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Dynamics of A + B → C reaction fronts under radial advection in three dimensions
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The dynamics of A + B → C reaction fronts is studied both analytically and numerically in three-dimensional
systems when A is injected radially into B at a constant flow rate. The front dynamics is characterized in terms
of the temporal evolution of the reaction front position, r f , of its width, w, of the maximum local production
rate, Rmax, and of the total amount of product generated by the reaction, nC . We show that r f , w, and Rmax

exhibit the same temporal scalings as observed in rectilinear and two-dimensional radial geometries both in the
early-time limit controlled by diffusion, and in the longer time reaction-diffusion-advection regime. However,
unlike the two-dimensional cases, the three-dimensional problem admits an asymptotic stationary solution for the
reactant concentration profiles where nC grows linearly in time. The timescales at which the transition between
the regimes arise, as well as the properties of each regime, are determined in terms of the injection flow rate and
reactant initial concentration ratio.
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I. INTRODUCTION

A sound understanding of the dynamics of reaction-
diffusion (RD) fronts is crucial for the description of many
phenomena. The seminal works by Kolmogorov et al. [1]
and Fisher [2] led the way to the study of RD fronts in
biology [3,4], chemistry [5,6], ecology [7,8], physics [9,10],
and nanotechnology [11], to cite a few.

An important subset of RD fronts is represented by A +
B → C fronts, which arise when two species A and B, initially
separated, are put into contact, diffuse, and react to produce
a third species C. Depending on the nature of A, B, and
C, this general system can describe a large set of problems
in, for example, geochemistry [12,13], catalysis [14], particle
physics [15], and finance [16]. A fundamental contribution to
the understanding of the dynamics of A + B → C RD fronts
was given by Gálfi and Rácz [17], who provided analytical
results for rectilinear fronts, in which the initial contact inter-
face between A and B is planar. By assuming equal diffusion
coefficients for the reactants, they showed that in the long-
time limit, or equivalently for fast reactions, the reaction front
position, x f , moves proportionally to t1/2, the maximum of
the production rate, Rmax, scales as t−2/3 while the width, w,
of the front grows like t1/6. These results were later confirmed
experimentally [18,19] and generalized for arbitrary diffusion
coefficients [20,21] and in the short-time regime [22–24].

In many natural and engineered systems, the reactant A is
injected at a given flow rate in a region initially occupied by
the reactant B. For rectilinear fronts, if the velocity field is
constant and orthogonal to the front, the results of Gálfi and
Rácz remain valid in the comoving frame. If the advection
field is not uniform, however, the dynamics of the A + B →
C reaction fronts is more complex. Such reaction-diffusion-
advection (RDA) fronts have been the subject of several
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studies with application to combustion [25] and groundwater
hydrology [26], among others.

Recently, the dynamics of RDA fronts in two dimensions in
the presence of radial injection of A into B has been analyzed
[27,28]. Such two-dimensional (2D) RDA models are rele-
vant, for example, in studies on infectious disease spreading
[29], precipitation patterns obtained under radial injection
conditions [30–33], and, more generally, material synthesis
in nonequilibrium conditions [34–36]. It was shown that, in
the long-time regime, the front position, r f , the maximum
production rate, Rmax, and the width, w, feature the same
long-time scalings as for the rectilinear front, while, unlike
the rectilinear case, varying the injection flow rate allows for
tuning the coefficients of these scalings and the total amount
of product C.

In many systems, however, a pointlike injection of a
species A into a bulk of B is performed in three dimensions and
a three-dimensional (3D) formulation is thus required, e.g., for
precipitation or dissolution reactions in CO2 sequestration and
remediation of water contamination. The RD front dynamics
has been studied in 3D spherical geometry in the case where
the reactant A is maintained in contact with B at a point
source with a given strength during a finite time [37,38]. The
existence of a stationary state has been shown in this case.
However, it is still unknown how advection and a continuous
injection of the reactant A affect the dynamics of A + B → C
fronts in such 3D geometry.

In this context, we study theoretically in three dimensions
the properties of radially symmetric A + B → C fronts sub-
jected to a passive injection of A into B at a constant flow
rate Q̄ where all species have equal diffusion coefficients.
We show that, unlike the two-dimensional case, three dis-
tinct temporal regimes exist in three dimensions, the last
one representing a stationary state. These three regimes are
characterized here in detail, and scalings for r f , Rmax, w and
for the total amount of product, nC , are obtained in each
case.
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The paper is structured as follows. In Sec. II we present
the dimensionless partial differential equations (PDEs) de-
scribing the RDA A + B → C front evolution, and we study
analytically and numerically the stationary regime. In Sec. III
we study analytically and numerically the preasymptotic re-
action front dynamics, by identifying and characterizing the
early-time and the transient temporal regimes. In Sec. IV
we compute analytically the temporal evolution of the total
amount of product generated by the reaction, nC , in each
regime and compare the scalings to the numerical evolution.
Finally, Sec. V summarizes the paper.

II. MODEL AND STATIONARY SOLUTION

We consider a 3D system filled by a reactant B with an
initial dimensional concentration b̄0 in which a reactant A
in concentration ā0 is injected radially from a point source
at a constant flow rate Q̄. Note that, throughout this article,
dimensional and dimensionless variables are denoted with
and without a bar, respectively. Upon contact between the
reactants A and B, the irreversible A + B → C reaction occurs,
where C is the product of the reaction. All species undergo
advective and diffusive motion. The dynamics of the system
is described by the following set of dimensional partial differ-
ential equations:

∂t̄ ā + (v̄ · ∇)ā = Da∇2ā − kāb̄, (1a)

∂t̄ b̄ + (v̄ · ∇)b̄ = Db∇2b̄ − kāb̄, (1b)

∂t̄ c̄ + (v̄ · ∇)c̄ = Dc∇2c̄ + kāb̄, (1c)

where t̄ is time, v̄ is the advective velocity, k the kinetic
constant, ā, b̄, and c̄ are the concentrations of A, B, and C,
and Da, Db, and Dc are their diffusion coefficients. In the
following, we will assume that the diffusion coefficient is the
same for all species, namely, D = Da = Db = Dc. The nondi-
mensionalization of the PDEs (1) is carried out by rescaling
time by τ = 1/kā0 and space by � = √

Dτ . All concentrations
are normalized by the initial concentration ā0 of the injected
reactant such that the initial dimensionless concentration of B
is given by

γ = b̄0/ā0. (2)

By assuming flow incompressibility, ∇ · v̄ = 0, radial sym-
metry, v̄ = (v̄r, 0, 0), and the flow rate definition, Q̄ = ∫

S v̄ ·
n dS where n = er is a unit vector along the radial coordinate,
r̄, of the spherical system of coordinates centered on the
injection point and S is the surface of a sphere of radius r̄,
the flow field is given by v̄r = Q̄/(4π r̄2). The dimensionless
equations describing the dynamics are then

∂t a + vr∂ra = (
∂2

r + 2r−1∂r
)
a − ab, (3a)

∂t b + vr∂rb = (
∂2

r + 2r−1∂r
)
b − ab, (3b)

∂t c + vr∂rc = (
∂2

r + 2r−1∂r
)
c + ab, (3c)

where t , r, vr , and Q are the dimensionless time, radial
coordinate, velocity field, and flow rate, respectively, with

vr = Q

r2
, where Q = τ

4π�3
Q̄ = Q̄

4πD3/2τ 1/2
. (4)

For a relatively fast reaction, such that τ = 10−3 s, a di-
mensionless flow rate Q = 100 corresponds thus to a flow
rate Q̄ � 10−6 ml/s for D = 10−9 m2/s. Similarly, a slower
reaction, such that τ = 103 s, leads to a flow rate Q̄ � 10−3

ml/s for the same values of Q and D. Note also that the PDEs
(3) are similar to those of the 2D radial case [27,28] except for
a factor 2 in the Laplacian operator and for the fact that vr ∼
r−2 in three dimensions whereas vr ∼ r−1 in two dimensions.

