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We present a new mechanism through which chemical oscillations and waves can be induced in batch
conditions with a simple Aþ B → C reaction in the absence of any nonlinear chemical feedback or external
trigger. Two reactants A and B, initially separated in space, react upon diffusive contact and the product
actively fuels in situ convective Marangoni flows by locally increasing the surface tension at the mixing
interface. These flows combine in turn with the reaction-diffusion dynamics, inducing damped
spatiotemporal oscillations of the chemical concentrations and the velocity field. By means of numerical
simulations, we single out the detailed mechanism and minimal conditions for the onset of this periodic
behavior. We show how the antagonistic coupling with buoyancy convection, due to concurrent chemically
induced density changes, can control the oscillation properties, sustaining or suppressing this phenomenon
depending on the relative strength of buoyancy- and surface-tension-driven forces. The oscillatory
instability is characterized in the relevant parametric space spanned by the reactor height, the Marangoni
(Mai) and the Rayleigh (Rai) numbers of the ith chemical species, the latter ruling the surface tension and
buoyancy contributions to convection, respectively.
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The design and control of self-organized functional
behaviors represent challenging targets in complexity.
While many approaches rely on external stimuli to drive
the dynamics of responsive systems [1,2], chemical
reactions provide an internal pathway to promote emer-
gent behaviors by changing in situ the chemophysical
properties of a reactive medium. In particular, oscillating
reactions are among the most interesting model systems
where self-sustained patterns can be chemically controlled
[3,4]. Chemical oscillations are currently explored within
bottom-up frameworks for understanding biological
functionalities as complex as morphogenesis, cellular
communication, synchronization, and quorum sensing
phenomena [5–7]. Chemical oscillators are also studied
for building chemical artificial intelligence [8,9] and
controlling hydrogen production [10], exploited in the
realm of materials science for designing mechanically
responsive materials [11], self-propelled motion [12], or
smart drug delivery strategies [13].
Over the last three decades, the innermost mechanisms

for spontaneous chemical oscillations and waves have been
elucidated from a chemical perspective, showing the need
of nonlinear chemical steps activated on appropriate rela-
tive timescales [14]. The whole landscape of reactions that
meet the necessary constraints is, however, a very restricted
family.
In this context, we present a chemophysical mechanism

through which spontaneous chemical spatiotemporal
oscillations can emerge in batch conditions with a simple

Aþ B → C reaction, in the absence of any kinetic feed-
back. To this aim, we use the classical system where two
reactants A and B are initially separated in space and start
to react upon diffusive contact (see Fig. 1), following a
bimolecular kinetics [15]. The interplay between the
chemical kinetics and diffusion creates a reaction front,
i.e., a localized region with nonzero production rate, whose
reaction-diffusion (RD) structural and dynamical properties
have been extensively analyzed [15,16]. The onset of
chemically driven convection [17], due to local changes in
the properties of the medium (e.g., density, surface tension,
viscosity), can feedback on such RD structures and provide a
new variety of reaction-diffusion-convection (RDC) dynam-
ics [18–20]. Their control is at the heart of several applied
problems as diverse as extraction [21], CO2 sequestration
techniques [22,23], crystal growth [24], atmospheric chem-
istry [25], and contaminant remediation [26].
Most previous works on reactive flows triggered by an

active RDC coupling focused either on the impact of
chemical reactions on the symmetry and evolution of
classical hydrodynamic instabilities [27], or, vice versa,
on unraveling the influence of convective flows on bifur-
cations that occur in already complex chemical systems
[28–31]. For example, self-propagating autocatalytic fronts
can be periodically deformed by antagonistic solutal
and thermal density [32,33] or surface-driven flows [34]
in the presence of differential diffusion, by the competition
between buoyancy and Marangoni forces [35] or due to
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high surface-tension-driven stresses [36,37]. In the former
cases, the autocatalytic nature of the chemical kinetics
is crucial to restore, on a proper timescale, a fairly flat
interface after deformation and the periodic dynamics is
sensitive to the direction of front propagation. In the latter,
the wavy structure propagating with the front is a direct
consequence of mechanical stresses acting at the quasihor-
izontal interface between the reacted and nonreacted fluids
and relies on very specific chemical reactions.
Differently from previous approaches, we aim at exploit-

