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Nonlinear behavior and fluctuation-induced
dynamics in the photosensitive
Belousov–Zhabotinsky reaction

Valérie Voorsluijs, *ab Ioannis G. Kevrekidisc and Yannick De Deckerab

The photosensitive Belousov–Zhabotinsky (pBZ) reaction has been used extensively to study the properties

of chemical oscillators. In particular, recent experiments revealed the existence of complex spatiotemporal

dynamics for systems consisting of coupled micelles (V o 10�21 L) or droplets (V E [10�8–10�11] L) in

which the pBZ reaction takes place. These results have been mostly understood in terms of reaction–

diffusion models. However, in view of the small size of the droplets and micelles, large fluctuations of

concentrations are to be expected. In this work, we investigate the role of fluctuations on the dynamics

of a single droplet with stochastic simulations of an extension of the Field–Körös–Noyes (FKN) model

taking into account the photosensitivity. The birhythmicity and chaotic behaviors predicted by the FKN

model in the absence of fluctuations become transient or intermittent regimes whose lifetime decreases

with the size of the droplet. Simple oscillations are more robust and can be observed even in small systems

(V 4 10�12 L), which justifies the use of deterministic models in microfluidic systems of coupled oscillators.

The simulations also reveal that fluctuations strongly affect the efficiency of inhibition by light, which is often

used to control the kinetics of these systems: oscillations are found for parameter values for which they are

supposed to be quenched according to deterministic predictions.

1 Introduction

Since its discovery in the early 1960s, the Belousov–Zhabotinsky
(BZ) reaction has been extensively studied (see ref. 1 and
references therein) and is now considered as the chemical
oscillatory reaction par excellence. The first mechanism for this
reaction has been proposed by Field, Körös and Noyes in
19722,3 and many simplified versions of the model (e.g. the
Oregonator4) have been developed. The BZ reaction is now
known to generate a wide range of complex behaviors not only
in aqueous solutions, but also in gels,5–8 membranes,9,10 micro-
emulsions8,11–18 or microfluidic assemblies.8,18–25 Even the
simplest configuration, consisting in a stirred batch reactor,
can display periodic oscillations, transient quasiperiodicity26 or
chaos.26,27 In a continuous stirred tank reactor (CSTR), the
observed behaviors include bistability,28,29 multiperiodic oscil-
lations and sustained quasiperiodicity and chaos.30 In spatially
extended systems, the coupling between reaction and diffusion

gives rise to a wealth of patterns and waves, including target-
like patterns.31

The most exotic reaction–diffusion patterns are found in
the reverse (water-in-oil) BZ-AOT microemulsion system.11,12

Stationary Turing structures,14,32 accelerating waves,14 spirals
and antispirals,33 packet waves,34 segmented waves,35 stationary
and oscillatory localized structures (oscillons),36 jumping waves,
bubble waves and rotating waves37 were for example observed.
In this system, the aqueous reacting solution is encapsulated
in micelles and dispersed into a continuous phase of octane.
The micelles are stabilized by sodium bis(2-ethylhexyl)sulfo-
succinate, a surfactant also known as aerosol OT (AOT) and the
radius of the water core is Rw E 0.17o nm, where o = [H2O]/[AOT]
is the ratio of concentrations of water and surfactant. Transitions
between the aforementioned behaviors occur when the concen-
trations and the volume fraction fd of the dispersed phase (water
and surfactant) are varied. Most of the BZ reactants are polar
species and thus tend to be confined in the aqueous core of the
micelles. However, some nonpolar intermediates like Br2 and
BrO2

� are also generated by the reaction and are likely to move to
the surfactant layer or the hydrophobic phase, where they can
diffuse and eventually enter another micelle. Mass exchange
between micelles is also ensured by a collision–coalescence–
redispersion mechanism specific to microemulsions.18 The
BZ-AOT micelles can thus be viewed as a population of coupled,
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heterogeneous microoscillators. Similar systems of coupled
chemical microoscillators have been shown to display interest-
ing collective behaviors38–43 and constitute very useful models
to gain insight into the complex synchronization phenomena
taking place in large and heterogeneous populations of biological
entities.44

So far, the various patterns found in the BZ-AOT system have
been described by reaction–diffusion equations. The micro-
emulsion is treated as a continuous medium on the basis that
the average time between two micellar collisions is E1 ms,
which is much smaller than the period of oscillations.18 The
first models relied on the 2- or 3-variable Oregonator model
augmented by additional variables corresponding to the
concentrations of BrO2