The coupled nonlinear PDEs (3) must be solved with the
initial condition a(r > 0, 0) = c(r, 0) = 0 and b(r > 0, 0) =
γ and the boundary conditions a(r → 0, t ) = 1, a(r →
∞, t ) = b(r → 0, t ) = c(r → 0, t ) = c(r → ∞, t ) = 0 and
b(r → ∞, t ) = γ . For numerical computations, the bound-
ary conditions are applied at r = r0 � 1 and r = rmax 	 1
chosen such that the results are insensitive to their values. In
general, the coupled PDEs (3) cannot be solved analytically.
However, an analytical solution can be obtained in the long-
time limit. By subtracting Eq. (3b) from Eq. (3a), we get the
following PDE for u = a − b:

∂t u +
(

Q

r2
− 2

r

)
∂ru − ∂2

r u = 0, (5)

with the boundary and initial conditions u(r → 0, t ) = 1
where b = 0 and a = 1, u(r → ∞, t ) = −γ where a = 0,
b = γ , and u(r, 0) = −γ for r > 0. The quantity u is thus
conservative in the sense that it is reaction-independent. The
solution of the PDE (5) at finite times must be found numeri-
cally. Nevertheless, it admits an analytical stationary solution
us satisfying the boundary conditions:

us(r) = 1 − (1 + γ ) exp (−Q/r). (6)

Here and in the following, the subscript s stands for sta-
tionary. The existence of a stationary solution means that,
unlike the previously studied 2D cases with advection, the
3D RDA spherical reaction front eventually stops beyond a
given distance. The location of this stationary sphere is the
radial coordinate rfs, obtained in the next section, at which
the incoming flux ja of A across the surface of the sphere
is exactly compensated by the incoming flux jb of B. For
equal diffusion coefficients, this condition reads

∫
S ( ja − jb) ·

dS = ∫
V [∇ · ( ja − jb)]dV = 0 where ji = −∇i + vi, with

i = a, b. For radially symmetric fields in spherical coordi-
nates such that ji = jier = (−∂r i + vr i)er , the divergence-
free condition reads ja − jb = α/r2, where α is a constant.
The solution of this equation, with the boundary conditions
for u = a − b mentioned above, is u = us, with us given by
Eq. (6). The divergence-free condition in rectilinear [17] or
2D radial [27] geometries cannot be satisfied by physical
concentration fields. Figure 1 shows how the solution u(r, t )
of Eq. (5) converges to the stationary solution (6) and gives the
corresponding as and bs concentration profiles in the asymp-
totic stationary regime. Some properties of the stationary
reaction front are derived in the next sections.

A. Reaction front position

The reaction front position, r f , is defined as the location
at which a = b or, equivalently, u = 0. As shown below, this
location coincides with the distance from the inlet at which the
production rate, R = ab, is maximum, i.e., where the reaction
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FIG. 1. (a) Numerical radial profile u(r, t ) for Q = 100, γ = 1 at different times and analytical stationary solution (6). (b) Numerical
stationary concentration profiles as and bs, production rate, Rs = asbs, and front width, ws, for Q = 100 and γ = 1. The evolution of
concentration profile of the product C is also shown. The vertical dashed line indicates rfs. Numerical solutions are considered stationary
for t > 103tTS, where tTS is defined as in Eq. (34).

is more intense, when r f 	 1; see also Ref. [17,27] and
Sec. II B. The stationary reaction front position, rfs, is obtained
by imposing us = 0 in Eq. (6) and reads

rfs = Q

ln(1 + γ )
, r̄fs = Q̄

4πD ln(1 + γ )
, (7)

where r̄fs is the dimensional stationary front position. Notice
that these results are valid only for Q, γ 
= 0. Equation (7)
shows that the limit radial distance from the injection source
that can be reached by the front increases linearly with the
injection flow rate Q and decreases logarithmically as the
ratio γ of initial reactant concentrations increases. This is
logical as the larger the injection flow rate Q, the further will
A be advected before its consumption by the reaction can
counterbalance the incoming reactant flux. In the same spirit,
the larger γ , the more reactant B is available to consume the
injected A and the smaller the radius of the stationary reaction
sphere.

B. Production rate

The production rate of the species C is given by

R(r, t ) = a(r, t ) b(r, t ). (8)

The maximum of the production rate, Rmax, and the local
value, R f , of the production rate evaluated at the front posi-
tion, r f , are given by

Rmax(t ) = max
0�r<∞

R(r, t ), R f (t ) = R(r f (t ), t ), (9)

In the following, we quantify the impact of Q and γ on the
stationary production rate Rs(r) and on its local values Rfs and
Rmax

s . To this end, we write Eq. (3a) in terms of the stationary
quantities as and us:

d2
r as +

(
2

r
− Q

r2

)
dras − as(as − us) = 0. (10)

Following Refs. [17,27], we expand the solution us(r) around
the stationary front position, rfs, by assuming that the station-
ary front width, ws, defined as the width of the production

rate distribution, is much smaller than the depletion zone of
as and bs defined as the region of size Wd where the reactant
concentrations vary significantly; see Fig. 1(b). Since this
zone grows diffusively [17,27], this hypothesis is equivalent
to the assumption that the width of the reaction front, w,
does not grow faster than t1/2 before reaching the stationary
state. This hypothesis, which is verified in Sec. III, implies
that, at times large enough, the reaction occurs in a region
near r = rfs which is small compared to the depletion zone.
Therefore, these concentrations can be replaced by their local
approximation near r = rfs. Since by definition of the front
position, us(rfs ) = 0, the expansion of us around rfs gives,
from Eq. (6):

us(r) = −Ks (r − rfs ) + O[(r − rfs )2], (11a)

Ks = ln2(1 + γ )/Q, (11b)

where Ks is simply the first derivative of us evaluated at r = rfs

given by Eq. (7).
Using Eq. (11), Eq. (10) becomes

d2
z G(z) +

[
2

z + rfs
− Q

(z + rfs )2

]
dzG(z) − G2(z)

− Ks z G(z) = 0, (12)

where z = r − rfs and as(r) = G(r − rfs ). For such a local
analysis, the boundary conditions must be adapted. On the
right side of the stationary reaction front (r > rfs), the con-
centration of A is vanishing and G(z) = 0 for z → ∞. On the
left side of the reaction front (r < rfs), the concentration of B
is vanishing and as = us. Therefore, G(z) = us(z) = −Ks z for
z → −rfs � −∞ where we assume that the flow rate is such
that Q 	 ln(1 + γ ), i.e., rfs 	 1. In this limit of large rfs, the
terms within the square brackets of Eq. (12) can be neglected.
In addition, introducing the change of variables

G = K2/3
s G̃ and z = K−1/3

s z̃, (13)

Eq. (12) reduces to

d2
z̃ G̃(z̃) = G̃2(z̃) + z̃G̃(z̃), (14)
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FIG. 2. Stationary maximum production rate, Rmax
s , and reaction

front width, ws, as a function of Ks obtained through numerical
computations for different values of Q ∈ [4, 103] and γ ∈ [1/40, 20].
The dashed and solid lines represent the scalings (17) and (20),
respectively.

with the boundary conditions G̃(z̃) = −z̃ for z̃ → −∞ and
G̃(z̃) = 0 for z̃ → ∞. This scaling function is thus the same
as in rectilinear and 2D radial geometries for t 	 1 [17,27].

