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Abstract: When a solute A dissolves into a host fluid containing a reactant B, an A + B→C reaction can
influence the convection developing because of unstable density gradients in the gravity field. When A
increases density and all three chemical species A, B and C diffuse at the same rate, the reactive
case can lead to two different types of density profiles, i.e., a monotonically decreasing one from the
interface to the bulk and a non-monotonic profile with a minimum. We study numerically here the
nonlinear reactive convective dissolution dynamics in the more general case where the three solutes
can diffuse at different rates. We show that differential diffusion can add new dynamic effects like the
simultaneous presence of two different convection zones in the host phase when a non-monotonic
profile with both a minimum and a maximum develops. Double diffusive instabilities can moreover
affect the morphology of the convective fingers. Analysis of the mixing zone, the reaction rate,
the total amount of stored A and the dissolution flux further shows that varying the diffusion
coefficients of the various species has a quantitative effect on convection.
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1. Introduction

Studies on convective flows that can develop when a given phase A dissolves into a host fluid
have recently regained interest due to their relevance for CO2 sequestration [1,2]. In this technique,
CO2 is injected into soil and, after migration up to an impermeable cap rock, a two-layer stratification
of CO2 above brine can build up. The subsequent dissolution of CO2 (Phase A) into the brine increases
the density of the salt water, which can lead to convection and an increase of the transfer flux of CO2

towards the trapping aqueous layer. For practical purposes, it is of interest to quantify how reactivity
in the host layer can affect the nonlinear dynamics of this convective dissolution and modify the
amount of CO2 that can be dissolved per unit of time.

Indeed, it is nowadays well known that reactions between the dissolved A and chemicals
present in the host phase can modify the characteristics of the convective instability as they affect
the concentration profiles and thus the density stratification. A reaction consuming the dissolving
species A that increases density, without affecting the concentration of other solutes, slows down the
development of convection because it reduces the density gradient at the origin of the instability [3–5].
When species A reacts with a solute B to produce a third solute C, two types of density profiles are
possible when A increases density and all species diffuse at the same rate: if C is denser than B,
the density profile is monotonic like its non-reactive counterpart and the reaction can accelerate the
development of the instability; if C is less dense than B, the density profile has a minimum at the
reaction front, and fingering develops more slowly [6–13].
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Although this classification is useful, we need to consider the more general case where species can
diffuse at different rates, as is typically the case in experiments or field situations [14]. Indeed, it has
been shown for the convective dissolution of CO2 into different reactive aqueous solutions that
differential diffusivity effects need to be taken into account to interpret the experimental results [15,16].
This illustrates that changing the nature of the reactant, which affects both contributions to density and
diffusion coefficients, affects the development of convection. The effect of changing the contributions
to density for equal diffusivities has already been investigated [6–8,11–13], so we concentrate here
on cases in which all species diffuse at different rates. In such configurations, two additional types
of density profiles can build up in the host fluid: one where the minimum is located below the
reaction front and one where two extrema (a minimum followed by a maximum) are present [17].
Although knowing the type of density profile helps predict potential scenarios for the development of
the instability, little is known on the nonlinear convective dynamics that can develop when the relative
values of the diffusion coefficients are changed.

In this context, we analyze numerically the impact of differential diffusion effects on the nonlinear
dynamics of reactive convective dissolution developing when a solute A increasing density dissolves
into a host phase containing a solute B and reacts according to an A + B→ C scheme. We illustrate in
chosen typical cases the nonlinear dynamics that can be expected when varying the diffusivity ratios.

Finally, we show how those variations affect the development of buoyancy-driven fingering,
as well as the mixing zone, the global reaction rate, the total amount of stored A and the dissolution flux.

2. Model and Method

We consider a two-dimensional porous medium where two partially miscible phases are placed
in contact along a horizontal interface perpendicular to the gravity field. The upper phase A dissolves
with a finite solubility A0 into the host fluid located below and containing a reactant B with an initial
concentration B0. Species A and B react together in the host fluid, producing a third solute C according
to an A + B→ C scheme.