� and/or Br2 in the hydrophobic phase.
More recently, a new model was derived from the full Field–
Körös–Noyes mechanism in order to reproduce the jumping
waves and bubble waves that could not be obtained with
previous approaches.45 This model includes the interaction of
light with a photosensitive catalyst, which is used in the pre-
paration of BZ-AOT memory devices46 or other BZ systems like
microfluidic droplets. However, none of the aforementioned
approaches accounts for the substantial fluctuations of con-
centrations that are to be expected in individual micelles. Since
the radius of the water core is generally comprized between 2
and 3 nanometers (o E 15), the volume of a single micelle is
approximately 10�21–10�22 L. Assuming a concentration of 1 M of
a given intermediate, a micelle contains about 60 to 600 molecules
of this species. Since the concentration of the catalyst is typically
in the range of 0.3–0.4 M, the number of particles of this species is
even lower. Intrinsic fluctuations are thus expected to be signifi-
cant and to strongly impact the chemical dynamics in a micelle.
In this context, the only study on the role of intrinsic fluctuations
in such systems appears to be a work by Vanag, who analyzed
the dynamics of coupled BZ micro-oscillators with cellular
automata.47 He showed that some behaviors of the BZ-AOT
microemulsions, like the frequency-multiplying bifurcation,48

could be directly related to the intrinsic fluctuations inside
the micelles. However, these investigations were performed
with a simplified limit of the full mechanism (the 3-variable
Oregonator) and did not include the interaction of light with
the photosensitive catalyst. Previous works have also considered
external noise. In these cases, the system was submitted to
stochastic modulations of the electric field,49,50 light,51–54 flow
rate52,55 or temperature.56

In this work, we investigate the dynamics of the Belousov–
Zhabotinsky reaction in a single micelle as predicted by a
stochastic implementation of the full FKN model, in which
we also incorporate the photoinhibition of the catalyst. The
mechanism and the related deterministic evolution equations
are given in Section 2. In Section 3, we present the deterministic
results obtained by numerical integrations of the model. We
show that in some regions of parameter space, the system
undergoes a succession of bifurcations leading to multiperiodic
oscillations and to chaos, which is consistent with experimental
observations.26,27,57 We also discuss the possibility of observing
birhythmicity. In Section 4, we investigate the influence of

intrinsic fluctuations on the chemical dynamics of the system
by performing Gillespie simulations corresponding to an exten-
sion of the FKN model taking into account the photosensitivity of
the reaction (pFKN model). The stochastic realizations exhibit
significant deviations with respect to the deterministic trajectories,
especially in the chaotic and birhythmic regions. Moreover, the
efficiency of photoinhibition is significantly reduced. These effects
are observed in droplets whose size is comparable to the water core
of micelles, but also in much larger droplets. We summarize the
main results of this study and discuss possible future work in
Section 5.

2 The Field–Körös–Noyes model

The overall BZ reaction corresponds to the bromination of
malonic acid by bromate in an acidic medium. By rationalizing
the thermodynamic and kinetic data available for the reactions
between bromine, organic and cerium species,3 Field, Körös
and Noyes developed a mechanism that can be decomposed in
three processes:

Process A

HBrO2 þ Br� þHþ �!k1 2HOBr

BrO3
� þ Br� þ 2Hþ �!k2 HBrO2 þHOBr

HOBrþ Br� þHþ Ð
k5

k6
Br2 þH2O

Br2 þMA �!k7 BrMAþ Br� þHþ

Process B

BrO3
� þHBrO2 þHþ Ð

k4

kr
2BrO2

� þH2O

BrO2
� þMnþ þHþ �!kred HBrO2 þMðnþ1Þþ

2HBrO2 �!k3 BrO3
� þHOBrþHþ

HOBrþMA �!k8 BrMAþH2O

Process C

Mðnþ1Þþ þMAþ 2H2O �!k10 Mnþ þ products

Mðnþ1Þþ þ BrMAþ 2H2O �!k9 Mnþ þ Br� þ products:

In Process A, malonic acid (MA � CH2(COOH)2) reacts with
bromine to give bromomalonic acid (BrMA � BrCH(COOH)2). At
this stage, HBrO2 is present in small quantities and is exclusively
involved in the oxidation of bromide. In this process, bromide is
consumed and its concentration decreases until it reaches a
critical value [Br�]crit. Below this concentration, the oxidation of
bromide is no longer the dominant reaction and the autocatalysis
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of HBrO2 takes control (Process B). Oxidation of the redox
catalyst (Mn+) also takes place and when the reduced form is
almost depleted, the autocatalysis stops. Process C is then
enabled and this last process regenerates the reduced catalyst
as well as bromide. Once the accumulation of bromide is
sufficient, Process A starts again.

