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Enhanced steady-state dissolution flux in reactive
convective dissolution

V. Loodts, a B. Knaepen, b L. Rongy a and A. De Wit *a

Chemical reactions can accelerate, slow down or even be at the very origin of the development of

dissolution-driven convection in partially miscible stratifications when they impact the density profile in

the host fluid phase. We numerically analyze the dynamics of this reactive convective dissolution in the

fully developed non-linear regime for a phase A dissolving into a host layer containing a dissolved

reactant B. We show for a general A + B - C reaction in solution, that the dynamics vary with the

Rayleigh numbers of the chemical species, i.e. with the nature of the chemicals in the host phase.

Depending on whether the reaction slows down, accelerates or is at the origin of the development of

convection, the spatial distributions of species A, B or C, the dissolution flux and the reaction rate are

different. We show that chemical reactions can enhance the steady-state flux as they consume A and

can induce more intense convection than in the non-reactive case. This result is important in the

context of CO2 geological sequestration where quantifying the storage rate of CO2 dissolving into the

host oil or aqueous phase is crucial to assess the efficiency and the safety of the project.

1 Introduction

Dissolution-driven convection can develop in partially miscible
stratifications when the dissolution of a phase A with a finite
solubility into a host fluid phase creates an unstable density
stratification. This can happen for instance when phase A,
dissolving from above, increases the density of the host phase,
thereby forming a layer of denser fluid rich in A on top of less
dense fluid. Studying such convective dissolution can help
improve the safety of nuclear reactors,1 optimize the industrial
production of chemicals2,3 or understand the physicochemical
processes at hand during CO2 geological sequestration.4,5 The
temporal evolution of dissolution-driven convective dynamics
has been characterized in detail and it has been shown that the
dissolution flux reaches a steady-state value before shutdown.5–9

Understanding the impact of chemical reactions on such dynamics
has recently gained interest because of the potential effect of
geochemistry on the efficiency of CO2 geological sequestration,
when CO2 can react with minerals dissolved in the host fluid or
present in the porous rock matrix of the geological storage site.5,10

Reactions not only consume CO2 but can also affect convection
because they modify solute concentrations affecting fluid proper-
ties such as the density of the solution, leading to different
possible scenarios for the development of convection.11,12

When the dissolving species A reacts with a solute B initially
present in the host solution following an A + B - C type
of reaction, the reaction can slow down or accelerate the
development of convection compared to the non-reactive case
depending on the type of density profile building up in the
host phase, as shown by both experimental and numerical
approaches.2,3,12–19 If C is less dense than B, a density profile
with a minimum is observed and the instability develops
more slowly than in the non-reactive case. In contrast, if C is
sufficiently denser than B, the instability develops faster and
the density profile is monotonic like its non-reactive counter-
part. A simpler reaction where B is solid and no C is produced
reduces the growth rate of convection, because A, at the origin
of the instability, is consumed by the reaction.20–29 In contrast,
when A decreases the density of the solution upon dissolution,
the non-reactive case is buoyantly stable and reactions can be at
the origin of a density profile unstable with regard to convection
due to the creation of a maximum of density.14,19

The different possible convective dynamics in the presence of
reaction have been classified according to whether the reaction
slows down or accelerates the development of dissolution-driven
convection.12–14,17 We here broaden the scope of this classifica-
tion by analyzing the effects of reaction on other aspects of the
convective dynamics in the fully developed non-linear regime.
First, it is important to understand whether the different
successive regimes of the convective dynamics identified in the
non-reactive case can also be observed in reactive cases. Second,
for potential applications it is of interest to characterize the
impact of reactions on the evolution of the flux of A dissolving
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into the host phase, in particular on its steady-state value
already quantified in the non-reactive case,6–9,30–32 and on the
global reaction rate in the host phase. Finally, we aim to
characterize the effects of convection on the dynamics of the
reaction, which also remain poorly understood.