Using Eqs. (11a) and (13) together with the definition of z
and G, the stationary production rate reads

Rs(r) = as(r)bs(r) = as(r)[as(r) − us(r)]

= G(z)[G(z) + Kz] = K4/3
s [G̃2(z̃) + z̃G̃(z̃)],

= K4/3
s G(z̃)G(−z̃) ≡ K4/3

s R̃s(z̃), (15)

where we have used the identity G(−z̃) = G̃(z̃) + z̃ [17].
Indeed, changing the sign of z̃ in Eq. (14) and in its boundary
conditions and substituting G(−z̃) by G̃(z̃) + z̃ leave Eq. (14)
and its boundary conditions unchanged. Consequently, pro-
vided rfs is large enough, the reaction rate R is symmetric with
respect to its maximum, which is located at r = rfs:

Rfs = Rmax
s . (16)

Figure 1(b) shows that R is indeed symmetric with respect to
its maximum and that the position of its maximum coincides
with rfs where as = bs. The maximum of the production rate
is then simply obtained by setting z̃ = 0 (r = rfs) in Eq. (15):

Rmax
s = G(0)2 K4/3

s = 0.298

[
ln2(1 + γ )

Q

]4/3

, (17)

where we have used the definition of Ks [see Eq. (11b)] and
the numerical value of G(0) [17].

Figure 2 shows the evolution of Rmax
s as a function of Ks

computed from numerical solutions of Eqs. (3) for several
values of Q and γ . A good agreement is found with the
scaling (17) provided we stay in the regime where this scaling
has been obtained, namely, rfs 	 1 or, equivalently, Q 	
ln(1 + γ ). Since γ � 20 in Fig. 2 and Ks = ln(1 + γ )/rfs, this
condition is equivalent to Ks � 1. The scaling (17) shows that
the maximum production rate of C in the stationary reaction
sphere, Rmax

s , can be increased by increasing the ratio of initial
concentrations γ or decreasing the flow rate Q at a fixed
concentration of reactants.

C. Reaction front width

The width of the reaction front, w, can be defined as
the variance of production rate, R. Hence, the width of the
stationary reaction front, ws, reads

w2
s =

∫ ∞
0 dr (r − rfs )2Rs(r)∫ ∞

0 dr Rs(r)
. (18)

Applying the change of variable (r − rfs ) = K−1/3
s z̃ and using

Eq. (15), this last relation becomes

w2
s = K−2/3

s

[∫ ∞
−K1/3

s rfs
dz̃ z̃2R̃s(z̃)∫ ∞

−K1/3
s rfs

dz̃ R̃s(z̃)

]
. (19)

To obtain the scaling (17), we have assumed that rfs 	 1
or, equivalently by using Eq. (7), that ln(1 + γ ) = εQ with
ε � 1. This implies that K1/3

s rfs = (Q/ε)1/3 is much larger
than 1 provided Q is of order 1 or larger. Notice that, if
γ is very small, i.e., B is initially much less concentrated
than A, one can have rfs 	 1 and K1/3

s rfs � 1 provided Q is
also very small. For example, using γ = 10−6 and Q = 10−4,
we get rfs = 102 and K1/3

s rfs = 10−2. Dismissing this later
possibility, namely assuming that Q 	 ln(1 + γ ) and Q2 	
ln(1 + γ ), the lower limit of integration in Eq. (19) can be re-
placed by −∞ since the function R̃s is sharply peaked around
z̃ = 0, i.e., r = rfs. Consequently, the factor within the square
brackets of Eq. (19) is a constant independent on Ks such that

ws � d K−1/3
s = d

[
Q

ln2(1 + γ )

]1/3

. (20)

The constant d � 2 can be computed numerically using its
definition given in Eq. (19) and the definition of R̃s given in
Eq. (15) once the function G is obtained by solving Eq. (14)
[17]. Equation (20) shows that the width of the stationary
front increases with Q, i.e., for stronger advection, and is
on the contrary narrower when γ increases, i.e., for stronger
reaction. Figure 2 shows the good agreement between the
width of the stationary reaction front, ws(Ks), computed from
numerical solutions of Eqs. (3) for different values of Q and
γ and the scaling (20) provided Ks � 1, which corresponds
to the regime for which the scaling (20) has been derived,
and d = 3.0. The different constant d simply comes from the
fact that ws is computed as the width at half-height from the
numerical solutions of Eqs. (3). The value of the constant is
then close to the one obtained for the 2D radial case where
the width was also computed in the same way [27].

The main results for the 3D stationary regime, as well as
their domain of validity, can be summarized as follow. The
stationary reaction front is characterized by its position rs,
Eq. (7), which has been obtained without any assumptions
on Q and γ , by its maximum value Rmax

s , Eq. (17), which is
valid provided Q 	 ln(1 + γ ) and by its width ws, Eq. (20),
which was derived by assuming that Q 	 ln(1 + γ ) and
Q2 	 ln(1 + γ ).

Finally, returning to the dimensional variables, we note that
the stationary front position, r̄fs, is governed by the flow rate,
Q̄, the diffusion coefficient, D, and the ratio of the initial
concentrations of the reactants, γ , but does not depend on
the kinetic constant k [see Eq. (7)]. In contrast, the stationary
maximum production rate, R̄max

s , is a function of all these
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FIG. 3. Temporal evolution of the front position. Solid lines refer
to numerical solutions of Eqs. (3) with Q = 10 and different values
of γ . Horizontal dashed lines are the stationary front positions, rfs,
given by Eq. (7). Vertical dashed lines show the transition times, t∗,
defined by Eq. (23). The inset shows a zoom in the evolution at small
time delimited by the dashed rectangle in the main graph.

parameters whereas the stationary width of the front, w̄s, is
fixed by Q̄, k, and γ but does not depend on the diffusion
coefficient.