Different ions and metallic complexes have been used to
catalyze the reaction1 such as Ce3+, Mn2+, [Fe(phen)3]2+ (ferroin)
or [Fe(bpy)3]2+.58 In the presence of a photosensitive catalyst
like [Ru(bpy)]3

2+, the oscillations can be inhibited or activated by
light.59 In this work, we will exclusively consider photoinhibition.
According to the following mechanism,59 the excited catalyst
reacts with BrMA:

RuðIIÞ Ð
kðIÞ

kd
RuðIIÞ�

RuðIIÞ� þ BrMAþHþ �!kc RuðIIIÞ þ Br� þ products:

The second reaction generates bromide and inhibits the auto-
catalysis of HBrO2. Assuming an ideal system, the deterministic
evolution equations corresponding to the pFKN model are thus

dx

dt
¼ �k1xyþ k2y� 2k3x

2 � k4xþ krw
2 þ kredw c0 � zð Þ (1)

dy

dt
¼ �k1xy� k2y� k5ypþ k6uþ k7uþ k9zþ

kðIÞ c0 � zð Þb
bc þ b

(2)

dz

dt
¼ kredw c0 � zð Þ � k9z� k10zþ

kðIÞ c0 � zð Þb
bc þ b

(3)

du

dt
¼ k5yp� k6u� k7u (4)

dp

dt
¼ 2k1xyþ k2yþ k3x

2 � k5ypþ k6u� k8p (5)

dw

dt
¼ 2k4x� 2krw

2 � kredw c0 � zð Þ (6)

where x� [HBrO2], y� [Br�], z� [M(n+1)+], u� [Br2], p� [HOBr],
w � [BrO2

�], c0 = [M(n+1)+] + [Mn+] and bc = kd/kc. The concentra-
tions h � [H+], a � [BrO3

�], ma � [MA] and b = [BrMA] are
considered to be constant and have been incorporated in the
kinetic constants, whose values are given in Table 1. k(I) is the
rate constant associated with the excitation of Ru(II). Its value
depends on spectral properties like the intensity spectrum of the
light source, the transmission spectrum of the filters through

which light passes and the absorbance of the illuminated solu-
tion. The mathematical derivation of the photoactivation rate
leads to a cumbersome expression.60 Kádár et al. have obtained
an experimental value of k(I) = 6.4 � 10�6 s�1,59 but numerical
simulations have also been performed with k(I) = 10�7–10�3 s�1

and correctly reproduced experimental data.21,45 Here we will
consider k(I) as a freely controllable parameter comprized
between 0 and 0.1 s�1. The photoinhibition term in eqn (2)
and (3) has been derived by making the stationary state approxi-
mation for the excited catalyst Ru(II)*.21,45 Finally, this model does
not distinguish between ferroin and the photosensitive catalyst,
which means that the species M(n+1)+ and Mn+ in the mechanism
represent both catalysts at the oxidized and reduced states,
respectively.21 The full deterministic pFKN model has already been
used in several simulations of microfluidic assemblies and provided
results in accordance with experimental observations.21,23 In the
next section, we present the main features displayed by the model.

3 Deterministic analysis

In addition to a trivial state where the concentrations of all species
are zero, the non-photosensitive system admits a single stationary
state. The large number of parameters and the complexity of the
equations give rise to a cumbersome analytical expression of this
stationary state, which is thus not shown here. The photosensitive
case generates similar features, with (a) a first state where all the
steady concentrations are zero except for the catalyst, and (b) a non-
trivial state. We performed numerical simulations of the evolution
eqn (1)–(6) using a Python integrator for stiff equations (lsoda
combined with bdf method). We also used AUTO-07p to detect
critical points and compute bifurcation diagrams.61 We first dis-
cuss the behavior of the system in the dark (i.e., in the non-
photosensitive case). The main goal of this section is to give an
overview of the nonlinear dynamics generated exclusively by the
chemistry of the BZ reaction. We also discuss the role played by
certain species in the emergence of complex behaviors.

3.1 The non-photosensitive BZ reaction

By analogy with experimental measurements, we show and dis-
cuss the properties of the concentration of the oxidized form of

Table 1 Rate constants and simulations parameters, where a, h and ma
are constants and correspond to [BrO3

�], [H+] and [BrMA], respectively

k1 = 2 � 106h M�1 s�1 k8 = 9.3ma s�1

k2 = 2h2a s�1 k9 = b s�1

k3 = 3000 M�1 s�1 k10 = 0.05ma s�1

k4 = 42ha s�1 kr = 2 � 108 M�1 s�1

k5 = 5 � 109h M�1 s�1 kred = 5 � 106 M�1 s�1

k6 = 10 s�1 b = 0.1ma M
k7 = 29ma s�1 bc = 0.05 M

Table 2 Experimental conditions in BZ-AOT systems and corresponding
simulations parameters

h (M) a (M) c0 (mM) ma (M) Ref.

Turing structures 0.2–0.225 0.15–0.2 4 0.225–0.3 14
0.32 0.18–0.3 4a 0.1–0.27 32

Accelerating waves 0.2 0.15 4 0.3 14
Spirals and antispirals 0.2 0.2–0.23 4 0.3 33
Packet waves 0.2–0.3 0.15–0.23 4 0.25–0.3 34
Segmented spiral waves 0.2 0.18 4.9b 0.3 35
Oscillons 0.25 0.2 4.2c 0.25 36
Jumping waves 0.18–0.2 0.18 4.9b 0.3 37
Bubble waves 0.3 0.213 4.9d 0.3 37
Rotating waves 0.2 0.18 4.9b 0.3 37
Simulations parameters 0.1–0.3 0.1–1.2 1–6 0–15

a [Ru(bpy)3]2+ is used instead of ferroin. b Bathoferroin is used instead
of ferroin. c Ferroin or [Ru(bpy)3]2+ are used in these experiments.
d Bathoferroin is used instead of ferroin and 0.067 M NaBr is added.
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the catalyst (z) as a function of the concentration of malonic
acid ma. The values attributed to parameters ma, a, h and c0 are
compatible with experimental conditions (see Table 2), although
we explored larger ranges of values for completeness.