We address these issues by theoretically studying the effects
of an A + B - C reaction on the non-linear dynamics during
dissolution-driven convection in a host fluid phase occupying a
porous medium, relevant to the context of CO2 sequestration.
Similar to previous studies,13,14,16–18,33 we consider equal diffu-
sivities of the three chemical species in order to focus solely on
solutal effects. By varying the relevant control parameters, we
study their effect on the properties of the reaction–diffusion–
convection dynamics: the evolution of the fingering pattern, the
dynamics of the reaction front, the dissolution flux and the
global reaction rate affecting the storage of A into the host fluid
are all quantified. We qualitatively describe the dynamics
observed in the unstable non-reactive case and in three typical
reactive cases: less unstable or more unstable than the unstable
non-reactive counterpart, as well as destabilization by the
reaction of a stable non-reactive counterpart. Further, we derive
simple scalings to predict the steady-state reaction rate and
dissolution flux of A at the interface as a function of the
Rayleigh numbers. Such scalings could be used to predict the
temporal evolution of dissolved A in the host phase.

2 Model

We consider an isothermal, isotropic and homogeneous verti-
cal system, in which two partially miscible phases are placed in
contact along a horizontal interface in a porous medium.13,14

The gravity field g points downwards, along the vertical z̃ axis
perpendicular to the horizontal x̃ axis. Phase A dissolves into the
other lower fluid phase, called the ‘‘host’’ phase as shown in Fig. 1.
The concentration of A at the interface is considered to remain
constant over time, and to be equal to its solubility A0 in the host
phase, following the assumption of local chemical equilibrium.

The host phase contains a reactant B dissolved with an initial
concentration B0. Species A reacts with solute B to produce
another solute C, following a second-order A + B - C reaction.
All three species can thus contribute to changes in density.

The concentrations of B and C are assumed to be small enough
and therefore do not affect the solubility A0 of A into the host phase.

The interface is considered to be permeable to species A but
impermeable to the solvent of the host phase and to solutes B
and C. To focus on the effects of the reaction on the dynamics,
we assume that the interface remains in the course of time at
the same position z̃ = 0 and we study the dynamics in the host
phase only. The host phase extends from x̃ = 0 to L̃ in the
horizontal direction and from the interface at z̃ = 0 to z̃ = H̃ in
the vertical direction.

An equation for the evolution of the fluid flow velocity
ũ = (ũx,ũz) of an incompressible flow is coupled to the reaction–
diffusion–convection (RDC) equations for solute concentrations via
an equation of state for the density.13,14,16,17 The concentrations,
time, spatial coordinates and velocity are normalized using:13,14

A = Ã/A0, B = B̃/A0, C = C̃/A0, (1a)

t = t̃/tc, z = z̃/lc, u = ũ/uc, (1b)

where tildes denote dimensional variables. We non-dimensionalize
the solute concentrations Ã, B̃ and C̃ in eqn (1a) with the
solubility A0 of phase A. In eqn (1b), we use the chemical
time scale tc = 1/(qA0) with q the kinetic constant of the reaction
A + B - C, the RD length scale lc ¼

ffiffiffiffiffiffiffiffiffiffi
DAtc
p

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DA= qA0ð Þ

p
with DA the diffusion coefficient of A and the velocity scale
uc ¼ flc=tc ¼ f

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DAqA0

p
with f the porosity of the medium

at hand.
The dimensionless RDC equations then read:

@A

@t
þ ðu � =ÞA ¼ r2A� AB; (2a)

@B

@t
þ ðu � =ÞB ¼ dBr2B� AB; (2b)

@C

@t
þ ðu � =ÞC ¼ dCr2C þ AB; (2c)

where dB = DB/DA and dC = DC/DA, with DB and DC the diffusion
coefficients of species B and C. Using the notations H = H̃/lc and
L = L̃/lc for the dimensionless height and width of the host phase,
we solve eqn (2a)–(2c) with the boundary conditions (see Fig. 1)

uz(z = 0) = 0; uz(z = H) = 0; u(x = 0) = u(x = L), (3a)