ing chemically induced convective feedbacks to design
chemohydrodynamic oscillations with the general class of
Aþ B → C reactions. The reactive process is nonoscilla-
tory and the related product fuels in situ convective motion
by inducing a local increase of the surface tension. This
flow is not oscillatory either but its combination with the
reactive source and diffusion leads to pulsatile emergent
behaviors. By including antagonistic buoyancy forces
arising from concurrent density changes, we can further
sustain and regulate these oscillatory dynamics.
Model.—We consider a two-dimensional isothermal

reactor of length Lx and height Lz in a (x, z) reference
frame, where the z axis is oriented vertically against the
gravitational acceleration g ¼ ð0;−gÞ. The initial spatial

distribution of the chemical species concentrations A, B,
C is

ðA;B;CÞ ¼ ðA0; 0; 0Þ for x < x0 ¼ Lx=2 ∀ z:

ðA;B;CÞ ¼ ð0; B0; 0Þ for x > x0 ∀ z:

ðA;B;CÞ ¼ ðA0; B0; 0Þ for x ¼ x0 ∀ z:

For simplicity, we choose A0 ¼ B0 and consider the same
surface tension, γR, and density, ρR, for the reactant
solutions. Chemical species are also taken with the same
diffusivity to ensure a symmetrical development of the
reactive zone [15,16,38,39]. The formation of the product
C occurs upon diffusive mixing of the two reactants A and
B across the initial contact line localized at x0. C starts
diffusing horizontally toward the lateral borders and, in the
reactive zone, the medium surface tension locally changes
to γP (γP > γR) and the density to ρP (ρP ≤ ρR) [see
Fig. 1(a)], which induces convective transport.
The resulting nonlinear dynamics is governed by a set of

partial differential RDC equations (1) and (2) coupled to the
incompressible Navier-Stokes equations (3) and (4) via the
state equations for the density ρ ¼ ρ0ð1þ ð1=ρ0Þ

P
I I∂IρÞ

and the surface tension γ ¼ γ0ð1þ ð1=γ0Þ
P

I I∂IγÞ, where
I ¼ A, B, C are the dimensional concentrations of the
chemical species, ð1=ρ0Þ∂Iρ and ð1=γ0Þ∂Iγ are the density
and surface tension solutal coefficient of the Ith species, ρ0
and γ0 are the solvent density and surface tension, respec-
tively. The dimensionless form of this RDC system, derived
in the Boussinesq approximation and written in the ω–ψ
form [i.e., using the definitions that relate the velocity field
v ¼ ðu; vÞ to the vorticity ω ¼ ∇ × v and to the stream
function, ψ , u ¼ ∂zψ and v ¼ −∂xψ], reads [19,35]

∂taþ ð∂zψ∂xa − ∂xψ∂zaÞ ¼ ∇2a − ab; ð1Þ

∂tbþ ð∂zψ∂xb − ∂xψ∂zbÞ ¼ ∇2b − ab; ð2Þ

∂tωþ ð∂zψ∂xω − ∂xψ∂zωÞ ¼ Sc½∇2ω − ΔRð∂xaþ ∂xbÞ�
ð3Þ

∂2
xxψ þ ∂2

zzψ ¼ −ω: ð4Þ

Taking into account the conservation of the chemical
concentrations: aþbþ2c¼1∀x;z;t, valid when A0 ¼ B0

and the species diffuse at same rate, we can directly
reconstruct the dimensionless concentration field of the
product, cðx; z; tÞ. The equation system is casted in
dimensionless form by using the RD scales for time,
t0 ¼ 1=ðka0Þ, length, L0 ¼

ffiffiffiffiffiffiffiffi
Dt0

p
, and concentration, A0

(k is the kinetic rate constant andD the species diffusivity).
The Schmidt number Sc ¼ μ=Dρ0 ¼ 1000 (μ is the
dynamic viscosity). ΔR ¼ R − Rc=2, with R ¼ Ra ¼ Rb

because the reactant solutions have the same density. Ri ¼
∂IρA0L3

0g=ðDμÞ is the solutal Rayleigh number of the ith

FIG. 1. (a) Sketch of the Aþ B → C configuration used to
generate chemohydrodynamic oscillations. The two reactants A
and B have the same density ρR and surface tension γR while the
formation of C in the reactive zone can decrease locally the
density ρP ≤ ρR and increases the surface tension γP > γR.
Typical initial topology of the chemically induced velocity field
(b) in the presence of pure Marangoni flows and (c) when both
buoyancy and surface tension forces are antagonistically at play.
The black square in panel (c) indicates the stagnation point, Sp.
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species and the dimensionless density ρ̃ ¼ ðρ − ρ0Þ=ρ0 ¼
ΔRðaþ bÞ þ Rc=2, with ρ0 ¼ μ=ðt0L0gÞ. Equations (1)–
(4) are solved [40] by using no-flux boundary conditions
for the chemical concentrations at the four boundaries of
the reactor and no-slip conditions for the velocity field at
the three solid boundaries.
To include the shear force at the free surface, we impose