We first discuss the general properties of the bifurcation
diagram (see Fig. 1). At very low ma the non-trivial stationary state
is stable but if ma increases the system undergoes a supercritical
Hopf bifurcation (HB1), giving rise to oscillations. In the simplest
cases, this transition leads directly to the oscillations described
in the literature (see Fig. 3a).1,3 The domain of existence of
these oscillations is bounded by another supercritical Hopf
bifurcation (HB2) located at larger ma. As can be seen in Fig. 1a
and b, the domain of oscillations is significantly enlarged
when a is increased, as a consequence of the displacement of
HB2 to higher values of ma. The same trend is observed as h is
increased.

Oscillations can also develop for ma o HB1. The presence of
these oscillations can be explained on the basis of the bifurca-
tion diagram shown in Fig. 2a. Starting from HB1, the stable
orbit grows in amplitude as ma increases until a limit point
(denoted LP1) is reached. A second limit point LP2 is detected at
ma o HB1 where large oscillations arise. A large amplitude orbit
thus coexists with a stable stationary state between LP2 and HB1
and with another stable orbit (of smaller amplitude) between
HB1 and LP1. This latter behavior corresponds to birhythmicity.
In both cases, the initial conditions determine the effective

regime chosen by the system. Birhythmicity has been observed
in coupled BZ systems, experimentally62 and theoretically,63 but
to the best of our knowledge, does not appear in individual BZ
oscillators. As shown in Fig. 2b, the limit points disappear when
the solution is more acidic (h is larger), in which case only simple
oscillations can be found.

For values of a larger than those used in Fig. 1 and 2,
the transition from the stationary state to the large amplitude
oscillations involves even more bifurcations. Fig. 3a–d show
how the simple periodic oscillations observed for ma 4 HB1 are
gradually transformed into multiperiodic oscillations by succes-
sive period doublings (PDs) as ma increases, until the trajectory
finally becomes chaotic (see Fig. 3e). The complex, small ampli-
tude oscillations arising from the PDs generally coexist with
stable oscillations of large amplitude, as shown in the time
series in Fig. 3f and as in the previous case of birhythmicity,
the evolution of the system to one of these regimes depends on
the initial conditions. These results are compatible with the
episodes of multiperiodic oscillations and chaos reported in
closed systems26 and CSTR.57 The range of initial concentra-
tions leading to chaos is very narrow under the conditions of
Fig. 3 but this domain widens if a increases. The bifurcation
analysis shows that period doubling bifurcation points also
appear when c0 is decreased.

For a = 1.2 M, the system exhibits an additional interesting
behavior which combines chaotic episodes and large amplitude
oscillations. Very similar signals have been detected experimentally

Fig. 1 Bifurcation diagrams of z vs. ma for a = 0.3 M (HB1 at ma =
2.661440 � 10�3 M, HB2 at ma = 4.536620 M) (a) and a = 0.9 M (HB1 at
ma = 2.746310 � 10�2 M, HB2 at ma = 13.60630 M) (b). The other
parameters are h = 0.2 M, c0 = 3 mM and k(I) = 0 s�1. The plain lines
correspond to stable stationary states while unstable trajectories are
represented by dashed lines. The maxima of the oscillations are plotted
in red and steady states in black.

Fig. 2 Bifurcation diagrams of z vs. ma for h = 0.1 M (a) and h = 0.3 M (b).
The other parameters are a = 0.3 M, c0 = 3 mM and k(I) = 0 s�1. The plain
lines correspond to stable stationary states while unstable trajectories are
represented by dashed lines. The maxima of the oscillations are plotted in
red and steady states in black.
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in a CSTR.27 These oscillations are aperiodic (see Fig. 4a) in the
neighborhood of the chaotic region but tend to become more
regular and much more frequent (see Fig. 4b) for larger ma. Note
that in the conditions of Fig. 4, multiperiodic oscillations and
chaos do not coexist with another stable state or orbit, as can be
seen on the bifurcation diagram in Fig. 5. As a consequence,
these regimes can be observed whatever the initial conditions.
If the domain of birhythmicity is enlarged, by reducing h for
example, these complex oscillations are no longer observed.