We briefly describe the equations used to model the dynamics in the host fluid. The concentrations
A, B, C, time t, horizontal x and vertical z (pointing downwards) spatial coordinates and velocity u are
normalized as [7,8]:

A = Ã/A0, B = B̃/A0, C = C̃/A0, (1a)

t = t̃/tc, x = x̃/lc, z = z̃/lc, u = ũ/uc, (1b)

where tildes denote dimensional variables. The chemical time scale is chosen as tc = 1/(qA0) with q
the kinetic constant of the A + B→ C reaction, the reaction-diffusion (RD) length scale lc =

√
DAtc =√

DA/(qA0) with DA the diffusion coefficient of A and the velocity scale uc = φlc/tc = φ
√

DAqA0

with φ the porosity of the medium at hand.
The reaction-diffusion-convection (RDC) equations for the temporal evolution of dimensionless

solute concentrations read:

∂A
∂t

+ (u ·∇)A = ∇2 A− AB, (2a)

∂B
∂t

+ (u ·∇)B = δB∇2B− AB, (2b)

∂C
∂t

+ (u ·∇)C = δC∇2C + AB, (2c)

where δB = DB/DA and δC = DC/DA, with DB and DC the diffusion coefficients of species B and C,
respectively. At the interface (z = 0), there is no vertical flow and no flux of B or C, while following the
assumption of local chemical equilibrium, the concentration of A is equal to 1, its solubility in the host
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fluid in dimensionless units. We assume that, at the bottom boundary, there is no vertical flow and no
solute flux, and we use periodic conditions at the vertical boundaries.

We solve Equations (2a)–(2c) with the initial conditions:

A(x, z = 0, t = 0) = 1 + ε · rand(x); A(x, z > 0, t = 0) = 0, (3a)

B(x, z, t = 0) = β, (3b)

C(x, z, t = 0) = 0, (3c)

where β = B0/A0. Equation (3a) expresses that perturbations are introduced in the initial concentration
of A at the interface in order to trigger the instability (see, e.g., [18,19] for a discussion of the possible
types of perturbations). ε� 1 is the amplitude of the perturbation, here chosen as 10−3, and rand(x)
is its modulation, a function of the horizontal coordinate x, varying randomly between −1 and 1
(“white noise”).

The set of Equations (2) is closed using an equation for the fluid velocity of an incompressible
flow. We here choose Darcy’s Equation (4a), valid for fluid flows in porous media, and express the
flow incompressibility condition as a Poisson Equation (4b):

∇p = −u + ρez, (4a)

∇2 p = ∇ · (ρ ez), (4b)

with p the dimensionless pressure, ez the unit vector along the gravity field and ρ the dimensionless
density of the host solution defined as:

ρ = (ρ̃− ρ0)/ρc = RA A + RBB + RCC, (5)

where ρ̃ and ρ0 are the dimensional density of the solution and of the solvent, respectively,
ρc = φµD/(gκlc) is the density scale with κ the permeability of the porous medium and µ the viscosity
of the fluid. Equation (5) expresses the fact that the density is assumed to vary linearly with the
concentrations of the three species A, B and C. The Rayleigh numbers Ri (i = A, B, C) that quantify the
contribution of species i to ρ are constructed with the RD length scale (1b) as:

Ri =
αi A0gκlc

φνDA
=

αi A0gκ

φν
√

DAqA0
, (6)

where αi =
1
ρ0

∂ρ̃
∂c̃i

is the solutal expansion coefficient of species i and ν = µ/ρ0 the kinematic viscosity
of the solvent.

The problem is thus dependent on six parameters: δB, δC, RA, RB, RC and β. Note that, if all species
diffuse at the same rate, a conservation relationship allows one to reduce the number of parameters to
three: RA, ∆RCB = RC − RB and β [7,8,13]. The nonlinear dynamics in that case have been analyzed
previously in detail [6,12,13]. We therefore focus here on the effect of different diffusivities on the
convective dynamics in the fully-developed nonlinear regime.