D. Transition timescale

The time at which the stationary regime is reached can be
estimated from the temporal evolution of the front position,
r f (t ). Figure 3 shows that, before reaching its stationary
value given by Eq. (7), the front position evolves in time
according to an early-time behavior rfE approximated as (see
the Appendix)

rfE(t ) = rad
f (t ) +

√
12

7
erf−1

(
1 − γ

1 + γ

) √
t, (21)

where the function erf(x) is the error function [39, p. 159] and
rad

f is the leading term which describes the front movement by
advection only according to volume conservation. Neglecting
reaction and diffusion, the dimensional volume occupied by
the injected reactant is V̄ = Q̄t̄ = 4π r̄3

f /3. Therefore, using
(4), we obtain the following dimensionless relation:

rad
f (t ) = (3Qt )1/3. (22)

The second term of (21) is a small correction at short time
(as long as γ is not extremely large or small) and takes
into account the effects due to the reaction. We see that, as
in the 2D radial case [27], the front motion is purely due
to volume conservation when both reactants have the same
initial concentration, γ = 1. When γ < 1, i.e., when A is
initially more concentrated than B, the second term of Eq. (21)
is positive and the front position is then ahead of the position
expected from volume conservation, whereas it is a little bit
behind it when γ > 1 since the second term of Eq. (21) is
then negative. Note also that the early-time expression of rfE,
see Eq. (21), involves the sum of two distinct powers of t . This
explains why the temporal evolution of the front position for
different values of γ does not lead to parallel curves in the
log-log plot shown in Fig. 3.

In the 2D radial case, there is no stationary regime and r f ∼
(Qt )1/2 at all times; the reaction affects only the coefficient of
the power-law growth [27]. In the 3D case, the time, t∗, needed
for the temporal evolution of the front position to saturate to
its stationary position rfs can be estimated by equating Eq. (22)
to rfs given by Eq. (7):

t∗ = Q2

3 ln3(1 + γ )
, t̄∗ = Q̄2

3(4π )2D3 ln3(1 + γ )
. (23)

As an example, by taking γ = 1, D = 10−9 m2/s and Q̄ =
0.01 ml/min, which are typical values used in some laboratory
experiments [27,31], the transition time to enter the stationary
reaction sphere regime is t̄∗ � 2 days, and the radius of this
sphere would be r̄fs � 2 cm. In the case of supercritical CO2

injection in shallow underground aquifers, typical values of
the mass flow rate are of the order of 1 Mt/year [40], which
correspond to Q̄ � 10−2 m3/s. Hence, the transition time for
a 3D problem where CO2 would be consumed by a simple
bimolecular reaction is of the order of t̄∗ = 1013 years!

In the 2D radial case, the transition time between the early
and long-time regimes is controlled by the kinetic constant
and can be quite small for fast reactions [27]. This timescale
corresponds actually to the transition time tET between the
early-time and transient regimes in three dimensions, which
is also controlled by k; see Sec. III C. Studying the long-time
regime alone in two dimensions is thus relevant for many prac-
tical purposes. However, the timescale at which the stationary
regime in three dimensions is reached does not involve the
kinetic constant and is instead controlled by the flow rate, the
diffusion coefficient and γ , as seen in Eq. (23). Therefore, as
seen in the example above, t∗, as well as tTS, the transition
time between the transient and stationary states introduced in
Sec. III C, can be quite large, and the stationary regime could,
in practice, never be reached in many systems. Therefore, in
the next sections we analyze the early and transient regimes
existing before the stationary regime is established.

III. PREASYMPTOTIC DYNAMICS

In this section, we study the dynamics of the RDA fronts
before the stationary regime is reached, i.e., for t � t∗.
Figure 4 compares the space-time map of the production rate
R for the 2D polar and the 3D spherical systems. In both
cases, we observe that the production rate drifts away from
the inlet with a decreasing velocity due to volume conserva-
tion. In addition, diffusion acts by spreading the production
rate plume, so that its maximum decreases while its width
increases. In the long-time regime, the front position in three
dimensions converges to the stationary position rfs, while in
two dimensions, r f (t ) scales asymptotically as t1/2 [27]. The
origin of this different behavior is twofold. On one hand, the
radial flow velocity decreases faster in three dimensions (vr ∼
r−2) than in two dimensions (vr ∼ r−1). On the other hand, in
three dimensions the amount of reactant B that consumes the
reactant A is proportional to the spherical surface, i.e., to r2

f ,
while in two dimensions it is proportional to the perimeter
of the circular front, i.e., to r f . Hence, in three dimensions,
the radial expansion of A is slower and its consumption by
reaction is larger than in two dimensions.
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FIG. 4. Space-time maps of the evolution of the production rate R(r, t ) for the polar 2D (a) and the spherical 3D systems (b). The dashed
line is r f (t ).

In three dimensions, as shown in Fig. 3, the position of
the reaction front, r f , grows as t1/3 until it saturates in the
stationary regime. On the contrary, Fig. 5 shows that the
evolution of Rmax and w undergoes two distinct temporal
regimes characterized by different power laws before saturat-
ing. Namely, we observe (1) an early-time regime character-
ized by a constant Rmax and by a diffusive growth of the front
width (w ∼ t1/2) and (2) a transient regime characterized by
a decrease of Rmax proportional to t−2/3 and by an increase
of the front width proportional to t1/6. These regimes are
discussed in detail in the following sections.

A. The early-time regime

At early times, the amount of mixing of A and B is
small and the quantity of C produced is therefore also small.
In the Appendix we show that asymptotic solutions, which
approximate very well the numerical solutions at short time,
can be constructed by taking only diffusion and advection into
account. These nonreactive solutions read

a(r, t ) =
t�1

1

2

[
1 − erf

(√
7

12

(
r − rad

f

)
√

t

)]
, (24a)

b(r, t ) =
t�1

γ [1 − a(r, t )], (24b)

where rad
f is the front position in case of simple nonreac-

tive volume conservation in the presence of advection [see
Eq. (22)]. Note that, by definition, the front position is the
location where the concentrations of both reactants are equal.
Imposing a = b, Eqs. (24) leads to the expression (21) of rfE.

1. Production rate

The production rate at early times, denoted RE where the
subscript E stands for “early,” is given by

RE (r, t ) = a(r, t ) b(r, t ) = γ a(r, t )[1 − a(r, t )], (25)

where a and b are given by Eqs. (24). The value of its
maximum, Rmax

E , can be obtained without knowing the ex-
plicit form of a(r, t ) from ∂rRE (r, t )|r=rmax = 0, which im-
plies ∂ra(r, t )|r=rmax = 0 or a(rmax, t ) = 1/2. Since a has no
extremum for a finite value of r, the maximum production
rate, located where a(rmax, t ) = 1/2, is readily obtained by
substituting a = 1/2 in Eq. (25). This leads to

Rmax
E = γ /4. (26)

The maximum production rate is thus constant for t � 1 and
the larger γ , the larger Rmax

E which is logical as more B is
then available for the reaction for a fixed concentration of

FIG. 5. Temporal evolution of the maximum production rate (a) and of the reaction front width (b) obtained by solving numerically Eqs. (3)
with γ = 1/4. The power laws characterizing the early-time and transient regimes are shown. The vertical dashed-dotted lines indicate the
timescale, tET, at which the transition between the early-time and the transient regimes occurs; see Eq. (33). The vertical dashed lines indicate
the timescale, tTS, at which the transition between the transient and the stationary regimes occurs; see Eq. (34).
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FIG. 6. Early-time behavior of the maximum production rate (a) and the reaction front width (b). The horizontal dotted lines in panel
(a) represent the analytical early-time behavior (26).