In conclusion, the original FKN model generates a variety of non-
linear behaviors, ranging from simple oscillations to birhythmicity,

chaos and complex oscillations and we identified the influence
of some key parameters on the aforementioned regimes. It
should be noticed that although the FKN model has been used
and numerically integrated on numerous occasions, the above-
mentioned complex behaviors (except for the simple oscillations)
were not reported before. Table 3 summarizes how to tune the
different parameters to observe a given dynamics, starting from
the conditions of Fig. 2b, i.e. h = 0.3 M, a = 0.3 M, c0 = 3 mM and
k(I) = 0 s�1.

3.2 The photosensitive BZ reaction

The model presented in Section 2 accounts for the photoinhibi-
tion of oscillations by including a production term for bromide
(the inhibitor) and for the oxidized catalyst. As mentioned
before, this term involves three new parameters: k(I), b and
bc. This last parameter is fixed, while the value of b depends on
the concentration of malonic acid and k(I) typically ranges from
10�7 s�1 to 10�3 s�1.21,45 Since the photoinhibition of the
oscillations is more efficient at large light intensities, we expect
the stability, the position and/or the size of the domain of
oscillations to be affected by an increase of k(I).

Fig. 3 Asymptotic behavior of z vs. t for ma = 0.02960 M (simple
oscillations – P1) (a), ma = 0.02980 M (biperiodic oscillations – P2) (b),
ma = 0.02984 M (quadriperiodic oscillations – P4) (c), ma = 0.02985 M
(octoperiodic oscillations – P8) (d), ma = 0.02986 M and z0 = 2.3 � 10�3 M
(chaos) (e) and ma = 0.02986 M (simple oscillations of large amplitude) (f).
In panel (f), the dashed line corresponds to the chaotic trajectory shown in
panel (e). The other parameters are h = 0.2 M, a = 0.9 M, c0 = 3 mM and
k(I) = 0 s�1. Unless they are specified, the initial conditions are x0 = 1� 10�6 M,
y0 = 5 � 10�6 M, z0 = 2.7 � 10�3 M and u0 = p0 = w0 = 0 M.

Fig. 4 Asymptotic behavior of z vs. t for ma = 0.0546 M (a) and ma =
0.0550 M (b). The other parameters are h = 0.2 M, a = 1.2 M, c0 = 3 mM and
k(I) = 0 s�1. The initial conditions are x0 = 1 � 10�6 M, y0 = 5 � 10�6 M,
z0 = u0 = p0 = w0 = 0 M.

Fig. 5 Bifurcation diagram of z vs. ma for h = 0.2 M, a = 1.2 M, c0 = 3 mM
and k(I) = 0 s�1. The inset is a zoom in the region of chaos and complex
oscillations. The diamond symbols correspond to period doubling bifurca-
tion points. The plain lines correspond to stable stationary states while
unstable trajectories are represented by dashed lines. The steady states are
in black while the maxima of the P1, P2 and P4 oscillations are respectively
in red, green and blue. The P8 oscillations and further period doublings are
not indicated for clarity.

Table 3 Parameters to be tuned (increase � +/decrease � �) starting
from the conditions of Fig. 2b to move HB2 or to observe LP and/or PD.
The nonlinear behaviors affected by these changes are also indicated

HB2 at larger ma
larger oscillating
domain

LP
birhythmicity

PD multiperiodic
osc. & chaos

LP & PD
complex osc.

h + � �
a + + +
c0 +
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The bifurcation diagrams in Fig. 6a and b, corresponding
respectively to k(I) = 10�5 s�1 and k(I) = 10�3 s�1, show that the
position of the first Hopf bifurcation (HB1) is barely affected by
illumination (see also Fig. 1a). A similar conclusion also holds
for the period doubling points. However, HB2 is dramatically
reduced, especially for large k(I), and the domain of oscillations is
thus less extended. This trend is summarized in the 2-parameter
bifurcation diagram of Fig. 7, where k(I) and the ma value
corresponding to HB2 are plotted. For low k(I), HB2

corresponds to relatively large values of ma and is a super-
critical Hopf bifurcation, like in the non-photosensitive case. As
k(I) increases, HB2 turns into a subcritical Hopf bifurcation
point as the system goes through a generalized Hopf bifurca-
tion (denoted by GH). This change can also be observed in the
1-parameter bifurcation diagrams (see Fig. 6a and b). Because
of the subcritical character of HB2, large amplitude oscillations
can coexist with a stationary state in a small neighborhood of
HB2, for ma 4 HB2. This will reveal crucial to understand some
of the behaviors observed with stochastic simulations (see
Section 4). A Bogdanov–Takens (BT) bifurcation can also be
found for even larger k(I), signaling the disappearance of HB2
and thus of the domain of oscillations.

To summarize, light partially suppresses the oscillatory
regime by displacing the second Hopf bifurcation point (i.e.
oscillations survive at low ma). We also detected two new
codimension-two bifurcations in the model, namely the
Bogdanov–Takens and the generalized Hopf bifurcations. In the
next section, we discuss how this conclusion could be affected by
intrinsic fluctuations.

