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Filiform corrosion as a pressure-driven
delamination process

Fabian Brau, *a Stephanie Thouvenel-Romans,b Oliver Steinbock, b

Silvana S. S. Cardoso c and Julyan H. E. Cartwright de

Filiform corrosion produces long and narrow trails on various coated metals through the detachment of

the coating layer from the substrate. In this work, we present a combined experimental and theoretical

analysis of this process with the aim to describe quantitatively the shape of the cross-section,

perpendicular to the direction of propagation, of the filaments produced. For this purpose, we introduce

a delamination model of filiform corrosion dynamics and show its compatibility with experimental data

where the coating thickness has been varied systematically.

1 Introduction

Filiform corrosion is a peculiar type of surface corrosion of a
variety of metals in which the surface corrodes through fila-
ments spreading across it. This type of atmospheric corrosion
was first investigated by Sharman in 19441 and has been
extensively reviewed since then.2–4 It occurs on technologically
relevant metals that have been protected by an organic coating
such as iron and aluminium and their alloys but also on less
common substrates, for example magnesium2,5 or uranium.6

The filaments consist of a head acting as an active corrosion
cell filled with a liquid solution which propagates over the
surface, and a tail filled with dry and inert corrosion products
behind the head.2 After some initial breakage of the protective
layer, filiform corrosion sends filaments burrowing under the
coating across the metal surface. The depth of the attack is
shallow, generally some 5–15 mm7 but the trails of corrosion
products can grow to tens of centimetres in length.

The precise mechanism by which filiform corrosion propa-
gates on organic coated metals is still under debate. Various
possible processes have been proposed as the primary cause for
the propagation, including anodic undermining,2,8,9 cathodic
delamination10–12 and mechanical delamination through

(electro)osmotic forces.2,13 The evolution of the various pro-
posed ideas can be found elsewhere.4 Various factors influence
the initiation and propagation. Filiform corrosion is most virulent
at or slightly above normal room temperature (20–40 1C) and for a
relative humidity between 65–95% for steel and 70–95% for
aluminium.3,5,10,14 Coating defects,4 the presence of intermetallic
particles,15,16 oxygen partial pressure2,17 and the water perme-
ability of the coating7,13,18 are other additional factors influencing
the filament motion. At a large scale, when the length L of the trail
is much longer than its width W, the filaments have an interesting
dynamics that we have studied in a previous work.19

Whatever the precise mechanism of propagation, the filiform
corrosion process induces a delamination of the coating layer
from the substrate. Delamination is a general process whereby
a thin layer of material separates from a substrate to form a
blister.20,21 Usually delamination processes involve films with
residual compressive stresses,22,23 which are partially relaxed
through disbonding, or require the system to be under com-
pression.24,25 The latter case is generally preferred for experi-
mental analysis because the displacement imposed to compress
the system can be well controlled. Such systems require a com-
pliant substrate (liquid or solid) coated with a thin rigid layer. For
strong adhesion between the film and substrate, wrinkles and
folds are produced upon compression.26–31 For lower adhesion,
the system may either delaminate23,25,32 or form wrinkles prior to
delamination.33–35 Such a system has been well studied because
of its links with buckling, fracture and dislocations21,36 and has
potential applications to modify surface properties or to create
deformable forms of rigid materials in stretchable and flexible
electronics.37–41

Delamination theory offers a framework to compute the
out-of-plane deflection of the delamination zone. To our knowl-
edge, this theory has never been used to describe quanti-
tatively the shape of the cross-section, perpendicular to the
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propagation direction, of filiform corrosion filaments, even if
some qualitative observations about this shape can be found in
the literature.42 Here, we propose a formalism to compute the
filiform corrosion profile, which takes into account the signifi-
cant internal pressure P developing inside the filaments and
causing the coating detachment. After estimating the pressure
inside the filament, we show that it is sufficient to detach the
coating layer characterized by a Young modulus E and an
adhesion energy per unit area with the substrate g. The profiles
of the blisters formed through delamination are in good agreement
with the experimental data where the coating thickness has been
varied systematically. This variation of thickness t induces a change
in the profile height, H, and width, W, and has a clear signature
through the scalings H C (P/Et)1/3W 4/3 and H C (g/Et)1/4W which
are well captured by the model.

The paper is organized as follows. In Section 2.1, the experi-
mental methods used to produce the filiform corrosion and
analyse their out-of-plane profile are briefly described. Qualita-
tive observations about the corrosion pattern and experimental
measurements of the filiform height profiles are presented in
Section 2.2. The physical model developed to described these
height profiles is introduced in Section 3 together with an
estimation of the pressure inside them. This model predicts
the maximum height H and the width W of the profile, as a
function of the system parameters E, t, g and P, that compares
well with theoretical data, as shown in Section 4. A summary of
our results and some conclusions are presented in Section 5.