Aðz¼ 0; t40Þ ¼ 1;
@A

@z

����
z¼H
¼ 0; Aðx¼ 0Þ ¼Aðx¼LÞ; (3b)

@B

@z

����
z¼0
¼ 0;

@B

@z

����
z¼H
¼ 0; Bðx ¼ 0Þ ¼ Bðx ¼ LÞ; (3c)

@C

@z

����
z¼0
¼ 0;

@C

@z

����
z¼H
¼ 0; Cðx ¼ 0Þ ¼ Cðx ¼ LÞ; (3d)

and the initial conditions

A(x,z = 0,t = 0) = 1 + e�rand(x); A(x,z 4 0,t = 0) = 0, (4a)

B(x,z,t = 0) = b = B0/A0, (4b)

C(x,z,t = 0) = 0, (4c)Fig. 1 Schematic of the two dimensional system.

Paper PCCP



This journal is© the Owner Societies 2017 Phys. Chem. Chem. Phys., 2017, 19, 18565--18579 | 18567

where b = B0/A0 is the ratio between the initial concentration B0

of reactant B and the solubility A0 of A in the host phase. When
b = 0, the non-reactive case is recovered; when b-N, reactant
B is in large excess with regard to A so that the reaction can be
considered first-order at early times.22–28,33 Eqn (4a) expresses
that perturbations are introduced in the initial concentration
of A at the interface in order to trigger the instability (see
e.g. ref. 34 and 35 for a discussion of the possible types of
perturbations). e{ 1 is the amplitude of the perturbation, here
chosen as 10�3, and rand(x) is its modulation, a function of
the horizontal coordinate x and varying randomly between �1
and 1 (‘‘white noise’’).

The set of eqn (2a)–(2c) is closed using an evolution equa-
tion for the fluid flow velocity of an incompressible flow.
To that end, we assume a linear state equation for the dimen-
sional density ~r of the solution as a function of the solute
concentrations:

~r = r0(1 + aAÃ + aBB̃ + aCC̃), (5)

where r0 is the density of the solvent and ai ¼
1

r0

@~r
@~ci

is the

solutal expansion coefficient of species i. A dimensionless
density can be computed as

~r� r0
rc

¼ RAAþ RBBþ RCC; (6)

where rc = fmD/(gklc) is the density scale, k the permeability of
the porous medium and m the viscosity of the fluid. The
Rayleigh numbers Ri (i = A, B, C) quantify the contribution
of species i to the dimensionless density of the solution,
constructed with the RD length scale (eqn (1b)):

Ri ¼
aiA0gklc
fnDA

¼ aiA0gk
fn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DAqA0

p ; (7)

with n = m/r0 is the kinematic viscosity of the solvent. Expres-
sion (6) is appropriate in the general case where the species
have different diffusivities. The problem is then dependent on
six parameters: dB, dC, RA, RB, RC and b.

We further assume here that all species A, B and C have the
same diffusion coefficient so that dB = dC = 1. We can then add
eqn (2b) and (2c), taking into account the corresponding initial
(eqn (4b) and (4c)) and boundary (eqn (3c) and (3d)) conditions,
to obtain the conservation relation:

B = b�C. (8)

Thanks to this conservation relation, we can reduce the number
of dimensionless parameters further by defining the dimen-
sionless density r as

r ¼ ~r� r0
rc

� RBb; (9)

i.e.

r = RAA + DRCBC, (10)

where DRCB = RC � RB represents the difference between the
contributions to density of product C and reactant B. For equal

diffusivities dB = dC = 1, the definition (10) of r explicitly
highlights that the system is characterized by only three para-
meters, here chosen as† RA, DRCB and b. Darcy’s equation, here
chosen as equation for the fluid flow velocity, and the flow
incompressibility condition expressed as the Poisson equation
then read in the dimensionless form:

=p = �u + rez, (11a)

r2p = =�(rez), (11b)

with p the dimensionless pressure.
We numerically solve eqn (2) with dB = dC = 1, and eqn (10)

and (11) with eqn (3) and (4) on a computational domain of
width L = 3072 and height H = 2048 using the YALES2
software,36 more specifically the DARCY_SOLVER module.37