4 Stochastic simulations

We simulated the fluctuating dynamics of the FKN model
through the Gillespie algorithm, where a transition probability
per unit time is associated to each reaction step (see ref. 64–67
for details). The extensivity parameter O entering these prob-
abilities is in our case obtained by O = V � NA, where V is the
volume (in L) of the water core of the micelle and NA is the
Avogadro number. Contrary to what happens when modeling a
system with Langevin equations and simulations, noise is not
simply introduced as additional terms to be included in the
evolution equations. At each iteration, the reaction probabilities
are calculated based on the current state of the system (i.e. the
number of particles of each species). Two random numbers are
selected from a uniform distribution. The first one is used in the
selection of the reaction that will occur at this iteration and the
second is involved in the calculation of the time elapsed before
the next reaction. The number of molecules of each species are
adapted accordingly to the stoichiometry of the selected reaction.
Some details about the algorithm and the transition probabilities
can be found in Appendix.

The two main parameters we tuned to act on the amplitude
of fluctuations were V and the distance from the bifurcation
points. The amplitude of fluctuations, as quantified by the ratio
of the standard deviation of the number of particles and their
mean (sn/hni) is indeed expected to increase as O decreases
and/or as one approaches a critical point. As a consequence, we
expect to recover the deterministic predictions in the macro-
scopic limit (O -N) for systems operating far from bifurcation
points, where fluctuations become negligible.

We investigated the influence of fluctuations for volumes
ranging between 10�18 and 10�12 L. These values are larger
than the actual volume of the micelles used in experiments but
V = 10�18 L was the minimal volume required to observe

Fig. 6 Bifurcation diagrams of z vs. ma for k(I) = 10�5 s�1 (HB1 at ma =
2.661170 � 10�3 M, HB2 at ma = 3.617130 M) (a) and k(I) = 10�3 s�1 (HB1 at
ma = 2.660970 � 10�3 M, HB2 at ma = 4.308540 � 10�2 M) (b). The other
parameters are h = 0.2 M, a = 0.3 M and c0 = 3 mM. The plain lines
correspond to stable stationary states and unstable trajectories are repre-
sented by dashed lines. The maxima of the deterministic oscillations are
plotted in red and steady states in black. The black dots correspond to the
results of stochastic simulations (maxima of the oscillations or steady
states) performed with V = 5 � 10�17 L.

Fig. 7 2-Parameter bifurcation diagram: the black curve corresponds to
the coordinates of HB2 in terms of k(I) and ma for h = 0.2 M, a = 0.3 M and
c0 = 3 mM. A Bogdanov–Takens bifurcation (BT) and a generalized Hopf
bifurcation (GH) have also been detected. Oscillations are observed in the
lower region of the diagram.
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dynamics with a sufficiently long lifetime. This volume corre-
sponds to approximately 103–104 micelles. For smaller volumes,
the reacting molecules are completely consumed in a very short
time after ignition of the reaction and the system reaches the
trivial stationary state. In the following paragraphs, we will first
present the results obtained in the oscillatory, birhythmic and
chaotic regimes of the non-photosensitive case and we will then
focus on the stochastic dynamics under illumination.

4.1 The non-photosensitive case

The parametric domain where oscillations can be found is
larger in the presence of fluctuations (for the range of system
size mentioned above). Indeed, oscillations can be found for ma
much larger than the second Hopf point HB2. The reason
behind this extension is that the steady state found for ma 4
HB2 corresponds to a stable focus for a wide range of ma. What
we observe thus corresponds to the well-known fluctuation-
induced oscillations that are found beyond criticality in the
case of ‘‘soft’’ supercritical Hopf bifurcations.68 Fluctuations
nevertheless perturb the period and sometimes the amplitude
of the oscillations as illustrated in Fig. 8a. The variance of the
period decreases as the size increases and is proportional to
1/O, as expected in the case of a simple limit cycle subjected to
chemical noise.69,70 The distribution of the period is Gaussian
for ‘‘large’’ systems (10�16–10�15 L) but becomes more asym-
metric for smaller systems.

The other complex dynamics prove to be much less robust to
fluctuations. In the region close to HB1 where birhythmicity
and chaos are expected in view of the deterministic analysis,
the small amplitude oscillations and chaotic dynamics become
hardly observable. More precisely, these behaviors become
transients or intermittent regimes whose lifetime increases
with the size of the system. This complex dynamics can be
understood qualitatively as a succession of fluctuation-induced
transitions between the basins of attraction of the different
attractors that coexist in this parametric range. A typical
transition from chaos to large amplitude oscillations is for
example shown in Fig. 8b. The complex oscillations observed at
a = 1.2 M (see Fig. 4a) are transformed into an extremely noisy
trajectory where chaotic episodes can no longer be distin-
guished from large amplitude oscillations. The chaotic

intervals are more visible when the volume increases but
remain much shorter than in the deterministic limit. It is
only for volumes larger or equal to a given critical value
(usually around Vc = 10�12 L) that all the deterministic
trajectories are recovered.