2 Experimental analysis
2.1 Experimental methods

For our corrosion experiments, we utilize low carbon steel
plates (C1018, McMaster-Carr) measuring 10.2 � 5.1 cm2 with
a thickness of 3 mm. The alloy contains 0.15–0.20% carbon,
0.6–0.9% manganese, o0.040% phosphorus, and o0.050%
sulfur. Prior to coating, the samples are sandblasted to remove
contaminants, such as grease from handling the metal, and to
minimize grooves on the surface. The surface roughness of the
uncoated steel plates was measured for 3 � 3 mm2 areas and
yielded Sq = 2.06 mm (root mean square height) and Sa = 1.59 mm
(arithmetic mean height). These values are at length scales
smaller than the typical length scales of the filliform corrosion
height and width. The surface is then rinsed with deionized
water and acetone. Onto the resulting dry and dust-free surface,
we place small droplets (7 mL) of sodium chloride solution (8.6 mM)
that allow us to predetermine nucleation zones of the filiform
growths. The drops of salt solution are allowed to air dry for 2 h
prior to coating. The corrosion experiments are performed on
samples covered by an acrylic coating. This coating is applied to
the steel plates by spraying with Crystal Clear 1301 (Krylon), an
organic lacquer of commercial grade with a formulation of 20%
acryloid B-66 in toluene and ethyl methacrylate resin. The
thickness of the dry film is varied by increasing the number
of applied layers. Each layer has a thickness of 5 � 0.5 mm. A
drying period of ten minutes is observed between applications.

The resulting samples are set to cure under ambient, dust-free
conditions for 12 h. The Young modulus, E, the Poisson ratio, n,
of the coating and the adhesion energy per unit area between
the coating and the substrate, g, are in the range43–46

E = (3.0 � 0.3) GPa, n = 0.35 � 0.05, g = (380 � 90) J m�2.
(1)

We set the corrosion process to occur at a slightly elevated
temperature (38 1C) and a high relative humidity. To establish the
latter condition, the coated samples are kept in individual sealed
containers. Each container also holds 30 mL of nitric acid solution
(1.0 M), which is not in direct contact with the metal plates. This
acidic solution provides a corrosive environment and sets, as verified
by hygrometer measurements, the relative humidity to a constant
value of 80%. The samples remain under these conditions for 40 to
70 days, which is sufficient to form numerous corrosion trails with
individual lengths of several centimetres. Once the samples are
returned to ambient conditions, these corrosion patterns do
not further change their macroscopic appearance.

For the characterization of the corrosion patterns, we take
photographs of the samples with a monochrome video camera
(COHU 2100 RS-170). For the measurements of the surface height
variations, we use a profilometer (P15, KLA-Tencor). Its conical
stylus has a radius of 0.25 mm and a cone angle of 901. The applied
force is the equivalent of 1 mg. The profilometer is also used to
measure the thickness of the dried acrylic coatings. For these
measurements, a large section of the coating is removed to yield a
sharp surface step. The uncertainty of these thickness measure-
ments results both from variations between different samples
and, to a lesser extent, from local variations in a given sample.

2.2 Qualitative observations and experimental data

Fig. 1 shows four representative examples of corrosion patterns that
formed on coated steel plates in our experiments. The corrosion
trails are brownish filaments that have widths of up to 250 mm.

Fig. 1 Filiform corrosion patterns formed on coated low carbon steel
under high relative humidity. Temperature: 38 1C. Field of view in all frames:
15.8 � 11.8 mm2. The red arrows highlight zones of interest described in
the text.
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This figure also shows the nearly uniformly corroded regions
(e.g., lower left corner of Fig. 1(a), see red arrow) that are caused
by deliberate exposure to single salt droplets prior to coating.
Most, but not all, filiforms emerge from these regions and extend
in a nearly ballistic fashion with some erratic directional changes.19

Very thin filaments, however, tend to describe meandering trajec-
tories as best seen in the lower right quadrant of Fig. 1(a), see red
arrow. As described elsewhere in more detail, the motion of the
corrosion cells on steel is a fully self-avoiding walk as the active cells
cannot cross pre-existing corrosion filaments.2,19 On the contrary,
they reflect off these filaments as shown in the nearly specular
reflection event in the lower right portion of Fig. 1(b), see red arrow.
Furthermore, the cells’ avoidance of corroded regions can provoke
self-trapping and hence self-termination. For example, the filiform
tip near the upper right corner of Fig. 1(c) (red arrow) would have
self-terminated within its own corrosion trail if the experiment had
been continued. Fig. 1(c) also shows the interaction of a filiform
with the edge of the steel plate which guides the corrosion process
around the plate’s rounded corner. Lastly, Fig. 1(d) shows a thin
filiform near the frame’s lower edge (see red arrow), which did not
nucleate at the strongly corroded salt region but spontaneously at
distance of about 1 cm.

Filiform corrosion is known to induce delamination. This
delamination, possibly in conjunction with other processes
such as the formation of rust particles and osmosis, induces
local height variations in the surface of the coating; see Fig. 2(a)
and (b). We may characterize these changes by profilometric
measurements along lines oriented perpendicular to and across
the filament tracks. Two representative examples are shown in

Fig. 3(a) and correspond to samples with film thicknesses of
4.5 mm and 35 mm. The profiles are bell-shaped curves that we
analyse in terms of their height, H, over the unperturbed surface
and their full width at half height, WH/2, see Fig. 3(b). The latter
values are measured by fitting parabolae to the individual scanned
profiles. The samples used for these measurements were exposed
to the growth conditions for 42 days. The typical widths obtained by
this method vary between 50 and 160 mm and the corresponding
heights between 10–35 mm for coating thicknesses varying between
10 and 50 mm. The filiform widths measured by optical microscopy
are very similar to the base widths of the filament profiles.