We perform numerical simulations of the dynamics in the host fluid (dimensionless size
3072 × 2048) using the YALES2 software (version 0.5.1, swMATH, FIZ Karlsruhe, Berlin, Germany)
based on the finite volume method [20] and described in [13,21]. Equations (2a)–(2c) are discretized by
integrating them on small square-shaped control volumes, and the concentrations are advected by a flux
velocity obtained by similarly integrating Darcy’s law on each control volume. The resulting discrete
operators are of fourth-order accuracy in space, and the time advancement is performed through
a method called TFV4A (two-step finite-volume fourth-order) or TRK4 (two-step Runge–Kutta) [22].
Furthermore, the discretized Poisson Equation (4b) is inverted using the geometric interface of the
multigrid solver High Performance Preconditioners (HYPRE, version 2.10.1, Lawrence Livermore
National Laboratory, Livermore, CA, USA) [23]. The numerical implementation of the equations
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has been validated by checking its accuracy in predicting the evolution of the normal modes of
the linearized set of equations. For the simulations presented in this paper, the results have been
numerically converged within 5% accuracy using a mesh size ∆x = ∆z = 4, a time step ∆t = 0.5 and
a convergence tolerance of 10−10 for the Poisson solver. To trigger the instability, random noise is
added to the initial condition in Equation (3a). As a result, the growth dynamics of the fingers depends
on the particular realization of the random numbers. Therefore, for each set of parameters, we average
the results over 15 realizations to obtain robust results. Increasing the number of realizations above
15 does not impact the averages and standard deviations of the results significantly (below 5%).
The uncertainty linked to the different possible noises is quantified as the 95% confidence interval for
two-sided critical regions.

3. Differential Diffusion Effects in Dissolution-Driven Convection

To understand the effect of differential diffusion on reactive convective dissolution, we choose to
vary δB or δC between 0.5 and 2, which corresponds to scanning various pairs of reactant B and product
C with different diffusion coefficients. We isolate diffusivity effects by keeping the solutal contributions
constant, arbitrarily fixed at RA = RC = 1, as well as β = 1, i.e., the initial concentration B0 of reactant
B in the host phase is equal to the solubility A0 of solute A in this phase. We illustrate qualitative
changes of the nonlinear dynamics for two possible values of RB (1 or 2) representing a reactant B
having the same or a larger contribution to the density than the dissolving species A and the product
C. First, in Section 3.1, we briefly recall the impact of changing δB or δC on the reaction-diffusion
(RD) density profiles that develop in the host fluid before convection sets in. Second, for each shape
of density profile, we illustrate, in Section 3.2, the convective dynamics taking place in the fully
developed nonlinear regime for specific cases. We then investigate, in Section 3.3, the quantitative
effect of differential diffusion on the temporal evolution of the fingering zone and the reaction rate,
the dissolution flux and the volume-averaged concentrations as a function of δC.

3.1. Reaction-Diffusion Profiles

We first recall the types of density profiles that develop when the density of the host fluid increases
upon dissolution (RA > 0) [17]. These profiles are classified in a parameter space spanned by the ratios
(RB/RC, δB/δC), as shown in Figure 1. In Zone I of the parameter space (RB/RC ≤ δB/δC ≤ 1),
the density profile is monotonic and always decreases along z like its non-reactive counterpart.
In Zone II (1 ≤ δB/δC ≤ RB/RC), a minimum of density is present at the reaction front where A
and B meet by diffusion and react.

When all species diffuse at the same rate (δB/δC = 1), only those two scenarios are
possible. The corresponding nonlinear convective dynamics have already been studied numerically
previously [6,12,13]. In the first scenario (belonging to Zone I), the product C is denser than reactant B,
and the density profiles are monotonic. The reactive nonlinear dynamics are similar to those in the
non-reactive case: fingers of denser fluid sink into the less dense bulk fluid, but with a larger velocity
and more intense fingering. The second scenario possible for equal diffusion coefficients belongs to
Zone II with C being less dense than B and the density profiles featuring a minimum. In that case,
the minimum slows down the development and the progression of the fingers in the host fluid because
it corresponds to a stable zone where locally less dense fluid lies on top of denser fluid.

Even though differential effects might affect those conclusions, we do not analyze Zones I and II
any further here to focus on Zones III and IV. Indeed, they have not been investigated yet because they
do not include cases where all species diffuse at the same rate. In Zone III (δB/δC > max[1, RB/RC]),
the density profiles have a minimum like in Zone II, but that minimum is located below rather than at
the reaction front [17]. Compared to the equal diffusivity case, the slow diffusing product C is more
present at the top of the host fluid where it is produced and less present below the reaction front as it
diffuses more slowly. Hence, a local depletion develops where B has been consumed if C is sufficiently
dense (RC > RBδC/δB). In Zone IV (δB/δC < min[1, RB/RC]), the density profiles have a minimum at



Fluids 2018, 3, 83 5 of 14

the reaction front followed by a maximum below it. This maximum is caused by a local accumulation
of reactant B below the reaction front if B does not diffuse fast enough and contributes to the density
sufficiently (RB > RCδB/δC). A detailed analysis of the RD profiles is provided in [17].