A. Remarkably, this is the same behavior as for rectilinear
[23,24] and 2D radial [28] RD fronts. Actually, this result
should be quite general since it does not depend on the par-
ticular form of a. Indeed, at times short enough, the reaction
term is negligible, and the two equations for A and B decouple
and are identical. This implies that, if a is a solution of the
advection-diffusion equation with the boundary conditions
a(r → 0, t ) = 1 and a(r → ∞, t ) = 0, then b = γ (1 − a) is
also a solution with the correct boundary conditions, namely,
b(r → 0, t ) = 0 and b(r → ∞, t ) = γ . Therefore, Eq. (25)
should be valid at times short enough whatever the geometry,
which leads directly to Eq. (26). Figure 6(a) shows the good
agreement, up to a dimensionless time of order 1, between
the early-time scaling (26) and the early-time evolution of the
maximum production rate obtained from numerical solutions
of Eqs. (3).

Finally, we can compute the position of the maximum
production rate at early times. As shown above, it is solution
of the equation a(rmax, t ) = 1/2. Using the expression (24a)
for a, this equation becomes erf[

√
7(rmax − rad

f )/
√

12t] = 0,
the unique solution of which is

rmax(t ) = rad
f (t ). (27)

2. Reaction front width

The asymptotic expressions of a and b valid at short times
[see Eq. (24)] show clearly that their width scales as w ∼ t1/2.
It can be confirmed by computing the width as the variance of
production rate, R:

w2(t ) =
∫ ∞

0 dr [r − rmax(t )]2R(r, t )∫ ∞
0 dr R(r, t )

, (28)

where rmax = rad
f is the radial position of the maximum of

the production rate [see Eq. (27)]. By applying the change
of variable z = (r − rad

f )/
√

t in Eq. (28), and using Eq. (25)
of the production rate, the early-time reaction front width wE

reads

w2
E (t ) = t

∫ ∞
−rad

f /
√

t dz z2 a(z)[1 − a(z)]∫ ∞
−rad

f /
√

t dz a(z)[1 − a(z)]
, (29)

where 2a(z) = 1 − erf(
√

7/12 z) [see Eq. (24a)]. In the limit
t → 0, the lower limits of integration tend to −∞ since
rad

f ∼ t1/3 [see Eq. (22)]. The remaining integrals can then be
computed exactly, which leads to

wE (t ) = (5/7)1/2 t1/2 � 0.85 t1/2. (30)

The short-time behavior wE (t ) = 1.95 t1/2, obtained by solv-
ing numerically Eqs. (3) for several values of Q and γ , is
shown in Figs. 5(b) and 6(b) and confirms that the width of
the reaction front grows as t1/2, which is a simple consequence
of diffusion. The short-time analysis performed in this section
predicts also that wE is independent on γ and Q; see Fig. 6(b).
Notice however that, as mentioned in Sec. II C, the reaction
front width has been computed numerically as the width at
half the maximum of the production rate curve, rather than
from its variance. We show in the Appendix that a factor 1.95
instead of 0.85 is obtained for the short-time scaling of wE

when the width is computed as the width at half-height.

B. The transient regime

Figure 5 shows that a transient regime exists before the
system reaches a stationary state. In this regime, numerical
results suggest that the maximum production rate and the
width scale as

rfT(t ) = rad
f (t ) + cr (γ ) t1/2, (31a)

Rmax
T (t ) = G(0)2 K4/3

T t−2/3 ≡ cR(γ ) t−2/3, (31b)

wT (t ) = 2.89 K−1/3
T t1/6 ≡ cw(γ ) t1/6, (31c)

where G(0)2 is given in Eq. (17), cr ≈ √
12/7erf−1[(1 −

γ )/(1 + γ )] is the coefficient of the early-time second-order
term in Eq. (21), and the subscript T stands for “transient.”
Notice that a better fit of cr obtained through numerical
computations and shown in Fig. 7(a) would be obtained by
substituting γ → 5γ /4. Remarkably, the temporal evolutions
(31) are the same as those obtained in the long-time limit
for rectilinear and 2D radial geometries [17,27]. However, the
specific values of the factors depend on the geometry. When
Q is large enough, such that the transient regime exists [see
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FIG. 7. Evolution of the coefficients cr (a), cR (b), and cw (c) defined by Eqs. (31a), (31b), and (31c) as a function of γ . The following
values of Q were used. For the first numerical dataset (blue circles), Q = 5 for γ < 0.1, Q = 100 for γ ∈ [0.1, 1], Q = 200 for γ = 5, and
Q = 300 for γ = 10. For the second numerical dataset (red squares), Q = 10 for γ = 0.01, Q = 300 for γ = 0.05, Q = 200 for γ ∈ [0.1, 1],
Q = 300 for γ = 5, and Q = 400 for γ = 10.

Eq. (35)], the coefficient KT depends only on γ . This behavior
of KT is reminiscent of the one observed for the corresponding
coefficient K in the long-time limit of a 2D radial system,
which depends also only on γ when Q is large enough (see
Fig. 2 in Ref. [27]). The scaling laws (31b) and (31c) also
show that the factors involve the same function KT to the
power 4/3 and −1/3 for Rmax

T and wT , respectively. This is
exactly the same as for the long-time regime in rectilinear and
2D radial systems. The same structure is also obtained for the
stationary solutions Rmax

s and ws; see Eqs. (17) and (20).
Returning to the dimensional variables, we note that the

front position, r̄fT, is the sum of an advective term, r̄ad
f , and a

term evolving diffusively in time the sign of which is deter-
mined by the value of γ ; see Fig. 7. Therefore, the temporal
evolution of r̄fT is governed by the flow rate Q̄, the diffusion
coefficient, D, and the ratio of the initial concentrations of the
reactants, γ , but does not depend on the kinetic constant k.
In contrast, the temporal evolution of the width of the front,
w̄T , involves D, k, and γ but does not depend on the flow rate,
whereas the temporal evolution of the maximum production
rate, R̄max

T , depends only on k and γ and is thus governed
solely by the reaction.

We did not obtain the expression of KT analytically. In-
stead, we have fitted with power laws the numerical evolution
of Rmax

T and of wT as a function of time in the transient regime
to extract the expressions of cR and cw. As shown in Fig. 7, a
good agreement is obtained provided

KT (γ ) = 0.736 ln(1 + 5γ /2). (32)

Therefore, at a given time t , when γ increases the maximum
of the production rate logically increases, whereas the reaction
front has a smaller width.

Notice that, in the transient regime, the front position r f is
still essentially equal to rad

f (t ), up to a small correction scaling
as t1/2, which vanishes when γ = 1, as in the early-time
regime; see also Fig. 3. This behavior is also reminiscent of
the one observed for the rectilinear and 2D radial cases where
r f grows as t1/2 at all times. In the 3D case, the scaling of
r f is affected only when the system approaches the stationary
regime.