This software is based on the finite volume method.38 We use
an explicit method called TFV4A or TRK4 (two-step Runge–Kutta
with a fourth-order spatial discretization).39 The dynamics
depend on the random noise added to the initial condition in
eqn (4a). Therefore, for each value of the set of parameters
(RA,DRCB,b), we average the results over 15 realizations to obtain
robust results. Increasing that number of realizations above
15 does not impact the averages and standard deviations of
the results significantly (below 5%). The uncertainty linked to
the different possible noises is quantified as the 95% confidence
interval for two-sided critical regions. In addition, we have
checked that these results averaged over 15 realizations were
robust with regard to the refinement of the iterative conver-
gence tolerance (here 10�10) for solving Poisson’s eqn (11b)
with HYPRE, mesh size Dx = Dz = 4 and time step Dt = 0.5. With
these values, the iterative convergence errors and discretization
errors on the results were smaller than 5%.

We perform a parametric study of the non-linear dynamics
as a function of RA and DRCB while keeping b = 1. Indeed it is
already known that increasing b, i.e. amplifying the amount of
dissolved reactant B with regard to the solubility of A, amplifies
the effect of reaction on the development of dissolution-driven
convection. If the instability develops faster than in the non-
reactive case, a larger b accelerates even more that development;
conversely if chemistry slows down the growth of convection,
increasing b decreases the growth rate of the instability.13,14,16–18

Our objective here is to analyze the effect of changing the nature
of reactants on dissolution-driven convection. We therefore
analyze two main classes of dissolving species A, taking
RA = +1 (�1) representing a component increasing (decreasing)
the density of the host phase upon dissolution. Fixing thus
|RA| = 1 and only varying the sign of RA affects the type of
density profile above the reaction front:12,14 increasing down-
wards if RA = �1 (stable non-reactive counterpart) or decreasing
downwards if RA = 1 (unstable non-reactive counterpart). For
each case, we vary DRCB, which corresponds to scanning various
possible reactant B and product C pairs. To study the effect of
the composition and, in particular, of solutal effects on the

† Note that our previous results13,14 remain the same with this new formulation (10)
for r because they were performed for RB = 0, so that the parameter RC that we
varied is strictly equivalent to DRCB here.
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convective dynamics, we analyze the fingering and reaction zone
evolution, the dissolution flux, and the volume-averaged con-
centrations as a function of DRCB varying between �1 and +1.

3 Dissolution-driven convective
dynamics

We start by qualitatively describing the dissolution-driven con-
vective dynamics in a few specific cases without reaction
(Section 3.1) or with reaction (Section 3.2). We then compare
the fingering dynamics using space–time plots (Section 3.3).

3.1 Non-reactive cases

The non-reactive case can be either unstable (RA 4 0) or stable
(RA o 0) with regard to dissolution-driven convection.

3.1.1 NR case: non-reactive unstable (RA = 1). The non-
reactive (NR) unstable case (RA 4 0) has been well characterized
in the literature, as it corresponds to e.g. the convective
dissolution of CO2 into brine during CO2 sequestration in saline
aquifers.5–9,40 If species A increases the density of the host phase
(RA 4 0), the dissolution of A into a lower host phase progres-
sively creates a buoyantly unstable density stratification. The
dynamics in this unstable non-reactive case is illustrated for a
specific realization in Fig. 2 showing the density field at different
times. The dynamics can be divided into different successive
regimes.8,9 Initially, the miscible contact zone between the
denser zone rich in A below the interface and the less dense
bulk solution below it is flat (Fig. 2a). This zone deforms

gradually once fingers of the denser fluid begin to sink into
the lower part of the host phase (Fig. 2b). At the beginning
these fingers do not interact significantly with each other and
a well-defined wavelength is observed: soon after the onset of
the instability, 22 fingers can be observed on the total width of
3072 (see Fig. 2b), which corresponds to a wavelength of
E140, in agreement with the results of other non-linear
simulations.7,9 After some time, merging becomes a dominant
process and the number of fingers decreases dramatically
(Fig. 2c and d). After this merging regime, the number of
fingers only decreases slightly (Fig. 2e and f). In the reinitia-
tion regime,9,41 small new fingers, called protoplumes,
develop from the boundary layer and then join older fingers
(Fig. 2f).