3 Theoretical analysis

In this section, we develop a formalism to compute the height
profiles shown in Fig. 3(a) and to derive relationships between
H, W and the system parameters E, t, g and P describing the
experimental data reported in Fig. 3(b). The results presented
here generalize those obtained with compressive stress without
internal pressure or obtained for a pressurized bulge in non-
adhesive films.21,25 The comparison between the theoretical
model and the data is performed in Section 4. Before proceeding,
we first estimate the pressure inside the filiform based on fluid
mechanical scaling arguments as a necessary step to predict
quantitatively the height profiles of the filiforms.

3.1 Pressure estimation

As noted by van der Berg et al.,47 the intermediate corrosion pro-
duct is likely to be FeCl2 when the initiating electrolyte is NaCl,
as used in the experiments reported here. They calculate the

Fig. 2 (a) Schematics of an elementary delaminated state of a coating
with a thickness t. The maximum height, H, of the filiform profile and its
width W are also indicated. (b) Cross section of the system showing the
height profile h(x). (c) Sketch of the water flow pattern inside the filiform
head. Water flows from the outside environment across the coating layer
and towards the rear region of the head, driven by the osmotic pressure.
This water subsequently flows forward near the substrate boundary, causing
detachment of the coating and growth of the filiform at speed ut C uz.

Fig. 3 Surface deformation caused by filiforms. (a) Two typical height
profiles, h(x), across the traces of filiform tracks obtained with coating
thicknesses t of 4.5 mm and 35 mm (1 and 7 layers). (b) Maximal height, H, of
the tracks as a function of their full width at half height, WH/2, for various
coating thicknesses (2, 4, 6, 8 and 10 layers).
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osmotic pressure for a saturated solution of FeCl2 to be P0 B 7.3�
107 Pa (722 atm) at a concentration of 5 M and at 41% relative
humidity. At 80% relative humidity, they estimate the osmotic
pressure to be P0 B 4.3� 107 Pa (422 atm). There is no discussion
in that work as to why the pressure inside the filiform head
should be close to the osmotic pressure. Here, we analyse the fluid
mechanics of the flow inside the filiform head to estimate its
pressure.

A sketch of the water flow pattern in the head of a filiform is
illustrated in Fig. 2(c). Most plastic coatings are far more
permeable to liquid water than to oxygen.48 We expect diffu-
sion of oxygen through the porous filiform tail2 and osmotic
advection of water through the coating of the head to be the
dominant transport mechanisms. Water flows from the outside
environment across the coating layer and towards the rear
region of the head, driven by the osmotic pressure; this water
subsequently flows forward near the substrate boundary. Assuming
the head as a porous medium saturated with an aqueous solu-
tion, the fluid speed into the head of the filiform, uin, and
across the head along the z-axis, uz, are obtained from Darcy’s

law ~u ¼ �ðk=mÞ~rP
� �

by estimating the order of magnitude of

the pressure gradients:

uin B kt(P0 + Pa � P)/(mH), (2a)

uz B kDzP/(mLh), (2b)

where DzP is the pressure difference along the z-axis (between
the tip and the rear of the head), Pa is the external atmospheric
pressure, m is the viscosity of the ionic aqueous solution in the
head, and kt = (H + t)/(H/k + t/kc) is the overall permeability of
the coating and head material where kc and k are respectively
the permeability of the coating and of the material within the
head. The volume of water flowing into the head per unit time
is given by Qin ¼

Ð
uindS where Sh ¼

Ð
dS is the area of the head

in contact with the outside environment. Assuming that the
pressure inside the head is essentially constant, i.e. uin constant,
we have Qin = uinSh = uin[cLhW + O(LhW(H/W)2, LhW(H/Lh)2)] where
c is a constant of order 1, W is the filiform width along the
x-direction and where the higher order terms are corrections due
to the small slope2 between the head surface and the horizontal
plane (x,z), H/Lh B 0.1, and the small deformation of the head,
H/W t 0.2 (Fig. 3(b)). Therefore, the area of the head is given
by the area of its projection on the (x,z) plane up to higher
order corrections. Furthermore, assuming that the head moves
steadily at speed ut, the increase of volume of the head per unit
time is utHW where HW is the cross-section of the rear of
the head. Therefore, conservation of volume requires that
uinWLh B uzWH, where we have used uz C ut (i.e., considering
the head as a plug that grows as fluid is added through osmosis).
This constraint together with eqn (2) leads to the following
relationship between the pressures:

P0 � P� Pa þ
k

kt

H

Lh

� �2

DzP ¼ P� Pa þ
uzmLh

kt

H

Lh

� �2

: (3)

Measurements of the head geometry2 show that typically the
head length is much larger than the detachment height, with
values Lh B 10H B 2.5 � 10�4 m. The relation between uin and
uz, obtained above from volume conservation, shows that
the horizontal speed is therefore much larger than the inflow
speed uz c uin. Measured tip speeds are in the range uz C ut B
1.16–116 � 10�10 m s�1 (0.01–1 mm per day).2 Consequently,
for a relatively permeable head with k \ 10�15 m2 and using
m = 10�3 Pa s, we find from eqn (2b) that DzP t 3 Pa. The
coating permeability is sufficiently low to allow osmotic effects;
for kc B 10�18 m2, osmotic effects owing to size restriction of
the motion of chloride and ferrous ions are already expected.49