C. Transition timescales

The characteristic timescales at which the transient regime
starts and ends can be computed using the scalings of Rmax in
the various regimes. The timescale, tET, at which the transition
between the short-time and the transient regimes occurs can
be determined by equating the early-time expression (26) of
Rmax

E and its expression (31b) in the transient regime and using
Eq. (32):

tET(γ ) � 0.7
ln2(1 + 5γ /2)

γ 3/2
, t̄ET = tET

kā0
, (33)

where t̄ET is the dimensional transition time between the early-
time and the transient regime. The time at which this transition
occurs is thus independent on the flow rate as shown in Fig. 5.
The timescale tET is a nonmonotonic function of γ which
grows as γ 1/2 when γ � 1 and decreases as ln2(5γ /2)/γ 3/2

when γ 	 1. Therefore, it reaches a maximum value equal to
1.34 when γ � 1/3.

Analogously, the timescale, tTS, at which the transition
between the transient and the stationary regimes occurs can
be determined by equating the corresponding expressions of
Rmax, given by Eqs. (17) and (31b), and using Eq. (32):

tTS(Q, γ ) � Q2

2

ln2
(
1 + 5γ

2

)
ln4(1 + γ )

, t̄TS = tTS(Q̄, γ )

(4π )2D3
, (34)

where t̄TS is the dimensional transition time between the
transient and the stationary regime. The time at which this
transition occurs depends thus on the flow rate as shown in
Fig. 5. The quantity tTS/Q2 is a monotonically decreasing
function of γ which varies as γ −2 when γ � 1 and as
ln2(5γ /2)/ ln4(γ ) when γ 	 1. Therefore, tTS diverges when
γ → 0 since the stationary regime can be reached only if there
is a reaction to consume the injected species.

Notice that the transient regime is noticeable only when the
power-law behavior has enough time to develop. Numerical
evidence suggests that this condition is satisfied when the ratio
σ 2 = tTS/tET is such that σ > σmin � 47. By using Eqs. (33)
and (34), we obtain the following constraint on the injection
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flow rate for the existence of a transient regime:

Q > Qmin(γ ) � 1.2 σmin
ln2(1 + γ )

γ 3/4
. (35)

The quantity Qmin/σmin is a nonmonotonic function of
γ which grows as γ 5/4 when γ � 1 and decreases as
ln2(γ )/γ 3/4 when γ 	 1. It reaches its maximal value equal
to 1.23 when γ � 10.4. Consequently, a sufficient condition
for the existence of a transient regime for any γ is Q >

3σmin/2 � 70. If the condition (35) for the injection flow rate
Q is not verified, such that the transient regime is not ob-
served, the system evolves directly from the short-time regime
to the stationary regime. The timescale for this transition
can be estimated by t∗ defined by (23). The timescales tTS

and t∗ arise from two different definitions, which are based
on the scalings of Rmax and r f , respectively. Notice that for
both choices the transition time is proportional to Q2, but tTS

and t∗ differ in their dependence on γ . The discrepancy is
traced back to the fact that t∗ is defined using the early-time
purely advective front position rad

f . Hence, when the transient
time regime is fully developed, the adoption of tTS should be
preferred since it should be more accurate.

IV. TOTAL AMOUNT OF PRODUCT

We conclude our analysis by studying the temporal evolu-
tion of the total amount of product nC = ∫

dr c(r, t ) generated
by the reaction. Because of radial symmetry, it reduces to

nC (t ) = 4π

∫ ∞

0
dr r2c(r, t ). (36)

To compute the integral of the concentration profile of the
product C, we multiply Eq. (3c) by 4πr2 and integrate over
the radial coordinate. By recalling that the concentration c and
its gradient vanish at the domain boundaries, we find that the
terms related to the transport processes are equal to zero as
advection and diffusion do not produce any C. Therefore, we
simply obtain the following differential equation for nC :

dnC (t )

dt
= 4π

∫ ∞

0
dr r2R(r, t ). (37)

Numerical evidence, as well as the analytical asymptotic
solutions at early times [see Eq. (24)], show that R is a peaked
function around r = r f ; see also Fig. 1(b). Therefore, we write
the production rate as R(r, t ) = Rmax(t )φ([r − r f (t )]/w(t )),
where φ(z) is peaked around z = 0 such that φ(0) = 1 and
φ′(0) = 0 where the prime is a derivative with respect to the
argument. By substituting this expression into Eq. (37) and
performing the change of variable z = (r − r f )/w, we obtain

dnC (t )

dt
= 4πRmaxw

∫ ∞

− r f
w

dz(r f + zw)2φ(z). (38)

From the scalings presented in the previous sections, we
have r f /w 	 1 in all regimes. Indeed, at early times, we
have r f /w ∼ t−1/6 	 1 if t � 1. In the transient regime,
we have r f /w ∼ t1/6 	 1 if t 	 1, i.e., if the transient
regime extends up to relatively large times. This happens if
tTS 	 1 [see Eq. (34)]. This last condition certainly holds
since it is less restrictive than the condition Q 	 ln(1 + γ ),

which was already assumed in Sec. II B. Finally, in the
stationary regime, r f /w ∼ [Q2/ ln(1 + γ )]1/3 	 1 if Q2 	
ln(1 + γ ) as already assumed in Sec. II C. Therefore, we can
replace the lower limit of integration in Eq. (38) by −∞ since
the function φ(z) vanishes quickly when |z| > 0 and get

dnC (t )

dt
= 4πRmaxw

[
μ0 r2

f + 2μ1 w r f + μ2 w2
]
, (39)

where μn = ∫ ∞
−∞ dz znφ(z).

For each temporal regime described in the previous sec-
tions, we substitute the temporal scalings of r f , Rmax, and
w into Eq. (39) to obtain the temporal evolution of the total
amount of product nC after performing the remaining time
integration.

Early-time regime. We substitute the early-time relations
(22), (26), and (30) into Eq. (39). By taking the leading order
for t � 1, and by performing the time integration, we find that
the early-time amount of product nCE scales as

nCE(t ) = 6.0μ0 γ Q2/3 t13/6. (40)

Alternatively, we can compute nCE by using the early-time
expression (25) of the production rate in Eq. (37) such that the
scaling does no longer contain an undetermined factor. Using
again the change of variable z = (r − rad

f )/
√

t , we obtain the
following expression at the leading order for t � 1:

nCE(t ) = ξ γ Q2/3 t13/6, (41)

where ξ = (72/13) 31/6√2π/7 � 6.3. We see that the total
amount of product increases relatively fast at short times
with a power slightly larger than 2. At a given time, it is
proportional to the concentration ratio and grows as the flow
rate increases.

Transient regime. We use now the transient regime relations
(22), (31), and (32) into Eq. (39), and we obtain in the leading
order for t 	 1

nCT(t ) = 14.2μ0 ln (1 + 5γ /2) Q2/3 t7/6. (42)

The total amount of product increases thus in time with a
power slightly larger than 1. At a given time, it still depends on
the concentration ratio, but now logarithmically, and grows as
the flow rate increases with the same power as at early times.