3.1.2 NR2 case: non-reactive stable (RA = �1). If the density
decreases or does not change upon dissolution of A (RA r 0),
the stratification is buoyantly stable in the absence of reac-
tions as the growing boundary layer rich in A is less dense
than the host solvent. Species A then invades the host phase
by diffusion only, and no convection develops (not shown
here). This corresponds for instance to the dissolution of CO2

into nitrobenzene42 or of most gases (except e.g. CO2) into
aqueous solutions.20

3.2 Reactive cases

We now analyze the effect of chemical reactions on the two
non-reactive cases presented above. To do so, we describe three
specific reactive cases as shown in Table 1.

3.2.1 R1 case: less unstable reactive system (RA = 1,
DRCB = �1). When the solution of C is less dense than that of
B (DRCB o 0), the chemical reaction is expected to slow down
the development of fingering because a minimum develops in
the density profile at the location of the reaction front.13,14,16,17

This has been for instance evidenced when ethyl formate dis-
solves into an aqueous solution of sodium hydroxide (NaOH).
Their reaction forms sodium formate and ethanol as products,
and both contribute less to the density than NaOH.16,17 The
temporal dynamics of the density field shown in Fig. 3 indeed
illustrates that fingers develop more slowly than in the NR case
even if the fingering dynamics can be described by the same
successive regimes: fingers have not developed yet (Fig. 3a), they
grow without interactions between them (Fig. 3b) and they merge
several times (Fig. 3c–f). By contrast to the non-reactive counter-
part, protoplumes already form in the merging regime (Fig. 3f).
The initial number of fingers (see Fig. 3b) is larger than in the NR
case (Fig. 2b), i.e. we have here roughly 26 fingers.

Fig. 4 shows the concentration fields responsible for the
density field shown in Fig. 3f. The dissolving species A is seen

Fig. 2 Density field in the host solution of dimension 3072 � 2048 in the
unstable non-reactive case (NR, RA = 1) at different times t for a typical
realization. The density scale varies between 0 (blue) and 1 (red).

Table 1 Specific reactive cases discussed in Section 3: R1, R2 and R3

DRCB

RA �1 1

1 R1 less unstable reactive R2 more unstable reactive
�1 (not discussed) stable R3 unstable due to reaction
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to be at the origin of the fingering pattern (Fig. 4a). There are no
fingers in the concentration fields of reactant B and product C
although the contact line between the reacted (where A and C
are present) and unreacted (with mostly B) zones is deformed
by the finger tips of A (Fig. 4b and c). The reaction occurs
mostly in a thin zone localized at the tip of the fingers (Fig. 4d),
which corresponds to the position of the minimum of density
as shown by the comparison of the reaction rate map (Fig. 4d)
with the density field (Fig. 3f).

To analyze how the reaction zone evolves with time, we
compute the horizontally-averaged reaction rate profile as

�rðz; tÞ ¼ 1=L

ðL
0

Aðx; z; tÞBðx; z; tÞdx: (12)

The reaction profiles shown in Fig. 5a illustrate that the
localized reaction zone enlarges and moves downwards with
time. In parallel, the value of the maximum reaction rate
decreases progressively. The reaction zone initially consists
of a single peak that progressively deforms (see for instance
t = 20 000 where two local maxima are visible). This can be
explained by the intense coalescence occurring around that
time: fingers have different lengths as merging fingers are
longer than their neighbours (Fig. 3d).