These effects can be further enhanced by the interaction of the
ion charges with those on the surface of the pores in the
coating.50,51 We may then conclude that, even for such a low
coating permeability, the last term in eqn (3) is at maximum
only about 20 Pa, and hence negligible compared to the osmotic
pressure P0 B 107 Pa. Therefore, for normal atmospheric
pressures Pa B 105 Pa, the pressure inside the head is of the
same order as the osmotic pressure

P B P0 B (4.3–7.3) � 107 Pa. (4)

We note that only a minute amount of chloride ions is neces-
sary to develop the osmotic pressure for filiform corrosion. For
example, for a saturated solution of FeCl2 of 5 M, taking W B
10H, Lh = 10H and H = 25 mm, we estimate V B 100H3 = 1.5 �
10�12 m3, so that only about 1.5� 10�8 mol of Cl� ions are present
in the head. These ions flow forward as the filiform grows.

This large head pressure is responsible for driving the
filament growth forward, detaching the coating from the sub-
strate. For lower coating permeability, larger fluid viscosity and
higher tip speed, e.g. associated with a higher permeability of
the material within the head, the pressure inside the head could
actually be significantly smaller than the osmotic pressure. In
the next section this prediction of the pressure from the fluid
mechanics within the filiform head will be compared with the
estimate from energy arguments associated with the delamina-
tion of the coating.

3.2 Delamination model

As discussed in Section 3.1, the pressure exerted by the fluid in
the filiform head is quite large and could be responsible for the
delamination of the coating. This process can only happen if
the pressure is large enough to bend and stretch the coating
film and to overcome the adhesion energy between the film and
the substrate. To study this possible mechanism and compute
the resulting shape of the delaminated film, we write an action
for the system for an arbitrary profile h(x) and a fixed arbitrary
width W assuming the profile remains unchanged along the
z-axis; see Fig. 2(b). The minimization of this action provides an
equation for h(x) whose solution gives the optimal shape of the
filiform cross-section for a given width. The minimization of
the total energy with respect to W gives the final optimal shape
which will be compared to experimental data in Section 4.

In our context, the total energy of a delaminated state is
composed of the bending and stretching energies of the film,
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UB and US, the adhesion energy between the film and the
substrate, UA, and the pressure work. The bending energy of a
thin film of length L in the z-direction and bent along the x-axis
over a region of length W, see Fig. 2(b), is given by

UB ¼
LB

2

ðW
0

kðxÞ2dx ¼ LB

2

ðW
0

h00ðxÞ
‘ðxÞ3

� �2
dx; (5a)

‘(x) = [1 + h0(x)2]1/2, (5b)

where k(x) and B = Et3/(12(1 � n2)) are, respectively, the local
curvature and the bending modulus of the film with E, the
Young’s modulus, t the film thickness and n Poisson’s ratio.52

We use the notation h0(x) = dh(x)/dx and h00(x) = d2h(x)/dx2. The
stretching energy of the film is given by

US ¼
LY

2

ðW
0

eðxÞ2dx ¼ LY

2

ðW
0

‘ðxÞ � 1½ �2dx; (6)

where e(x) and Y = Et are, respectively, the local strain and the
stretching modulus of the film. The adhesion energy corresponds
to the energy needed to create new surfaces when separating the
film and the substrate:

UA ¼
Lg
2

ðW
0

1þ ‘ðxÞ½ �dx; (7)

where g is the energy per unit area required to detach the film
from the substrate and where the integral, multiplied by L,
represents the total area of the new surface created. For a small
deformation at fixed W, i.e. h0(x) { 1, the adhesion energy is,
up to a constant, formally similar to a tension energy with g being
the tension, UA ’ ðLg=4Þ

ÐW
0 h0ðxÞ2dx.

The action characterizing this system is thus given by

S ¼ L

ðW
0

B

2

h00ðxÞ
‘ðxÞ3

� �2
þY
2
‘ðxÞ � 1½ �2þg

2
1þ ‘ðxÞ½ � � PhðxÞ

( )
dx;

¼ L

ðW
0

Lðh; h0; h00Þdx; (8)

where the last term is the work of the pressure and L can be
viewed as the Lagrangian of the system.30,31,53 In contrast to
standard mechanics, the Lagrangian (8) contains higher-order
derivatives of the coordinate h, namely h00. The equation for h(x)
is thus obtained from the Euler–Lagrange equation adapted to
higher-order Lagrangians54,55

@L

@h
� d

dx

@L

@h0
þ d2

dx2
@L

@h00
¼ 0: (9)

Before deriving the equation for h(x), we note, from the data
reported in Fig. 3(b), that h0(x) C H/W { 1 (WH/2 C W/2).
A weakly non-linear analysis is thus sufficient for our purpose.
Therefore, we develop L up to O(h4):

L ¼ B

2
h00ðxÞ2 þ Y

8
h0ðxÞ4 þ g

2
2þ h0ðxÞ2

2
� h0ðxÞ4

8

� �
� PhðxÞ;

(10)

where we have neglected a term (3B/2)h0(x)2h00(x)2 C Et3H4/(8W6)
which is much smaller than (Y/8)h0(x)4 C EtH4/(8W 4) because

