, depending on the initial condition
used in Eq. (54). In any case, just like for entropy itself
the difference between the rates vanishes in the macroscopic
limit, since entropy is extensive while the correction term
scales like the logarithm of N .

The presence of an additional term in the evolution law
for the Gibbs-Shannon entropy raises the question of how
the corresponding entropy flow and entropy production terms
are each affected. We discuss this point in the following
subsection.

D. Entropy production

Because of the different definitions of statewise free energy
(or, equivalently, of the affinities), the expressions for entropy
production will in general not be the same in the two frame-
works. Indeed, comparing the first lines in Eqs. (69) and (46)
we find that(

diS

dt

)
GS

=
(

diS

dt

)
EB

+ kB

∑
N,ρ

ln
P(N, t )

P(N + νρ, t )

×Wρ (N) P(N, t )

=
(

diS

dt

)
EB

− kB

∑
N

ln P(N, t )
dP(N, t )

dt
. (81)

The two frameworks thus predict the same steady-state aver-
age entropy production but will otherwise differ. The reason
behind this difference is that the production of the Gibbs-
Shannon entropy includes a contribution representing the
irreversible evolution of the probability distribution toward its
asymptotic solution, which does not appear in the Einstein-
Boltzmann formulation. Notice that the difference in the
definition of entropy only affects entropy production, while
the entropy flow is the same in both frameworks, because
dS/dt = deS/dt + diS/dt in Eq. (78).
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Time
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diS/dt

FIG. 1. Entropy production for the example (47), with
NA = NB = 50 and N (0) = 49 at t = 0, obtained by numerical
integration (fourth-order Runge-Kutta, dt = 10−4). The black
curve is the Gibbs-Shannon expression, Eq. (82), which is also the
macroscopic solution. The blue curve is the weak-noise limit of the
Einstein-Boltzmann entropy production, Eq. (80). Notice that the
values of entropy production are rescaled by kB.

As mentioned before, the Gibbs-Shannon entropy pro-
duction is nonnegative by construction. Because it does not
share the same structure, nothing seems to prevent a priori
expression Eq. (46) from becoming negative. It is only in the
macroscopic limit that (diS/dt )EB can be said to be always
nonnegative, since it then converges to the classical expression
for entropy production. To see this, consider again the case
of the linear reaction scheme (47). It is well-known that for
Poisson distributions the Gibbs-Shannon entropy production
is identical to its macroscopic value for all times [2]:(

diS

dt

)
GS

= kB (NA − N ) ln
NA

N
+ kB (NB − N ) ln

NB

N
� 0.

(82)

The Einstein-Boltzmann formulation gives(
diS

dt

)
EB

=
(

diS

dt

)
GS

+ kB
dN (t )

dt

∑
N

ln
N (t )

N + 1
P(N, t )

=
(

diS

dt

)
GS

+ kB
dN (t )

dt
[ln N (t ) − ln (N + 1)].

(83)

For sufficiently large systems the contribution under brackets
is always positive because of Jensen’s inequality (ln N �
ln N (t ) due to the concavity of logarithmic functions). How-
ever, the derivative of the mean has no predefined sign and can
lead to negative contributions. This “contamination” of en-
tropy production by stochasticity can lead to transient negative
entropy productions, even in the weak-noise limit (80). An
example is provided in Fig. 1 for the relaxation toward equi-
librium of a system initially containing ≈50 particles of X .
The plain black curve is the macroscopic entropy production,
and the blue line is the Einstein-Boltzmann expression (83)
[which is here indistinguishable from its weak noise limit,

Eq. (80)]. We observe that indeed, (diS/dt )EB can become
negative during the transient leading to the final state. This
“antithermodynamic” behavior disappears in the macroscopic
limit since the stochastic entropy production becomes then
equal to its macroscopic counterpart. The physical interpre-
tation of this result is discussed in the next section.