We can thus conclude that for the non-photosensitive case,
fluctuations tend to blur out most of the complex dynamical
features observed in the deterministic limit of the FKN model.
Only oscillations corresponding to a simple limit cycle seem to
survive at small scales.

4.2 The photosensitive case

Fluctuations tend to expand the domain of oscillations for the
photosensitive system in a way similar to what was observed in
the non-photosensitive case (see Fig. 6a). This expansion is
particularly relevant for the efficiency of inhibition by light. In
the deterministic limit, including the photoinhibition processes
leads to a displacement of HB2 to lower ma values and thus to a
shrinking of the domain of oscillations. As we just mentioned,
this effect is however counterbalanced by fluctuations in small
systems and photoinhibition is less effective in the presence of
intrinsic noise.

New and unexpected phenomena can also be observed for
large k(I), when HB2 is subcritical in the deterministic limit.
In this case, oscillations are expected to coexist with a stable
steady state for a suitable choice of parameters. We observed
that in this subcritical domain, there is an optimal system size
for which the oscillations are more regular than in smaller
and in larger systems. For small systems, fluctuations induce
frequent transitions between the two attractors, which make
the oscillations highly irregular, as expected. However, for large
systems the frequency of oscillations also spreads widely
(see Fig. 9a and b). The probability distribution of the period
moreover tends to become much more asymmetric than for
smaller volumes. Such situations correspond to time series in
which reaction spikes are separated by periods of latency,
during which the mean concentrations correspond to the stable
stationary state (Fig. 9e). This can be explained by the fact that
the intermittency involving the two attractors is due to fluctua-
tions driving the system beyond the separatrix (red dashed line
in Fig. 6b). When the amplitude of the fluctuations is reduced,
these transitions are less frequent, but the time spent in each
basin of attraction increases. For large systems, the dynamics
will thus consist in long periods of oscillations followed by long
phases of latency, and vice versa.

In comparison to the deterministic behavior, the range of ma for
which the spikes are present is also much more extended (see
Fig. 6b). As explained in Section 2, the oscillations are triggered when
[Br�] o [Br�]crit. If the amplitude of the fluctuations is sufficiently
large (i.e. sc Z sc,crit, where sc is the amplitude of the fluctuations of
concentration), the fluctuations are very likely to induce such a
perturbation in [Br�]. The firing of a spike is thus expected to
become less probable when the amplitude of the fluctuations is
smaller. Indeed, the frequency of the spikes is reduced in larger
systems or when the distance from HB2, located at ma E 0.555 M
for the conditions of Fig. 9, is increased. As shown by the histogram

Fig. 8 Time series of z for V = 10�18 L, a = 0.3 M, ma = 0.6 M and z0 = 0 M
(a) and V = 10�14 L, a = 0.9 M, ma = 0.02986 M and z0 = 0.0023 M (b). The
other parameters and initial conditions are h = 0.2 M, c0 = 0.003 M,
k(I) = 0 s�1 and x0 = 1 � 10�6 M, y0 = 5 � 10�6 M, u0 = p0 = w0 = 0 M. The
plain line represents a stochastic realization while the dashed line is the
corresponding deterministic trajectory.
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in Fig. 9c, the mean interspike time interval is about 180 s and the
maximal time interval between two spikes does not exceed 340 s for
a volume of 10�17 L. When the size of the system is increased, the
number of spikes observed is much smaller and the interspike time
intervals increase (Fig. 9d). The spikes eventually disappear when the
size and the distance from the criticality are large enough to keep
sc smaller than sc,crit. The trajectory then fluctuates around the
deterministic stationary state.

To summarize, fluctuations strongly affect the nonlinear
kinetics of the photosensitive model. The two effects discussed
above both tend to extend the parametric domain where oscilla-
tions and similar behaviors can be found. The efficiency of
inhibition by light is thus reduced for smaller systems.

5 Conclusions

We have studied the photosensitive FKN model with determin-
istic and stochastic simulations to analyze how fluctuations
could affect the dynamics of the BZ reaction in small systems.
We demonstrated that this model gives rise to a variety of
nonlinear behaviors including simple oscillations but also, for
the first time, multiperiodic oscillations, chaos and birhyth-
micity. Contrary to other models of deterministic chaos in the
BZ reaction,71,72 the (p)FKN model does not include a flow
term characterizing the elimination of reactants and products.
These results suggest that the chaotic dynamics is thus only the
result of the chemical kinetics of the reaction performed in

a well-mixed reactor. Illumination enables the inhibition of
oscillations by reducing the domain of oscillations, but cannot
completely suppress all the complex dynamics in the range of
parameters investigated.

In the presence of strong fluctuations, the simple periodic
oscillations become less regular but are nevertheless much more
robust than the more complex oscillations and chaos, which
tend to be blurred out by the noise. Moreover, the efficiency of
photoinhibition is strongly reduced in the presence of fluctua-
tions, so that larger light intensities are required to annihilate
oscillations.