W c t; see Fig. 3(b). Using eqn (9) together with eqn (10), we
obtain the following equation for h(x):

Bh0000ðxÞ � g
2
h00ðxÞ � 3

2
Yh0ðxÞ2h00ðxÞ � P ¼ 0; (11)

where h0000(x) = d4h(x)/dx4 and where we have set Y � g/2 C Y
since, according to eqn (1) and the thicknesses considered here,
Y = Et \ 1.2 � 104 N m�1 and g/2 t 2.3 � 102 N m�1. Eqn (11)
expresses the balance of normal forces acting on the film and
will be solved with clamped boundary conditions:

h(0) = h0(0) = h(W) = h0(W) = 0. (12)

Eqn (11) for the profile h(x) has been obtained by minimizing
the action for an arbitrary constant W. Once the optimal h is
obtained by solving this equation, the optimal value of W is then
derived by minimizing the total energy with respect to W. The
Hamiltonian H of the system is obtained from the Lagrangian,
eqn (10), using a Legendre transformation adapted to higher-
order Lagrangians:54,55

H = p1h0(x) + p2h00(x) � L, (13a)

p1 ¼
@L

@h0
� d

dx

@L

@h00

� �
and p2 ¼

@L

@h00
: (13b)

Using eqn (10), we obtain

H ¼ B
h00ðxÞ2

2
� h000ðxÞh0ðxÞ

� �
� g 1� h0ðxÞ2

4

� �

þ 3Y

8
h0ðxÞ4 þ PhðxÞ;

(14)

where we have considered Y � g/2 C Y as above. Since the
Hamiltonian does not depend explicitly on x, it is a constant of
motion and can be evaluated for any x A [0,W]. Knowing that
h(W/2) = H and h0(W/2) = 0, the total energy per unit length is
then given by

Utot

L
¼
ðW
0

Hdx ¼W
B

2
h00ðW=2Þ2 � gþ PH

� �
: (15)

Eqn (11) together with the boundary conditions (12) can
easily be solved numerically. However, we will instead consider
below some relevant limits for which we can obtain exact results
and simple scalings which will be compared to experimental data.
For this purpose, we non-dimensionalize the equation as follows

�h
0000ð�xÞ � o2 �h

00ð�xÞ � �P2 �h
0ð�xÞ2 �h

00ð�xÞ � 1 ¼ 0; (16a)

%h(0) = %h0(0) = %h(1) = %h0(1) = 0, (16b)

where

h ¼ PW4

B
�h � h0 �h; x ¼W �x; o ¼ W

‘EC
; ‘EC ¼

2B

g

� �1=2
;

(17a)

�P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18 1� n2ð Þ

q
h0

t
� P

Pc
; Pc ¼

Btffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
18 1� n2ð Þ

p
W4

: (17b)

The typical amplitude of the profile is given by h0, which grows
with P. The length scale, ‘EC, is the so-called elasto-capillary
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(or bendo-capillary) length,56,57 which provides a comparison
between bending and surface energies. The parameter o measures
the importance of the adhesion term, which is only significant
when the size W of the delamination zone is of the same order,
or larger, than the elasto-capillary length. The rescaled pres-
sure, %P, measures the importance of the stretching term. It is
significant only if the typical amplitude of the delamination
zone is of the same order, or larger, than the film thickness or,
equivalently, when P is of the same order, or larger, than a
critical pressure Pc.

Using the material parameters eqn (1) together with the
values of t and W C 2WH/2 reported in Fig. 3(b), we find that
0.6 t ot 3.1 and 6.0 � 103 Pa t Pc t 6.5 � 104 Pa. According
to the estimation of P obtained in Section 3.1, see eqn (4), we
get %P \ 500. Therefore, the stretching term dominates over the
bending and adhesion terms. Before focusing on the relevant
regime for our study, we also consider the regime where %P { 1,
which could be of interest in some circumstances.

3.3 Limit of small pressure

For small enough pressure (P { Pc), eqn (16a) reduces to

�h
0000ð�xÞ � o2 �h

00ð�xÞ � 1 ¼ 0: (18)

This equation should describe the initial stage of the filiform
formation when the pressure and the amplitude of the profile
are small. Indeed, eqn (11) together with the boundary condi-
tions (12) leads to h - 0 when P - 0. Eqn (18) could also
describe fully developed filiforms in some situations. Indeed,
many thin-film manufacturing techniques create residual stresses
in the film. For example, residual compressive stresses can arise
due to the thermal expansion mismatch between the coating and
the substrate when cooled from the temperature at which the
thin film is deposited.26 In such a case, delamination can occur
without stretching the coating. Indeed, once the film is no
longer in contact with the substrate, its residual compression
can be relaxed giving rise to an excess of length accommodated
by the out-of-plane deformation along the y-axis.25 In our case,
due to the deposition technique employed, we expect the residual
compressive stress, if any, to be small.