at z ¼ Lz the Marangoni boundary condition ω ¼
−ΔMð∂xaþ ∂xbÞ, where ΔM ¼ M −Mc=2, with M ¼
Ma ¼ Mb as the reactant solutions are considered with
the same surface tension. The solutal Marangoni number
for the ith species writes Mi ¼ −1=ðμ ffiffiffiffiffiffiffi

kD
p Þ∂Iγ and the

dimensionless surface tension γ̃ ¼ ðγ − γ0Þ=γ0 ¼
−ΔMðas þ bsÞ −Mc=2 (where γ0 ¼ μL0=t0, and as and
bs are the surface concentrations of a and b, respectively).
Rc and Mc modify ρ̃ and γ̃, respectively, by a constant,
while ΔR and ΔM represent the relevant parameters for
controlling the onset of oscillations as they tune the relative
importance of solutal buoyancy and surface tension con-
tributions to convective flows. Positive ΔR and ΔM mean
that the density decreases while the surface tension
increases during the reaction.
Chemo-Marangoni-driven oscillations.—We first dis-

cuss the minimal case where a chemohydrodynamic oscil-
latory instability can be obtained with an Aþ B → C
reaction, which is in the presence of pure Marangoni-
induced convection (ΔR ¼ 0). Figure 2(a) shows the
nucleation and development of symmetric waves from
the center of the reactor, where C is first formed, toward
the lateral borders. Oscillations occur beyond a critical
threshold ΔMcrit ∼ 100 (slightly changing with Lz).
The complex mechanism of wave formation can be

followed in Figs. 2(a) and 2(c) (see also the Supplemental
Material [41]): the formation of C locally increases the
surface tension at the reaction front, inducing convergent
Marangoni flows at the surface and hence a vertical
downflow that advects the product toward the rigid bottom
boundary. This causes the deformation of its concentration
field into two symmetrical fronts (see arrows in snapshots
at t ¼ 50). The return flow amplifies the extent of these
fronts, advects the reactants from one side to the other,
feeding a nonlocal reaction zone and sweeping c toward the
top of the reactor. This breaks the two initial convective rolls
and weakens the vertical convective forcing around x0. c can
thus relax from the reactor bottom upward as a reaction-
diffusion front (see arrows in snapshots at t ¼ 100). The
lateral dissipation of the symmetric waves favors the rebuilt
of the vertical downflow at x0 that opposes to this RD
relaxation and restores initial conditions for a novel oscil-
latory cycle (indicated by arrows in snapshots for t ¼ 150).
However, in the absence of a feedback mechanism to
recreate the acute gradient in surface concentrations, the
sharp surface tension gradient sustaining the downflow
at x0 progressively smoothens, dampening oscillations out
because of the reactant consumption and species diffusion.

The spatiotemporal deployment of these chemo-Marangoni-
driven oscillations is illustrated in the space-time plot of
Fig. 2(b), where a horizontal concentration profile of c is
reported as a function of time. Similarly, the correspondent
oscillatory hydrodynamic field is shown in Figs. 2(c)
and 2(d), by mapping the evolution of ψ . ψ minima (in
blue) and maxima (in red) describe clockwise and counter-
clockwise convective rolls, respectively.
To characterize this oscillatory dynamics, we plot the

temporal dynamics of c and ψ at a fixed representative
point of the reactor. The resulting time series are analyzed
to extrapolate the oscillation period, T. The position of ψ
minima on the left side (maxima on the right side) and their
relative distance are also used to define the spatial char-
acteristic wavelength, λ. T and λ are compared for different
values of the control parameters, Lz and ΔM. Though the
threshold for spatiotemporal oscillations is critically sensi-
tive on ΔM, both T and λ do not vary significantly with this
parameter, as we can see in Fig. 2(f) where the periods for
different ΔM collapse to similar values at fixed Lz. On the
other hand, increasing ΔM increases the oscillation ampli-
tude (not shown here).