All these characteristics of the reaction zone can be linked
to those of the horizontally-averaged concentration profiles,
computed as

�f ðz; tÞ ¼ 1=L

ðL
0

f ðx; z; tÞdx; with f ¼ A;B;C; (13)

and illustrated at different times in Fig. 5b and c. At early
times o8000, the Ā profile (Fig. 5b) looks like its RD counterpart12–14

as convection is not large enough to significantly affect the concen-
tration profiles, while later Ā is deformed due to the emergence of
fingering. At t = 28 000, we observe a plateau between z E 80 and
420 in which Ā E 0.3. Over a significant depth, Ā remains
almost constant as fingers contain the same quantity of A, but
are thinner near the interface and more spread out just above
the minimum of density, which acts as a barrier that slows
down fingers in their downward progression (Fig. 4a). The
plateau of Ā ends where %B = b � %C starts to increase (i.e. %C
starts to decrease, see Fig. 5c) as species A is consumed by the
reaction and %r rises (Fig. 5a). Lower in the solution, %r reaches a
maximum before decreasing as A has not diffused far enough
and has been depleted by the reaction with B (Fig. 5a). Similar
to the A profile, the C profiles initially look like their RD
counterparts,12–14 i.e. error function-like curves which decrease
from their maximum value b = 1 at the reaction front to zero in
the bulk of the solution (Fig. 5c). However, no bumps appear in
%C because the fingering pattern is mainly due to the denser
dissolving species A (Fig. 4). Analyzing the density profile �r(z,t)
plotted in Fig. 5d shows that the width of the minimum of
density enlarges progressively, so that transition occurs with
time from a strict local minimum to a zone where the density is
constant, corresponding to the plateau value in Ā at t = 28 000
(Fig. 5a).

3.2.2 R2 case: more unstable reactive system (RA = 1,
DRCB = 1). When the contribution of product C to the density
is sufficiently larger than that of the dissolved reactant B,
reactions destabilize the system even more, i.e. increase the
characteristic growth rate in the linear regime.13,14,16,17 This
can happen, for example, when gaseous CO2 dissolves into an
aqueous solution of NaOH13,15,17 or of monoethanolamine,2 or
when ethyl formate dissolves into an aqueous solution of
formic acid (HCOOH).17 The simulations show that fingers
develop more quickly and elongate more rapidly than in the

Fig. 3 Density field at different times t in the R1 case (stabilizing chem-
istry, RA = 1 and DRCB = �1). The scale varies between �1 (blue) and 0 (red).

Fig. 4 Concentration fields of the dissolving species A (a), reactant B
(b) and product C (c) varying between 0 (blue) and 1 (red), and reaction rate
AB (d) varying between 0 (blue) and 0.002 (red) at time t = 28 000
corresponding to the density field shown in Fig. 3f for case R1.
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NR case (Fig. 6). The fingering dynamics in case R2 are character-
ized by the same successive regimes as in case NR: no fingering
(Fig. 6a), linear finger growth (Fig. 6b), merging (Fig. 6c and d),
and reinitiation (Fig. 6e and f). The number of fingers is initially
larger than for the NR case (compare Fig. 6b with Fig. 2b),
in agreement with previous experimental studies13,15–18 and
theoretical studies.14,16,17

We now analyze in Fig. 7 the concentration fields at a given
time to understand how they combine to form the fingering
pattern observed in the density field (Fig. 6d). The dissolving
species A does not penetrate far into the host solution (Fig. 7a).
Reactant A is indeed readily consumed as soon as it enters the
host phase, which limits its progression into the host solution,
in agreement with recent results.18,33 The reaction must be fed
by B diffusing to the upper part of the solution, close to the

interface, where it reacts with dissolved A (Fig. 7b). The fingering
pattern observed in the density field (Fig. 6d) is mainly due to the
denser product C produced close to the interface, sinking into
the lower part of the host solution (Fig. 7c). The convection
mechanism is thus essentially the same as in the non-reactive
counterpart (NR case), except that the contribution of the denser
product C adds to that of the dissolving species A. This explains
why the same types of regimes are observed in both cases.