These fluctuation-induced effects are negligible for the range
of volumes used in microfluidic experiments and the determin-
istic approach is expected to describe correctly the chemical
behavior of BZ droplets in this case. On the other hand, the
chemical dynamics of a reaction occurring in a micelle could be
dramatically modified by the intrinsic fluctuations. In most
experiments, the number of micelles is of the order of 1015

and since these nanoreactors constantly exchange reactants and
products, depletion and other fluctuation-related phenomena
should not be observed. However, for systems composed of a
smaller number of micelles, the resulting collective behavior
could be impacted by the individual fluctuating dynamics of the
micelles. The role played by diffusion and collision–coalescence–
redispersion processes in the synchronization of the nano-
reactors could be assessed by simulating a small ensemble of
stochastic micelles. In this way, one could analyze how the local
fluctuation-induced phenomena translate into collective, spatio-
temporal patterns.73
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Appendix
Transition probabilities

In the Gillespie algorithm, a propensity function is defined for
each reaction step and depends on the kinetic constant and on
the number of particles (nx, ny, etc.) involved in the reaction. As
mentioned before, the extensivity parameter is here defined by
O = V � NA, where V is the volume (in L) and NA is the Avogadro
number. At each iteration, a reaction and the time elapsed
before the next reaction (Dt) are selected randomly and the
number of molecules of each species is adapted accordingly, i.e.
ni(t + Dt) = ni(t) + �nj, where �nj corresponds to the number of
molecules of species i produced (�nj 4 0) or consumed (�nj o 0)
during reaction j. For example, if the first reaction of Process A
is selected, nx(t + Dt) = nx(t) � 1, ny(t + Dt) = ny(t) � 1 and
np(t + Dt) = np(t) + 2. The selection of the reaction step j and the
calculation of the time increment Dt involve the propensity
functions oj (n) = cjhj (n), where cj depends on the kinetic
constant of the reaction j, n is a vector containing the number
of molecules of each species and hj (n) gives the number of
combinations formed with n molecules reacting according to j.

Fig. 9 (a–d) Histograms of interspike time intervals for ma = 0.6 M i.e.
in the subcritical domain (a and b) and ma = 0.8 M (c and d). (e) Time series
of z. The other parameters and initial conditions are V = 10�17 L (a and c),
2 � 10�16 L (b), 4 � 10�16 L (d) or 1 � 10�15 L (e), h = 0.2 M, a = 0.3 M,
c0 = 3 mM, k(I) = 10�4 s�1 and x0 = 1 � 10�6 M, y0 = 5 � 10�6 M,
u0 = p0 = w0 = 0 M.
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For the pBZ reaction, the propensity functions can be found in
Table 4. The transition probability bj associated to a process j is
then given by bj = oj (n)/o(n), where oðnÞ ¼

P
j

ojðnÞ is the total

propensity function. The time increment Dt is given by

Dt ¼ �ln r1ð Þ
oðnÞ (7)

and the reaction j is chosen such that

Xj�1

i¼1

oiðnÞ
oðnÞ o r2 �

Xj

i¼1

oiðnÞ
oðnÞ ; (8)

where r1 and r2 are random numbers uniformly distributed
between 0 and 1.
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20 M. Toiya, H. O. González-Ochoa, V. K. Vanag, S. Fraden and

I. R. Epstein, J. Phys. Chem. Lett., 2010, 1, 1241–1246.
21 J. Delgado, N. Li, M. Leda, H. O. González-Ochoa, S. Fraden
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43 A. P. Muñuzuri and J. Pérez-Mercader, J. Phys. Chem. A,
2017, 121, 1855–1860.

44 K. A. Bold, Y. Zou, I. G. Kevrekidis and M. A. Henson,
J. Math. Biol., 2007, 55, 331–352.

45 V. K. Vanag and I. R. Epstein, J. Chem. Phys., 2009, 131,
104512.

46 A. Kaminaga, V. K. Vanag and I. R. Epstein, Angew. Chem.,
Int. Ed., 2006, 45, 3087–3089.

47 V. K. Vanag, J. Phys. Chem. A, 1997, 101, 7074–7084.
48 V. K. Vanag and I. Hanazaki, J. Phys. Chem., 1995, 99, 6944–6950.
49 L. Q. Zhou, X. Jia and Q. Ouyang, Phys. Rev. Lett., 2002,

88, 138301.
50 K. Miyakawa, T. Tanaka and H. Isikawa, Phys. Rev. E: Stat.,

Nonlinear, Soft Matter Phys., 2003, 67, 066206.
51 S. Kádár, J. Wang and K. Showalter, Nature, 1998, 391,

770–772.
52 T. Amemiya, T. Ohmori, M. Nakaiwa and T. Yamaguchi,

J. Phys. Chem. A, 1998, 102, 4537–4542.
53 V. Beato, I. Sendiña Nadal, I. Gerdes and H. Engel, Philos.

Trans. R. Soc., A, 2008, 366, 381–395.
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