Figure 1. Schematic density profiles ρ(z) in the (RB/RC, δB/δC) parameter plane for RA and RC > 0.
The dashed line shows the location of the reaction front. I: monotonic decreasing, II: minimum at the
reaction front, III: minimum below the reaction front, IV: minimum at the reaction front followed by
a maximum. Adapted from [17].

3.2. Fingering Dynamics

Now that we have analyzed the different types of RD density profiles, i.e., the density profiles in
the host fluid before convection sets in, we investigate the dynamics in the fully developed nonlinear
regime for Zones III and IV when all species contribute similarly to density but diffuse at different
rates. In all simulations, we choose RA = RC = 1 and β = 1.

3.2.1. Zone III

We first illustrate the type of convective dynamics observed for Zone III of Figure 1 with the
specific case δB = 1, δC = 0.5 and RB = 1, shown in Figure 2. We have checked that the same type of
dynamics can be observed for other values of the parameters as long as we stay in Zone III.

The development of the reactive convective dissolution instability characterized by the onset of
sinking convective fingers upon dissolution of A in the host layer is similar to that in the non-reactive
case, as it can be characterized by the same regimes [13]. Initially, the system is stable with regard
to convection (diffusive regime; Figure 2a). The density stratification is then characteristic of Zone
III (see the typical RD density profile enclosed in Figure 2a): a denser fluid layer (red), rich in
dissolving species A and/or product C, lies above a minimum of density (dark blue) on top of bulk
fluid (light blue). At time 1000, fingers are visible, but do not interact significantly with each other
(linear growth regime; Figure 2b). After the merging regime, the number of fingers has significantly
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decreased (Figure 2c). In the reinitiation regime, protoplumes are regularly generated from the
boundary layer and merge with older existing fingers (Figure 2d). In addition, like in the non-reactive
case, there is only one single convection zone visible, where denser fingers sink from the top into the
less dense bulk solution [13]. This is to be contrasted with the fingering dynamics in Zone IV (see the
following subsection).

(a) t = 500 (b) t = 1000

(c) t = 5000 (d) t = 20,000

Figure 2. Density fields at different times (a–d) illustrating the fingering dynamics in Zone III (δB = 1,
δC = 0.5 and RB = 1). A typical reaction-diffusion density profile is enclosed in Figure 2a. The density
scale varies between 0.75 (dark blue) and two (red).

The main difference between the fingering dynamics in Zone III and the non-reactive counterpart
is the specific morphology of the fingers, which has not been observed when species diffuse at the
same rate [13]. In the linear growth regime, finger tips are located above the minimum of density
(dark blue in Figure 2b). By contrast, at later times corresponding to the nonlinear regime (Figure 2c,d),
finger tips are located below that minimum, which means that the fingers move downwards faster than
the minimum of density. Fingers are then larger above the minimum of density and narrower below.

To understand the origin of this specific finger morphology, we compare the concentration fields
illustrated in Figure 3a–c at time t = 20,000 to the corresponding density field shown in Figure 2d.
The upper part of the fingers in the density map, above the minimum of density, mainly corresponds
to the fingers of solute A, which have the same width (Figure 3a), while the tops of the fingers of B
and C are wider (Figure 3b,c). By contrast, the lower thinner part of the density fingers, below the
minimum of density, is only due to the fingers of B and C, which also have a second thinner part
below the location of the minimum of density (Figure 3b,c). We explain this characteristic morphology
of the fingers by the role of the stabilizing zone of the minimum of density where less dense fluid
lies on top of a denser one in the gravity field. As a consequence, this barrier hinders the downward
movement of the fingers, but does not stop them, as its amplitude is not large enough to counteract
the unstable effect of the larger concentration of C on the density gradient. The fact that the fingers are
narrower below the minimum of density expresses this hindering. We also note that the product C is
more concentrated close to the contours of the upper part of the fingers (Figure 3c), where the reaction
rate is the highest (Figure 3d).
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(a) A (b) B

(c) C (d) AB

Figure 3. Concentrations fields of (a) A; (b) B; (c) C; and (d) reaction rate AB field corresponding to the
density field shown in Figure 2d (t = 20,000). Concentrations scale between zero (dark blue) and one
(red), while the reaction rate AB scales between zero (dark blue) and 0.002 (red).