Fig. 5 Horizontally-averaged profiles of (a) reaction rate %r(z,t) (12),
concentration (13) of (b) dissolving species Ā(z,t) and (c) product %C(z,t),
and (d) density �r(z,t) = RAĀ(z,t) + DRCB

%C(z,t) at different times t for case R1
illustrated in Fig. 3 and 4.

Fig. 6 Density field at different times t in the R2 case (destabilizing
chemistry, RA = 1 and DRCB = 1). The scale varies between 0 (blue) and
2 (red).

Fig. 7 Concentration fields of the dissolving species A (a), reactant B
(b) and product C (c) varying between 0 (blue) and 1 (red), and reaction rate
AB (d) varying between 0 (blue) and 0.01 (red) at time t = 4000 corres-
ponding to the density field shown in Fig. 6d for case R2.

Paper PCCP



This journal is© the Owner Societies 2017 Phys. Chem. Chem. Phys., 2017, 19, 18565--18579 | 18571

The reaction rate AB is the largest along the side of the birth
zone of the density fingers and the contact line between the
boundary layer rich in A and the bulk solution (Fig. 7d).

3.2.3 R3 case: unstable due to reaction (RA = �1, DRCB = 1).
When RA o 0, the non-reactive case is stable and A + B - C
reactions can be at the origin of buoyancy-driven convection as
soon as DRCB 4 0 because a maximum, corresponding to a
locally unstable stratification, then develops in the density
profile.12,14 Therefore we expect a stable boundary layer just
below the interface followed further away at a given distance
from the interface by a locally unstable zone generating fingers
sinking down. This is for example the case when dioxygen (O2)
dissolves into an aqueous solution of methylene blue and
glucose: although the dissolution of O2 does not change the
density of the solution, the alkaline oxidation of glucose by O2,
with methylene blue as the catalyst, forms a denser product.43

As shown in Fig. 8, our numerical results show that fingers
develop from the maximum of density located below the inter-
face and their base has a characteristic shape not observed in
the other cases. Apart from that, the dynamics are similar to
those observed in case R2 (Fig. 6): no fingering (Fig. 8a), linear
finger growth (Fig. 8b), merging (Fig. 8c and d), and reinitiation
(Fig. 8e and f). The reinitiation mechanism can be observed in
Fig. 8f as ‘‘pulses’’ in the fingers, corresponding to merging
with protoplumes.

Like in the R2 case, the fingering pattern (Fig. 8d) is also
mostly formed by solute C (Fig. 9c) sinking into the less dense
solution of B (Fig. 9b) while most of the dissolving species A
is consumed as soon as it enters the solution (Fig. 9a and d).

The remaining A on top decreases the density of the solution
and is thus at the origin of the specific shape of the fingers’
base. Except that specific fingers’ shape, the dynamics is thus
qualitatively similar but slower than that in the R2 case,
probably due to the stable boundary layer between the interface
and the maximum of density.

3.3 Comparison of the space–time plots

The space–time plots shown in Fig. 10 summarize the differ-
ences between the dynamics in the NR case and those in the
three specific reactive cases R1, R2 and R3 discussed above.
These pictures are constructed by plotting the density along a
horizontal line at z = 64, except for case R3 where we had to take
a line below at z = 128 because of the stable boundary layer close
to the interface. The dynamics in case R1 (Fig. 10b) are slower
while those in case R2 (Fig. 10c) are faster than in case NR
(Fig. 10a) because of the different density profiles in the host
phase. In particular, fingers appear earlier and new protoplumes
are generated more frequently in case R2 than in case NR, and
vice versa for case R1. In case R3, fingering occurs (Fig. 10d)
because of the effect of the reaction on the density profile. The
successive regimes describing the dynamics are similar for cases
NR, R2 and R3, while in case R1, some reinitiation already starts
during the merging regime. For all reactive cases R1, R2 and R3,
the wavelength of the fingering pattern when fingers first
become visible is smaller than for case NR, in agreement with
theoretical and experimental predictions.13–18

4 Effect of reaction–diffusion–
convection interplay on the spatio-
temporal dynamics

Motivated by the differences between the dynamics of cases
NR, R1, R2 and R3, we further analyze the spatio-temporal

Fig. 8 Density field at different times t in the R3 case (unstable due
to reaction, RA = �1 and DRCB = 1). The scale varies between 0 (blue)
and 1 (red).