V. CONCLUSIONS

In this short report, we showed that there exist at least
two different ways of defining entropy and entropy production
for reactive Markovian systems, which are both consistent
with equilibrium statistical mechanics and classical nonequi-
librium thermodynamics. One possibility consists in defining
a statewise entropy in such a way that its ensemble mean
corresponds to the Gibbs-Shannon formula at equilibrium.
This approach leads to the most common form of stochastic
thermodynamics, with entropy production obeying the ex-
pression first proposed by Schnakenberg. Another path re-
lies on a definition of entropy that is such that fluctuations
around equilibrium obey the Einstein formula, with the system
being characterized by an appropriate thermodynamic
potential. This approach leads to an alternative formulation of
stochastic thermodynamics where both entropy and entropy
production differ from those of the first approach.

The existence and the differences between the two defi-
nitions of entropy mentioned above have been identified and
discussed earlier for equilibrium states [18]. The present work
can be seen as an extension of these results to nonequilibrium
situations. A major difference between the two approaches
is that entropy production is not bound to be nonnegative in
the framework based on the Einstein formula. It is only so in
the macroscopic limit. To understand what this implies, let us
compare the three expressions for entropy production. In the
macroscopic limit, one has

diS

dt
=

∑
ρ

wρ

Aρ

T
. (84)

The second law of thermodynamics imposes that this quantity
cannot be negative. This can be interpreted as a require-
ment that, at a macroscopic level, the rate of a reaction and
the associated thermodynamic force must “align.” Both the
Gibbs-Shannon and the Einstein-Boltzmann approaches lead
to an expression of the type

diS

dt
= kB

∑
N,ρ

Wρ (N) P(N, t )
Ãρ

T
, (85)

but they differ in how the stochastic affinity Ãρ is defined.
In the Schnakenberg expression (69), this affinity is a ratio of
forward and reverse probability fluxes. The nonnegativity of
entropy production is here thus a sign that the probability flux
and the associated stochastic force must align at all scales,
i.e., even for small systems where fluctuations are important.
In the Einstein-Boltzmann approach, the affinity is a ratio of
rates, not of probability fluxes. It is entirely determined by
the values taken by macroscopic observables and is, in this
sense, closer to the macroscopic affinity (to which it is almost
equal). Entropy production in this case measures whether the
probability fluxes are aligned with macroscopic constraints.
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The fact that the corresponding entropy production can be-
come negative for small systems means that at small scales,
a system could appear to proceed “in the wrong direction” in
view of the macroscopic constraints imposed. This possibility
vanishes in the macroscopic limit and the second law of
thermodynamics is thus respected.

Since both approaches discussed here are consistent with
equilibrium statistical mechanics and nonequilibrium macro-
scopic thermodynamics, one could argue that choosing be-
tween them is more a matter of taste than anything else. Each
framework allows probing different aspects of the nonequi-
librium thermodynamics of small systems and are, in this
sense, complementary. In this context, it would be particularly
interesting to revisit some of the conclusions obtained with the
Gibbs-Shannon framework for ensemble properties.

The problem of pathwise stochastic thermodynamics
should be addressed as well. As mentioned in the Introduction,
the Gibbsian definition of pathwise entropy can lead to inap-
propriate results even in the macroscopic limit. It is moreover
incompatible with the thermodynamic theory of fluctuations
around equilibrium (see Ref. [18], chap. VII, for example),
since the Gibbsian entropy production is zero at equilibrium
even in the presence of fluctuations. The Einstein-Boltzmann

framework is built around the equilibrium thermodynamic
theory of fluctuations and is thus consistent with it from
the outset. It would be interesting to analyze the properties
of such a pathwise formulation of the Einstein-Boltzmann
approach for nonequilibrium states as well. We are currently
working on the properties of entropy production in the latter
case and, more specifically, on its connection with the action
functional introduced by Lebowitz and Spohn [23,24] and
thus on the possibility to establish fluctuation theorems in
this framework. Also in this context, the Einstein-Boltzmann
approach shares many features with the “extended local equi-
librium” stochastic thermodynamics developed among others
by Grégoire Nicolis and the present author [11–14], and which
is based on stochastic differential equations for thermody-
namic quantities. It would be instructive to assess whether the
extended local equilibrium formulation can be obtained as a
weak-noise limit of a pathwise Einstein-Boltzmann stochastic
thermodynamics.
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