Stationary regime. Finally, for the stationary regime, we
substitute Eqs. (7), (17), and (20) into Eq. (39) and use the
condition Q2 	 ln(1 + γ ) to obtain, after time integration,
the following relation:

nCs(t ) = 11.2μ0 Q t . (43)

Although the reaction front is stationary, the amount of
product increases asymptotically linearly with time as a result
of the continuous injection of the reactant A. As soon as the
injected reactant reaches the steady front position, rfs, it is
immediately consumed by the reaction with B, so that the front
does not move. The product C is then transported by advection
and diffusion according to Eq. (3c). Notice that here the
temporal evolution (43) of the total amount of product differs
from the scaling nC ∼ t1/2 observed for RD fronts in rectilin-
ear geometry [17]. In contrast, nC grows linearly in time as for
the 2D radial RDA case [27]. Unlike the 2D radial case, how-
ever, the asymptotic behavior does not depend on γ , but only
on the flow rate Q through a linear relationship, in contrast
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FIG. 8. Temporal evolution of nC computed using Eq. (37) and R
obtained by solving numerically Eqs. (3) with Q = 5 and γ = 1/20.
The scalings (41) valid at early times, (42) for the transient regime,
and (43) for the stationary regime are also shown.

with the Q1/2 dependence of the 2D case. The dimensional
form of Eq. (43) reads n̄cs = 0.9μ0 ā0V̄ which implies that,
in the stationary regime, the number of moles of the product
C produced by the reaction is proportional to the number of
moles of the injected reactant A whatever the concentration
of B.

These various scalings describe well the temporal evolu-
tion of nC obtained through numerical computations in their
respective regime, as shown in Fig. 8 for Q = 5 and γ =
1/20, provided μ0 � 0.5 in the transient regime and μ0 � 0.1
in the stationary regime. Note that the scaling function φ, and
thus μ0, is not necessarily the same in each regime. Note also
that the scaling (41) is shown in Fig. 8 for the early-time
regime and there is thus no fitting parameter in this case.

V. CONCLUSIONS

The characteristics of A + B → C fronts have been com-
puted in three dimensions when the reactant A is injected
radially into B at a constant flow rate. We have shown the
existence of three regimes characterized by different scalings
for the temporal evolution of the front position, the maximum
of the production rate and its width, and of the total amount
of product generated. The 3D radial situation differs from the
2D rectilinear and radial cases by the existence of a stationary
regime in the long times. We have characterized the stationary
front solution in terms of analytical expressions for the front
position rfs, Eq. (7), the maximum production rate Rmax

s ,
Eq. (17), the front width ws, Eq. (20), and the total amount
of product nCs, Eq. (43). Like in the two-dimensional radial
case, the production rate can be tuned in three dimensions
by varying the flow rate Q, as showed by the scaling form
(17) derived analytically, Rmax

s ∼ Q−4/3, and confirmed by
numerical computations. We find that increasing the flow rate
Q and/or decreasing the ratio γ of initial concentrations of the
reactants increases both the radius rfs and the width ws, and
decreases the maximum production rate Rmax

s in the stationary
reaction sphere. The total amount of product, nCs, increases
linearly in time in the stationary regime and, at a given time,
increases linearly with Q.

FIG. 9. Summary of the temporal scalings of r f , w, and Rmax for
Q = 100 and γ = 1.

Before the convergence towards that stationary state, two
distinct temporal regimes can be identified from the analysis
of the RDA front dynamics: (1) an early-time regime, when
the dynamics is dominated by advection and diffusion, and
(2) a transient regime, when the dynamics is ruled by the
interplay between advection, diffusion, and reaction. The
temporal scalings that characterize the RDA front dynamics
in the various regimes are summarized in Fig. 9.

At early times, the front position, rfE, grows essentially as
rfE ∼ t1/3 [Eqs. (21) and (22)]. This regime is characterized by
a constant value of the maximum production rate Rmax

E = γ /4
[Eq. (26)], which is fully determined by the ratio γ of the
initial concentrations of the reactants, while the front width
increases as wE ∼ t1/2 [Eq. (30)]. The total amount of product
grows as nCE ∼ t13/6 and, at a given time, varies linearly with
γ and increases as Q2/3.

The transient regime is only observed in three dimensions
when the system has enough time to pass from the early-
time to the stationary regime, i.e., only for Q large enough
or γ small enough. Here the dynamics is still characterized
by rfT ∼ t1/3 while Rmax

T ∼ t−2/3 and wT ∼ t1/6 like in the
asymptotic long-time limit of the rectilinear [17] and 2D radial
case [27]. In this regime, the total amount of product grows
as nCT ∼ t7/6 and, at a given time, varies logarithmically
with γ and increases as Q2/3. Table I summarizes the results
presented in this paper, which are compared with the known
results for RD fronts in rectilinear geometry and for RDA
fronts in 2D radial geometry.

Unlike its two-dimensional analog, the dynamics of A +
B → C fronts in three dimensions with radial injection admits
a stationary solution that has been characterized analytically.
The existence of a stationary regime means that the reaction
front expands up to a maximum radial distance rfs, at which
the incoming flux of A across the surface of the sphere of
radius rfs is exactly compensated by the incoming flux of B.
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TABLE I. Comparison between the temporal scalings of r f , Rmax, w, and nC in different time regimes derived in this work and those, up to
constant factors, obtained for a RD rectilinear front and a RDA radial 2D front when both reactants A and B have the same diffusion coefficient,
Da = Db. The number in brackets give the reference to the articles where those scalings have been derived, whereas those in parentheses refer
to the related equations of the present article. The scalings for the 2D radial case are those valid at large flow rates (Q 	 1), whereas those
in the 3D case are valid if Q 	 ln(1 + γ ) and Q2 	 ln(1 + γ ). The notations introduced in Ref. [41] are used for the coefficients of the
long-time scalings in the rectilinear and radial 2D cases. In rectilinear geometry, if advection at constant velocity is considered, those results
are still valid in a frame moving at that speed. In the radial 2D case, the total amount of product at early times can be obtained by integrating
the production rate over space, similarly to the computation performed in Sec. IV but in cylindrical coordinate, such that, at large flow rate,
we obtain dt nC ∼ Rmax ω r f ∼ γ Q1/2 t . Notice that, depending on the parameters, the long-time regime may not appear in the spherical RDA
front case.

RD rectilinear 2D radial 3D spherical

r f Early-time const → t3/2 [22–24] (Qt )1/2 [28] (Qt )1/3 (22)
Long-time α(γ ) t1/2 [17] (Qt )1/2 [27,41] (Qt )1/3 (31a)
Stationary No No Q/ ln(1 + γ ) (7)

Rmax Early-time γ /4 [22,24] γ /4 [28] γ /4 (26)
Long-time Klin(γ )4/3 t−2/3 [17] Klin(γ )4/3 t−2/3 [27,41] KT (γ )4/3 t−2/3 (31b)
Stationary No No Ks(Q, γ )4/3 (17)

w Early-time t1/2 [22,24] t1/2 [28] t1/2 (30)
Long-time Klin(γ )−1/3 t1/6 [17] Klin(γ )−1/3 t1/6 [27,41] KT (γ )−1/3 t1/6 (31c)
Stationary No No Ks(Q, γ )−1/3 (20)

nC Early-time γ t3/2 [22] γ Q1/2 t2 γ Q2/3 t13/6 (40)
Long-time σ (γ ) t1/2 [17] j(γ ) Q1/2 t [27,41] ln(1 + 5γ