FIG. 2. Chemo-Marangoni-driven oscillations in an Aþ B →
C system (ΔM ¼ 199.5, Lz ¼ 20). (a),(c) Snapshots of the
spatiotemporal evolution of the chemical (c) and hydrodynamic
(ψ) fields, respectively, during two typical oscillatory cycles. The
arrows at times 50–100–150 indicate in (a) the flow-driven
compression relaxation compression of c and in (c) the corre-
sponding hydrodynamic morphology. (b),(d) Space-time plots
(Lx ¼ 256 × t ¼ 350) of the dynamics, built along the white line
traced in the first snapshot of panels (a) and (c). c ranges between
0 (blue areas) and 0.5 (red areas), while ψ varies between −15
(blue areas) and 15 (red areas). T and λ indicate the characteristic
oscillation period and spatial length, respectively. (e) Time series
of c (black, left axis) and ψ (gray, right axis) taken at (x0 − 20,
Lz=2). f) Power–law dependence of the oscillation period, T, and
the spatial length, λ, on Lz for different ΔM.
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By contrast, the extent of the convective rolls presents a
direct correlation with Lz (λ ∼ Lz) that also controls T
[Fig. 2(f)]. In particular, the period at which waves are
emitted from the center grows by increasingLz according to
T ∼ L2

z and waves formation is suppressed below a critical
height Lc ∼ 10, which slightly shifts to higher values when
ΔM decreases. This dependence of the instability threshold
on Lz can be inferred from phenomenological arguments.
Since waves result from the transverse competition between
the Marangoni-driven return flow and the vertical RD
relaxation that levels out the local concentration gradients
at the surface, theMarangoni timescale τMa compatiblewith
the oscillation characteristic length λ has to be smaller than
the reaction-diffusion timescale τRD needed to cover a
distance OðLzÞ. According to the typical form describing
the vertical profile of the horizontal velocity of a Marangoni
return flow [36,42], we can assume the characteristic
Marangoni velocity to scale as uMa∼ΔMð∂xasþ∂xbsÞLz

[where as and bs are considered for x → ðx0Þ�] and
τMa ∼ λ=juMaj. As λ ∼ Lz [Fig. 2(f)] and τRD ∼ L2

z , we find
that Lz > Lc ∼ ½jΔMð∂xas þ ∂xbsÞj�−1=2. The layer thick-
ness Lz is thus a determinant parameter that modulates the
balance between the reaction-diffusion and the convective
timescales. Below Lc the vertical RD process overcomes
Marangoni-driven dynamics and kills or even prevents
oscillations.
Finally, the spatial width of the system, Lx, affects the

oscillatory transient, as oscillations die out sharply when
the product front touches the lateral borders. However, the
main oscillation properties (T and λ) do not depend on this
parameter.
Chemo-Marangoni-buoyancy-driven oscillations.—We

next discuss the system dynamics when buoyancy forces
are concurrently at play. In particular, we consider the case
where the formation ofC, by decreasing the local density of
the medium, generates an antagonistic vertical upflow
opposing the Marangoni-induced flow. The main effect
of this buoyancy contribution is to reduce the vertical extent
of the domain pertaining Marangoni-related flows [see
Fig. 1(c)]. The extent of the competitive buoyancy con-
vective rolls at the reactor bottom depends on the density
difference between the reactants and the product, as
controlled by ΔR. An illustration of spatiotemporal oscil-
lations in this system is given in Figs. 3(a) and 3(b). The
phenomenology is similar to the one described in the pure
Marangoni case: surface-tension-triggered downflow is
immediately operational upon formation of the product
and pushes c toward the bottom. Here, buoyancy forces
combine to RD processes to bounce back the local accumu-
lation of the less dense product and, thus, amplify the
oscillatory mechanism (see the Supplemental Material
[41]). As a consequence, the ψ time series reported in
Fig. 3(c) shows an initial growth of the oscillation amplitude.
This is different from the pure chemo-Marangoni-driven
instability where oscillations dampen out monotonically.