The linear equation (18), subjected to the boundary condi-
tions (16b), can be solved exactly:

�hð�xÞ ¼ o�xð1� �xÞ þ ðcoshðo�xÞ � 1Þ cothðo=2Þ þ sinhðo�xÞ½ �
2o3

;

(19a)

�hð�xÞ ’
o�1

�x2ð1� �xÞ2
24

and �hð�xÞ ’
o	1

�xð1� �xÞ
2o2

: (19b)

The asymptotic expression for large o does not satisfy all
boundary conditions. This expression is obtained by neglecting
the bending term in eqn (18) (membrane approximation). This
term cannot rigorously be neglected because, without it, the
boundary conditions (16b) cannot be all satisfied. In this type
of singular perturbation problem,58 the bending term creates a
boundary layer near the domain boundaries (%x = 0 and %x = 1)
whose size decreases when o increases. The asymptotic expression

for large o corresponds thus to the so-called ‘‘outer’’ solution of
the problem. Since we are interested in the amplitude of the profile
at %x = 1/2, i.e. far from the boundaries, we can consider this
asymptotic expression as a good approximation.

The amplitude of the profile is directly obtained from eqn (19a)

�H ¼ �hð1=2Þ ¼ o� 4 tanhðo=4Þ
8o3

� �
: (20)

Returning to dimensional variables, we obtain

H ¼ PW4

B
�hð1=2Þ ¼ PW4

B

o� 4 tanhðo=4Þ
8o3

� �
; (21a)

H ’
o�1

P

384B
W4 and H ’

o	1

P

4g
W2; (21b)

where the two asymptotic regimes have been written: %h(1/2) C
1/384 for o { 1 and %h(1/2) C 1/(8o2) for o c 1, see Fig. 4. The
relationship between H and W is thus controlled by the ratio
between the pressure, P, and the bending modulus, B, when
adhesion is negligible and is controlled by the pressure and the
adhesion energy per unit area, g, when bending is negligible as
it should be in those asymptotic regimes. The expression for
small o can be written as H/t B P/Pc and coincides with the one
obtained in ref. 21 (p. 389). The critical pressure Pc is thus the
pressure needed to obtain an amplitude of the deformation
comparable to the film thickness in the absence of adhesion
at fixed W.

Those scalings, eqn (21b), can also easily be obtained from a
scaling law approach taking into account the relevant energies.
Balancing the bending energy UB B Bk2S, where k = H/W 2 is the
typical curvature of the sheet and S = LW is the area where this
curvature is significant, with the pressure work PHS, we obtain
H B PW 4/B. Notice that such an approach does not give the
numerical prefactor (1/384) which, in this case, decreases
this crude estimation by two orders of magnitude. Similarly,
balancing the adhesion energy UA B gdS, where d = (H/W)2 is
the typical increase of length of the deformed sheet, with the
pressure work gives H B PW 2/g. Notice that this last expression
can be viewed as a balance between the applied pressure P and
the ‘‘Laplace pressure’’ kg B Hg/W 2 due to a tension of order
g in the sheet (see discussion below eqn (7)).

Eqn (19) give the optimal profile of the delamination zone
for a given constant W. Eqn (21) show that, when W is fixed,

Fig. 4 Evolution of %H given by eqn (20) as a function of o given by eqn (17a).
The asymptotic expressions (21b) are also shown.
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the amplitude H of the profile increases linearly with the
pressure P. However, if W is free, its optimal value is obtained
by minimizing the total energy (15). It can be easily obtained for
arbitrary o using eqn (15), (19a) and (21a). We derive it here
only for the limits of small and large o. Using eqn (15), (19b)
and (21b), we obtain

Utot

L
’

o�1

P2W5

288B
� gW and

Utot

L
’

o	1

P2W3

4g
� gW ; (22)

where the contribution due to the bending energy has been
neglected for large o to be consistent with the way in which h
has been obtained in this limit. Minimizing the energy with
respect to W, i.e. solving qUtot/qW = 0, gives finally

W ¼ 2
ffiffiffi
3
p 2Bg

5P2

� �1=4

and H ¼ 3g
20P

for o� 1; (23a)

W ¼ 2gffiffiffi
3
p

P
and H ¼ g

3P
for o	 1: (23b)

These scalings show that filiforms with smaller cross-sections
are characterized by higher internal pressure. Such a behaviour
is well-known in the context of pressurized blister tests
where the pressure drops when the size of the delamination
zone increases (see for example eqn (2) of ref. 59 for circular
blisters).

As mentioned above, these scalings are however not relevant
in our case since we expect small compressive residual stress
and large pressure in the filiform. In the next section, we discuss
the limit case of large pressure to derive a scaling relevant for
our study.

3.4 Limit of large pressure

The limit for large pressure (P c Pc) is the one relevant in our
case since we have estimated above that P \ 500Pc. Substi-
tuting %h(%x) = f (%x) %Pa in eqn (16a), where f (%x) and its derivatives are
all of order 1, and using a dominant balance argument shows
that, in the regime %P c 1 (membrane approximation), eqn (16a)
reduces to

�P2 �h
0ð�xÞ2 �h

00ð�xÞ þ 1 ¼ 0: (24)

Notice that the relevant equation for large pressure could also
be obtained directly from eqn (11) by keeping the dominant
terms or by using the following non-dimensionalization:
h = (2PW 4/3Y)1/3h̃ and x = W%x. Again, the bending term should
not be neglected in eqn (24) if we want all the boundary condi-
tions (16b) to be satisfied. However, since we are interested in
the amplitude of the profile at %x = 1/2, which is far from the
boundary layers located at the domain boundaries, and whose
size decreases when %P increases, we can consider eqn (24) as
a good approximation. Taking advantage of the symmetry of
the profile about %x = 1/2, we solve eqn (24) with the boundary
conditions %h(0) = %h0(1/2) = 0 to obtain the following asymptotic
solution:

�hð�xÞ ¼ 3 �P�2=3

8

3

2

� �1=3

1� ð1� 2�xÞ4=3
h i

; 0 
 �x 
 1=2: (25)

The solution for the rest of the domain is simply given by
%h(1 � %x). The amplitude of the profile is given by

�H ¼ �hð1=2Þ ¼ 3

8

3

2

� �1=3

�P�2=3: (26)

Fig. 5 shows that the asymptotic expressions (20) and (26) com-
pare well with the evolution of %H %P as a function of %P obtained by
solving eqn (16) numerically. We consider %H %P instead of %H because
the former grows with %P with the same power as the evolution of H
as a function of P (see eqn (26) and (27)). Returning to dimensional
variables, we obtain

H ¼ 3

8

PW4

Y

� �1=3

¼ 3

8

P

E

� �1=3

W4=3t�1=3: (27)

The relationship between H and W is thus controlled by the
ratio between the pressure, P, and the stretching modulus, Y,
as it should be in this asymptotic regime. This expression
coincides with that obtained in ref. 21 (p. 394) except for a
slightly larger (4%) numerical factor coming from the different
formalisms used. This scaling can also be obtained through
a scaling law approach by taking into account the relevant
energies. Balancing the stretching energy US = Yd2S, where
d = (H/W)2 is the typical strain in the sheet and S = LW is the
area where the stretching is significant, with the pressure work
PHS, we obtain H B (PW 4/Y)1/3.

This scaling (27) is compared to the experimental data in the
next section. However, the data refer to the width at half height.
From eqn (25), we easily find that W = 23/4WH/2. Therefore, the
relevant scaling to be compared with the data is

H ¼ 3

4

P

E

� �1=3

W
4=3
H=2t

�1=3 � aW 4=3
H=2t

�1=3: (28)

The optimal value of W can now be computed by mini-
mizing the total energy (15). Using eqn (15), (25) and (27),
we obtain

Utot

L
¼ 3

8

P4W7

Y

� �1=3

�gW ; (29)

Fig. 5 Evolution of %H %P as a function of %P obtained by solving numerically
eqn (16) for two values of o together with the asymptotic expressions (20)
and (26).
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where the contribution due to the bending energy has been
neglected to be consistent with the way h has been obtained.
Minimizing the energy with respect to W gives finally

W ¼ 8

7

� �3=4
Y

g

� �1=4 g
P

and H ¼ 3g
7P
: (30)

Again, these scalings show that, for given material properties,
namely E, t and g, filiforms with smaller cross-sections are
characterized by higher internal pressure (see for example eqn (3)
of ref. 59 for circular blisters). They also show that the energy of
the system is minimum for given values of the width and height
of the delamination zone which are fixed by the system para-
meters, namely E, t, g and P. Therefore, knowing two of these
parameters and measuring H and W allows to estimate the
other two.

The existence of precise values of H and W minimizing the
energy agrees with observations since W is a rather constant
quantity for a given experiment. It also implies that the merging of
two filiforms is energetically unfavourable since it would create a
delamination zone with a width B2W leading to a higher energy
state. This probably explains the filiform self-avoidance observed
experimentally, see Section 2.2. Self-avoidance in delamination
patterns has been predicted through numerical simulations.60

The extension of this study to pressure-driven delamination
would be necessary to confirm self-avoidance for filiforms and
could perhaps explain the quasi-specular reflection reported in
Section 2.2. Notice also that, using eqn (29) and (30), the total
energy can now be written as Utot = �4LWg/7, where W is given
by (30). This energy is obviously larger than the energy of a flat
bonded state, for which Utot = �LWg, since the pressure work,
PHLW = 3LWg/7, is added.

Finally, the scalings (30) provide also a new relation between
H and W obtained by eliminating the pressure and using the
relation between W and WH/2 derived above:

H ¼ b
g
Y

� �1=4
WH=2 ¼ b

Et

g

� ��1=4
WH=2; (31)

where b ¼ 3
	

71=4
ffiffiffi
8
p
 �

’ 0:65. This scaling will be compared to
the data in the next section.

4 Comparison with experimental data

The scalings (28) and (31) may now be compared with experi-
mental data. For this purpose the average amplitude hHi and
width at half height hWH/2i, together with their standard devia-
tion, are computed from the data reported in Fig. 3(b) for each
value of t. The ratios hHi/hWH/2i4/3 and hHi/hWH/2i are then also
computed for each value of t. The error in these ratios has been
computed using the standard error propagation procedure. The
error, dX, on a quantity X(a1, a2,. . .) obtained from the combi-
nation of several other quantities ai with error dai is computed
using the following relation:

dX ¼
X
i

@X

@ai

� �2

daið Þ2
" #1=2

: (32)

Fig. 6(a) shows the evolution of hHi/hWH/2i4/3 as a function of
the thickness t. Assuming that the pressure is constant for all
filiforms, the agreement with the scaling (28) is very good pro-
vided a = 0.15� 0.03. Using the definition of a in eqn (28) and the
interval of values of E given in eqn (1), we obtain the following
range for the pressure: 1.1 � 107 Pa t P t 4.6 � 107 Pa. Those
values are in very good agreement with standard detachment
pressures (see Table 1 of ref. 47) and with the estimation we
obtained in Section 3.1, see eqn (4).