3.2.2. Zone IV

Secondly, we discuss the type of fingering dynamics observed in Zone IV, which we illustrate
first for the left profile of that zone in Figure 1. This profile features a minimum followed by a
maximum when z increases downwards and its density at the interface is larger than the bulk density
(specific case δB = 0.3, δC = 1 and RB = 1). In the initial diffusive regime shown in Figure 4a,
the density stratification characteristic of Zone IV is clearly visible: a denser fluid layer rich in
dissolving species A and product C (red) overlies the minimum of density at the reaction front (dark
blue), located above a maximum of density (very light blue) on top of the bulk fluid (light blue).
After some time, fingers appear and grow linearly above the minimum in density without interacting
together (Figure 4b).

In contrast to Zone III, where only one convection zone is possible, two convection zones develop
in Zone IV, as illustrated, e.g., in Figure 4c–f. The first convection zone corresponds to the density
stratification extending from the interface, where A dissolves and increases the density of the solution,
down to the minimum of density at the reaction front, where the reaction rate is the largest (Figure 5d).
The fingering pattern appears in that zone first (Figure 4b) and corresponds mainly to the fingering
pattern of the dissolving species A (Figures 4d and 5a), although B and C also contribute, but with wider
fingers (Figure 5b,c). Classical merging and, later, the appearance of new protoplumes (new fingers)
are observed in this upper zone and are mainly due to the further dissolution of A. At larger times,
an additional fingering pattern with a larger wavelength becomes visible below that first upper
convective zone, under the minimum in density (Figure 4c). This secondary fingered convection zone
is induced by the unstable density stratification below the reaction front, more precisely between the
maximum of density rich in B and C and the bulk fluid containing only reactant B, as seen from the
concentration maps of Figure 5b,c. Note the specific division of the lower fingers into two antennas
(Figure 4e). This is characteristic of a mixed-mode regime developing when a differential layer convection
(DLC) mode influences a Rayleigh–Taylor instability as characterized previously both experimentally
and numerically in non-reactive miscible systems [24]. This typically occurs when a denser zone of a
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fast-diffusing solute overlies a less dense zone of a slow-diffusing solute. In our specific case, the situation
is analogous, as δB/δC is here smaller than one. We have then a local stratification around the maximum
of density of a denser zone rich in fast-diffusing C above a less dense zone of the slowly-diffusing B,
prone to exhibit the characteristic antenna-shaped fingers of the mixed mode.

Figure 4. Density fields at different times (a–f) illustrating the fingering dynamics in Zone IV for the
density profile enclosed in the first panel (δB = 0.3, δC = 1 and RB = 1). The density scale varies
between 0.87 (dark blue) and 1.8 (red).

Figure 5. Concentrations fields of (a) A; (b) B; (c) C; and (d) reaction rate AB field corresponding to the
density field shown in Figure 4e (t = 20,000). Concentrations scale between zero (dark blue) and one
(red), while the reaction rate scales between zero (dark blue) and 0.003 (red).
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The qualitative features of convective dissolution are hence strongly modified by differential
diffusivity effects: two different zones of convection and antenna-shaped fingers can be obtained
instead of only one convection zone with regular fingers in the non-reactive or iso-diffusivity reactive
cases. This study confirms the fact that reactions are able to profoundly affect partially miscible
convection by inducing successive different buoyancy-driven instabilities and differential diffusion
effects, as already demonstrated in miscible reactive systems [25].