Chemo-Marangoni-buoyancy-driven oscillations occur
when surface tension forces dominate over buoyancy forces
(i.e., for ΔR ∈ ½0; 4.75� with ΔM ≥ 149.5). As such, the
spatial extent of the Marangoni-related convective rolls
[given by Lz − Sp, where Sp is the inversion point of the
vertical velocity along the z axis at x0; see Fig. 1(c)] grows in
time, first monotonically, and then undergoes a periodic
evolutionwhen oscillatory dynamics start. This behavior can
be appreciated in the inset of Fig. 3(c), whereSp is traced as a
function of time. Note that the onset of oscillations occurs
only when Lz − Sp > Lc (red dashed line), i.e., beyond the
critical threshold Lc where the oscillatory instability is also
expected in the pure Marangoni case. Conversely, if buoy-
ancy contribution prevails overMarangoni flows (i.e.,ΔR >
4.75 and ΔM ∈ ½0; 249.5�), the extent of buoyancy-driven
convective rolls grows upward and thevertical residual space
to initiate the oscillatory mechanism via surface tension
effects falls below Lc, when oscillations cannot start or be
maintained [black curves shown in Fig. 3(c)]. Suitable
conditions for oscillations span thus the parameter region
ΔR ∈ ½0; 4.75�, ΔM ∈ ½149.5; 249.5� for Lz ∼ 20.
Consistently with the trend observed in the pure

Marangoni-driven scenario, Fig. 3(d) indicates that the
characteristic oscillation period decreases by increasing
ΔR, as this parameter reduces the spatial domain where the
Marangoni-driven convection is effective, like it happens
when Lz is decreased in the absence of buoyancy-driven
convection. Again, increasing ΔM has a negligible impact
on the oscillation period, but it can enhance the oscillation

FIG. 3. Chemo-Marangoni-buoyancy-driven oscillations (ΔM ¼
199.5, ΔR ¼ 1.75, Lz ¼ 20). (a) Snapshots of the spatiotemporal
evolution of c during two typical oscillatory cycles. (b) Space-time
plot (Lx ¼ 256 × t ¼ 600) of the dynamics, built along the white
line traced in the first snapshot of panel (a). c ranges between 0 (blue
areas) and 0.5 (red areas). (c) Time series of ψ , taken at (x0 − 20,
Lz=2), for an oscillatory case (gray curve, ΔM ¼ 199.5,
ΔR ¼ 1.75, Lz ¼ 20). The inset of panel (c) shows the evolution
of the stagnation point, Sp, for a typical oscillatory (gray) and a
nonoscillatory (black) dynamics (Lc indicates the critical reactor
height for the onset of oscillations in the correspondingMarangoni-
driven case). (d) Power–law dependence of the oscillation period
on ΔR for various ΔM ∈ ð149.5; 249.5Þ.
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amplitude by causing a larger vertical displacement of C
and a corresponding buoyancy-driven response.
To summarize, we have shown that a simple chemo-

hydrodynamic mechanism can sustain spatiotemporal
chemical oscillations in an Aþ B → C reaction. This
process works in batch conditions, without any external
feed or chemical nonlinearity, expanding thereby the realm
of chemical oscillations to ubiquitous bimolecular reactions.
The trigger for the onset of this oscillatory instability is the
hydrodynamic feedback promoted in situ by the chemical
reaction, that increases the surface tension across the
reactive zone, thus promoting a Marangoni convergent flow
at the surface and, by continuity, a quasihorizontal return
flow into the bulk. The competition between this flow and
transversely oriented RD relaxation, that alternately domi-
nate the dynamics, is at the basis of chemo-Marangoni-
driven oscillations. Since the reaction-diffusion feedback
is weak, oscillations dampen out quickly when only
Marangoni convection is at play. The presence of antago-
nistic buoyancy-driven forces strengthens the upward
counterbalance to Marangoni downflow, and the oscillatory
mechanism can be either further enhanced leading to
chemo-Marangoni-buoyancy-driven oscillations or sup-
pressed, depending on the relative strength of the two
contributions to the flow. Since we considered closed
reactors, the periodic phenomena presented here are intrinsi-
cally transient but oscillations can be stabilized in open
conditions with a constant lateral feeding of fresh reactants
(see the Supplemental Material [41]). Differently from
classical cases where Marangoni stresses can promote
oscillatory instability thanks to an externally imposed
constant spatial gradient of temperature [42], the periodic
phenomenon here is induced in situ by a reactive source. The
coupling between the chemical reaction and hydrodynamics
is thus the essential ingredient for this emergent behavior.
The mechanism discussed above presents a broad

interest because the chemical scheme used can be tailored
to any second-order process and its simplicity paves the
way for an experimental implementation of such a class of
oscillators (periodic dynamics were found in self-propelled
aspirin boats powered by dissolution-driven Marangoni
flows [43]), as well as for devising smart dynamics in
reactive flows with applied relevance.
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