Fig. 6(b) shows the evolution of hHi/hWH/2i as a function
of the rescaled thickness Et/g which has been computed using
the parameter values reported in eqn (1). Its error has been
computed using eqn (32) and reflects the uncertainties in E,

Fig. 6 (a) Evolution of hHi/hWH/2i4/3 as a function of the thickness t. The
error in t represents 10% of its mean value and reflects the uncertainty
(0.5 mm) for each applied layer of 5 mm. The best power law fit at�1/3 with
a = 0.15 � 0.03 is also shown together with the 95% confidence band.
(b) Evolution of hHi/hWH/2i as a function of the rescaled thickness Et/g. The
error in Et/g originates from the uncertainties in E, g (see eqn (1)) and t. The
best power law fit b(Et/g)�1/4 with b = 0.9 � 0.3 is shown together with
the 95% confidence band and the theoretical scaling (31). (c) Comparison
between the theoretical and experimental height profiles obtained by
using the average parameter values eqn (1). The solid curves are theoretical
profiles obtained by solving eqn (11) with P = 4.7 � 107 Pa for t = 35 mm and
P = 1.1 � 107 Pa for t = 4.5 mm. The dashed curves are theoretical profiles
obtained in the asymptotic limit of large pressure using eqn (25) and (30)
with P = 7.5 � 106 Pa for t = 35 mm and P = 1.05 � 107 Pa for t = 4.5 mm.
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g and t. The agreement with the scaling (31) is very good
provided b = 0.9 � 0.3 which is compatible with the theoretical
pre-factor in eqn (31) even if the latter is about 25% too small to
obtain a perfect agreement with the data.

To illustrate how the theory describes the shape of filiforms,
Fig. 6(c) shows a comparison between two experimental and
theoretical height profiles. The solid curves in Fig. 6(c) represent
theoretical profiles obtained by solving eqn (11) numerically with
W fixed by minimizing the total energy. They agree remarkably
well with the experimental data for values of the pressure in the
range obtained above. The average parameter values given in
eqn (1) have been used except for t = 35 mm where g has been
significantly increased to be able to fit accurately this particular
profile. This explains why the pressure is larger than for the
profile with t = 4.5 mm, see Fig. 6(c), whereas its amplitude H is
however larger (see eqn (30)). For completeness, we also show
the asymptotic profiles, eqn (25), obtained in the large pressure
limit where W is fixed by eqn (30). The membrane approximation
used to derive those asymptotic profiles leads to a good estima-
tion of the amplitude H and width W as seen in Fig. 6(a) and (b).
However, Fig. 6(c) shows that a certain amount of bending
energy is still necessary to describe accurately the filiform
profiles. In this case the average parameter values from eqn (1)
have been used everywhere. This leads to a somewhat smaller
pressure for t = 35 mm whose ratio with the pressure obtained for
the profile with t = 4.5 mm is simply equal to the ratio of the
amplitudes of the profiles since the same value of g is used for
both cases, see eqn (30).

5 Summary and conclusions

In this work, we have presented a combined experimental and
theoretical study of the cross-sectional shape of filiform corro-
sion. The experiments have been conducted by varying system-
atically the thickness of the coating layer, which induces a
change in the height, H, and the width, W, of the filament
profiles as seen in Fig. 3. To rationalize these observations, we
have introduced a delamination model where the blister formed
by corrosion is described as a pressurized delamination zone
between an adhesive coating and a substrate; Section 3. The
pressure inside the filament, P has been estimated in Section 3.1
and is much larger than the critical pressure Pc required to
produce a significant deflection of the film. The relevant limit,
P c Pc, of the main eqn (11) has been considered in Section 3.4
to obtain the expressions of the amplitude H and of the width W,
as a function of the material parameters, which minimize the
total energy. These scalings, together with the complete profiles,
have been successfully compared to experimental data in Fig. 6.

One striking feature of standard delamination blisters is the
so-called telephone cord instability20,23,24 which is not observed
experimentally for filiform corrosion. Such an instability requires
the presence of biaxial or isotropic compressive stresses. Indeed,
the transverse compressive stress, sxx = �s, inducing the for-
mation of a straight-sided blister through the buckling of the film
(if s4 sc B E(t/W)2), is released when the film buckles (sxx =�sc).

However, a significant longitudinal compressive stress szz C
�(1 � n)s remains after buckling and may induce a secondary
buckling leading to the undulation of the straight blister if
the applied (or residual) stress s is large enough.24 In contrast,
for filiform corrosion, the internal pressure induces tensile
stress. Therefore, we do not expect such a secondary instability
to occur.

We have thus shown that delamination theory is a suitable
framework to describe quantitatively the morphology of filiform
corrosion. It could also probably be used to show that an initially
circular delamination zone is unstable against non-circular per-
turbations as already shown in the case where the system is
subjected to compression without internal pressure.61 In this case,
an initially circular blister loses its axisymmetry and develops lobes
around the perimeter. The number of lobes, which give rise to
filaments, increases with the magnitude of the applied compres-
sive stress. The extension of this stability analysis to pressure-
driven circular delamination62 remains to be performed.
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