In Figure 4, we see that the two convection zones are separated by a deep blue boundary
corresponding to the location of the minimum of density (Figure 4) and of the reaction front (Figure 5).
The upper fingers are bounded by this curve, contrary to the case of Zone III (Figure 2), where fingers
move downwards across this minimum density zone. This is related to the relative importance of the
stabilizing barrier below the minimum compared to the destabilizing upper part between the interface
and the minimum. In Zone III, the stabilizing barrier is too weak to refrain from the downward
progression of fingers across the minimum (Figure 2). In Zone IV, the additional presence of the
maximum increases the amplitude of the stabilizing barrier, which contains the upper fingers above
the minimum in density (Figure 4). However, in the case studied in Figure 4, the density at the
interface is still larger than the bulk density, and the overall Rayleigh–Taylor type of instability wins in
deforming the dark blue zone of the minimum in density. The amplitude of this deformation decreases
when the bulk density increases, similarly to what is observed in the miscible mixed mode cases [24].
To evidence this, Figures 6 and 7 show the dynamics for the right profile in Zone IV of Figure 1 where
the bulk density is larger than the density at the interface. This is obtained here for the same values of
parameters as in Figure 4, but with a larger value of RB. The stabilizing barrier effect is stronger and
maintains the reactive interface between the two different convective zones flat in the course of time.

Figure 6. Density fields at different times (a–f) illustrating the fingering dynamics in Zone IV for the
density profile enclosed in the first panel (δB = 0.3, δC = 1 and RB = 2). The density scale varies
between 0.84 (dark blue) and 2.2 (red).



Fluids 2018, 3, 83 10 of 14

Figure 7. Concentrations fields of (a) A; (b) B; (c) C; and (d) reaction rate AB field corresponding to the
density field shown in Figure 6d (t = 26000). Concentrations scale between zero (dark blue) and one
(red), while the reaction rate scales between zero (dark blue) and 0.003 (red).

3.3. Quantitative Effects

To appreciate the quantitative effect of differential diffusion on convective dissolution, we now
consider a case where all species contribute equally to the density profile, i.e. RA = RB = RC = 1
and β = 1. We show that, if the reaction produces in situ a product C of different diffusivity, it can
quantitatively change the rate of progression of fingers, the reaction rate, the dissolution flux and the
amount of A stored. To do so, we also fix δB = 1 so that the reference reactant concentration profiles
remain unchanged [17]. We vary δC so that the ratio δB/δC varies from 0.5 to 2.

To assess the effect of differential diffusion quantitatively on the propagation of fingers in the host
solution, we compute the mixing length zm, defined as the most advanced position along the vertical
axis z where the sum of concentrations A + C becomes smaller than 0.01 [13]. This allows us to analyze
the temporal evolution of the mixing zone, i.e., the zone where A is dissolved, either unreacted or
reacted (Product C).

By replacing A + C = 0.01 in the RD asymptotic concentration profiles [17], we find that this
mixing length zm evolves in the RD regime as:

zm = 2
√

δCt erfinv

(
1− 0.005

√
δC

exp(η2
f (1/δC − 1))

)
, (7)

where η f = z f /
√

t is the position of the reaction front, z f , in self-similar coordinates, which varies
with the concentration ratio β and both diffusivity ratios δB and δC.

On the basis of Equation (7), we conclude that in the RD regime, the mixing length increases
faster when the product C diffuses faster (i.e., δC increases). This is indeed observed at early times in
Figure 8a. At later times, the mixing length starts to deviate from the diffusive regime when convection
starts. The onset time of convection is seen to decrease when δC decreases (i.e., δB/δC increases). This is
related to the fact that, if C diffuses more slowly, it accumulates in the upper part of the system and
increases the density just below the interface [17]. As a consequence, the reaction rate (Figure 8b) and
the incoming flux of A (Figure 8c), computed as defined in [13], increase much faster and reach larger
asymptotic values. As a result, the total amount of A present either as dissolved A or as reacted C
increases when δC decreases, as can be seen in Figure 8d, featuring the volume-averaged quantity
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< A+C >. When all species contribute equally to the density profile, we thus conclude that increasing
δB/δC has a destabilizing effect on convective dissolution.