2 ) Q2/3 t7/6 (42)
Stationary No No Qt (43)

These results shed new light on the dynamics of A + B → C
RDA fronts, which can open new investigation branches and
be applied in several research fields, according to the nature
of A, B and C, which is here left unspecified for sake of
generality.
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APPENDIX: EARLY-TIME REGIME

At early times, the amount of mixing of A and B is small
and the amount of C produced is also necessarily small. The
dynamics is mainly driven by diffusion and also advection
since, in this regime, the front moves according to volume
conservation. Consequently, we assume that a(r, t ) = a([r −
rad

f (t )]/tα ) and b(r, t ) = b([r − rad
f (t )]/tα ), where α � 0 is

an arbitrary exponent to be determined and rad
f (t ) = (3Qt )1/3

[see Eq. (22)]. Clearly these forms take into account advection
and it is expected that α = 1/2 due to diffusion. By substitut-
ing these ansatz into Eqs. (3), we obtain

d2a

dz2
+

[
αzt2α−1 + 2tα

rad
f + ztα

+ Qtα(
rad

f

)2 − Qtα(
rad

f + ztα
)2

]
da

dz

−t2α ab = 0, (A1)

where z = (r − rad
f )/tα . We write here only the equation for

a because the one for b is similar. We now consider the
scaling limit t → 0 and z fixed, similarly to the long-time
analysis where t → ∞ and z fixed [17,27]. In this limit, if
α < 1/2, the first term inside the square brackets in Eq. (A1)
diverges and leads to a nonphysical solution since dza cannot

vanish everywhere. If α � 1/2, the terms between the square
brackets in Eq. (A1) simplify when t → 0 since rad

f ∼ t1/3

such that rad
f 	 ztα . Expanding the second and fourth terms

between the square brackets to the leading order, we obtain

d2a

dz2
+

[(
2

3
+ α

)
zt2α−1 + 2tα−1/3

(3Q)1/3

]
da

dz
− t2α ab = 0.

(A2)

If α > 1/2, the limit t → 0 leads again to a nonphysical
solution since d2

z a cannot vanish everywhere. Therefore, we
conclude that α = 1/2 as expected, and Eq. (A2) becomes in
the scaling limit

d2a

dz2
+ 7z

6

da

dz
= 0, a(−∞) = 1, a(∞) = 0, (A3)

where

z = [
r − rad

f (t )
]
/
√

t, rad
f (t ) = (3Qt )1/3. (A4)

The boundary conditions of Eq. (A3) are obtained from
a(r = 0, t ) = 1 and a(r → ∞, t ) = 0, see Sec. II. Indeed,
from Eq. (A4), we have z → −∞ when r = 0 and t → 0,
and z → ∞ when r → ∞. Using the derivation performed
above, one easily finds that the equation for b is the same as
Eq. (A3) with, however, different boundary conditions since
b(r = 0, t ) = 0 and b(r → ∞, t ) = γ :

d2b

dz2
+ 7z

6

db

dz
= 0, b(−∞) = 0, b(∞) = γ . (A5)

Before solving the equations for a and b, we first analyze
the consequences of this derivation for the maximum of the
production rate and its position.
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FIG. 10. Early-time concentration profiles a and b for two values
of γ and Q = 100 at t = 10−4. The solid and dashed lines represent
the asymptotic solutions (A8), and the symbols represent the solu-
tions obtained by solving numerically Eqs. (3).

1. Production rate

Equations (A3) and (A5) are identical such that if a(r, t ) is
a solution with the boundary conditions a(r = 0, t ) = 1 and
a(r → ∞, t ) = 0, then

b(r, t ) = γ [1 − a(r, t )] (A6)

is also a solution with the correct boundary conditions, b(r →
0, t ) = 0 and b(r → ∞, t ) = γ . Hence, the early-time pro-
duction rate RE = ab reads

RE (r, t ) = γ a(r, t )[1 − a(r, t )], (A7)

whose maximum, obtained from ∂rRE (r, t ) = 0, is located at
rmax(t ), which is the solution of a(rmax, t ) = 1/2 since a has
no extremum at finite value of r. Substituting this value of a
into Eq. (A7) leads to Eq. (26). Note that this expression of
Rmax

E has been obtained without using the explicit expression
of a. Therefore, this relation holds at early times in other
geometries as can be seen by inspection of Table I. To obtain
the radial position of this maximum, we need to use the
expression (A3) of a to solve the equation a(rmax, t ) = 1/2.
This immediately leads to Eq. (27).

2. Asymptotic solutions for the concentrations

The asymptotic expression of a and b valid at early times
are obtained by solving Eqs. (A3) and (A5). Since those
equations are first-order differential equation of the derivatives
of the concentration profiles, they are readily solved:

a(z) = 1

2

[
1 − erf

(√
7

12
z

)]
, (A8a)

b(z) = γ [1 − a(z)], (A8b)

where z is given by Eq. (A4). Figure 10 shows the concen-
tration profiles of A and B in the early-time regime obtained
by solving numerically Eqs. (3), which are well approximated
by Eq. (A8). Note that, as γ changes from 1 to 1/4 such

that b is modified, the numerical computation shows that a
is essentially unchanged confirming that both concentration
profiles are uncoupled at early times.

3. Corrections to the front position

Using the asymptotic solutions (A8), we compute the
early-time correction to the advective front motion. By defi-
nition, the front position r f is the location where a = b. By
using Eqs. (A8) together with a = b, we get

a(z) = 1

2

[
1 − erf

(√
7

12
z

)]
= γ

1 + γ
. (A9)

This equation is easily solved for z, and, using Eq. (A4), we
obtain the early-time evolution of r f (t ) given by Eq. (21). This
means that, at early times, the position of the front, r f , does
not coincide precisely with the position rmax of the maximum
of production rate located at rad

f , in contrast to the result
obtained at longer times where r f = rmax [Eq. (16)]. There-
fore, in the early-time regime, the production rate evaluated
at the front position, R f , differs in general from the maximum
production rate Rmax

E computed in Sec. III A [see Eq. (26)]. For
completeness, we can derive the early-time expression of R f .
As discussed above, at r = r f we find a = b = γ /(1 + γ ).
Hence, the early-time production rate at the front is

RfE = ab = γ 2/(1 + γ )2. (A10)

Comparing Eqs. (A10) and (26), we conclude that, in the
early-time regime, the maximum of the production rate is
located at the position r f where a = b only when the initial
concentrations of A and B are equal, i.e., for γ = 1.

4. Reaction front width

We calculate wE (t ) as the width at half-height of RE (r, t )
given by Eq. (A7). By using Eq. (A7) together with Eqs. (A8),
and by imposing RE (z) = Rmax

E /2 = γ /8, we get the two
solutions:

z± = ± 2

√
3

7
erf−1(

√
2/2). (A11)

Using the expression (A4) of z, we obtain the two solutions
for the radial distances:

r± = rad
f ± 2

√
3

7
erf−1

(√
2

2

) √
t . (A12)

Hence, the early-time reaction front width, wE = r+ − r−,
reads

wE (t ) = 4

√
3

7
erf−1

(√
2

2

)√
t � 1.95

√
t . (A13)
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