0 5000 10000 15000 20000 25000 30000

time
0

500

1000

1500

2000

fi
n
g
e
r 
le
n
g
th
 z
m

δC =0.5, δB /δC =2.0

δC =0.8, δB /δC =1.2

δC =1.0, δB /δC =1.0

δC =1.2, δB /δC =0.8

δC =2.0, δB /δC =0.5

(a)

0 5000 10000 15000 20000 25000 30000

time
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

re
a
ct
io
n
 r
a
te

×10−5

δC =0.5, δB /δC =2.0

δC =0.8, δB /δC =1.2

δC =1.0, δB /δC =1.0

δC =1.2, δB /δC =0.8

δC =2.0, δB /δC =0.5

(b)

0 5000 10000 15000 20000 25000 30000

time
0.0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

fl
u
x

δC =0.5, δB /δC =2.0

δC =0.8, δB /δC =1.2

δC =1.0, δB /δC =1.0

δC =1.2, δB /δC =0.8

δC =2.0, δB /δC =0.5

(c)

0 5000 10000 15000 20000 25000 30000

time
0.00

0.10

0.20

0.30

0.40

0.50

0.60

<
A
+
C
>

δC =0.5, δB /δC =2.0

δC =0.8, δB /δC =1.2

δC =1.0, δB /δC =1.0

δC =1.2, δB /δC =0.8

δC =2.0, δB /δC =0.5

(d)

Figure 8. Temporal evolution, for RA = RB = RC = 1, β = 1, δB = 1 and different δC, of (a) the mixing
length zm, (b) the average reaction rate < AB >, (c) the incoming flux of A and (d) the volume-averaged
quantity 〈A + C〉, representing the total amount of A stored in the host solution. The lighter area
around each curve represents the 95% confidence interval. The dashed black curves represent the
solutions in the non-reactive corresponding case.
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4. Conclusions

We have theoretically analyzed the influence of differential diffusion on the properties of nonlinear
dynamics in reactive convective dissolution when a solute A dissolves into a host phase containing
a solute B and an A + B→ C reaction takes place. While only one type of density profile can develop
in the non-reactive case if A increases the density of the host fluid (RA > 0), two types of profiles can
occur when all species diffuse at the same rate in the reactive case: a monotonic one similar to the
non-reactive one and a non-monotonic profile with a minimum located at the reaction front provided
C is less dense than B. Differential diffusion gives rise to two additional profiles: a non-monotonic
profile with a minimum below the reaction front for δB/δC > 1 and a non-monotonic profile with
a minimum followed by a maximum when C diffuses faster than B (δB/δC < 1).

We have studied numerically the nonlinear dynamics of convective dissolution in the specific
cases of these two additional density profiles when δB/δC 6= 1. For δB/δC > 1, the minimum located
below the reaction front induces fingers that are wider above the minimum and thinner below it.
Fingering develops faster than when C diffuses at the same rate as B, because the accumulation of
C in the upper part of the system increases the unstable part of the density profile. When δB/δC is
increased, convection starts earlier and is more intense, which enhances transport and mixing in the
host solution and leads to a larger reaction rate, dissolution flux and amount of stored A.

On the contrary, when the product C diffuses faster than the reactant B, i.e., δB/δC < 1, the density
profile has a minimum at the reaction front followed by a maximum below it, which leads to a different
type of convective dynamics. The finger progression is slowed down by the minimum of density while
a secondary buoyancy-driven convection develops in the lower part of the solution. Two different
convective dynamics are thus observed separated by the location of the minimum in density. When the
relative intensity of the stabilizing barrier between the two extrema increases, the deformation in space
of this minimum curve decreases. In addition, a diffusive layer convection instability can induce a
deformation of the fingers of the lowest convective zone below the minimum into an antenna-shaped
form. The faster diffusion of C also induces a later onset of convection, less intense mixing and smaller
dissolution flux and reaction rate. As a consequence, the total amount of A stored in the form of A and
C also increases more slowly.

This study has highlighted the major role that differential diffusivity effects can play in the
development of reactive convective dissolution. Understanding those differential diffusivity effects
is of tantamount importance for, among others, the realistic quantitative modeling of convective
dissolution in CO2 sequestration techniques, where it is very likely that solutes in the host phases have
different diffusion coefficients. A large part of the parameter space remains, however, unexplored.
Future work could vary more extensively the values of Rayleigh numbers and diffusivity ratios to
analyze the influence of the relative amplitudes of the density at the interface, in the minimum and
maximum, as well as in the bulk on the properties of fingers.
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