Fig. 9 Concentration fields of the dissolving species A (a), reactant B (b)
and product C (c) varying between 0 (blue) and 1 (red), and reaction rate AB
(d) varying between 0 (blue) and 0.008 (red) at time t = 8000 corres-
ponding to the density field shown in Fig. 8d for case R3.
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dynamics of fingering and of reaction when changing DRCB

between �1 and 1. Our aim is to quantify how the reaction
affects the convective dynamics and conversely how convection
impacts the dynamics of the reaction zone. We have previously
classified the effects of reaction on convection by evaluating
a characteristic growth rate in the linear regime.13,14 Below
a given value DR for DRCB, this growth rate is smaller than its

non-reactive counterpart, and conversely. We now revisit this
classification by examining various aspects of the convective
dynamics in the fully developed non-linear regime before shut-
down: firstly in Section 4 the spatio-temporal dynamics, i.e. the
evolution of the fingering pattern (elongation and wavelength)
and of the reaction zone, and secondly in Section 5 the storage
properties, i.e. at what rate and under which form A is stored in
the host fluid phase. Note that the trends observed when
varying DRCB for a given RA, i.e. when changing the reactant
B–product C pair for a given dissolving species A, are similar for
RA 4 0 and RA o 0. These trends will therefore be illustrated for
RA = 1 only as the same discussion can be repeated for RA = �1.

4.1 Mixing length and velocity

We first analyze the impact of changing DRCB on the evolution
of the mixing length and on the finger velocity. We define the
mixing length zm as the most advanced position along z where
A + C 4 s, with s a small arbitrary threshold here chosen
as 0.01. This position evolves dynamically with time as A
dissolves into the host solution and its reaction with solute B
produces C. This definition of the mixing length represents the
extension of the zone containing A stored in the form of either
dissolved unreacted A or product C (i.e. reacted A).

We can derive analytical expressions for the mixing length
valid before convection sets in. In the non-reactive case, insert-
ing A(zm,t) = s into the diffusive concentration profile40,44

erfc z
�

2
ffiffi
t
p� �� �

of A gives

zmðtÞ ¼ 2
ffiffi
t
p

erf�1ð1� sÞ; (14)

� 3:64
ffiffi
t
p

for s = 0.01, where erf�1 is the inverse error function.
In the reactive case, we introduce C(zm,t) = s into the RD

concentration profile14 2erfc z
�

2
ffiffi
t
p� �� �

of C valid for b = 1
below the reaction front to get

zmðtÞ ¼ 2
ffiffiffi
t
p

erf�1 1� s=2ð Þ; (15)

� 3:97
ffiffi
t
p

for s = 0.01. Eqn (14) and (15) show that the mixing

length in the diffusive regime increases with time as
ffiffi
t
p

, and
increases faster in the presence of a reaction.

The mixing lengths computed from the numerical simula-
tions are shown in Fig. 11. One curve represents the average over
15 realizations. The 95% confidence interval shown as lighter
areas around the curves represents the variability due to the
random noise on the initial condition. We see that the variability
between realizations is amplified when DRCB increases, because
of more intense convection.

Both expressions (14) and (15) (shown in Fig. 11 as dotted
and dashed curves respectively) are valid as long as diffusion
remains the dominant transport process. After a certain transi-
tion time noted as tNL, convection becomes important, fingers

start to move faster and zm starts departing from the
ffiffi
t
p

curve.
zm then increases approximately proportional to t, although
fingers might progressively slow down in some cases (see
e.g. DRCB = 0.5 after t = 7500 in Fig. 11), or exhibit two successive
different velocities. tNL represents the time when non-linearities
significantly affect the vertical elongation of the fingers.

Fig. 10 Space–time plots showing the dynamics of the finger roots,
constructed by plotting the density along the horizontal line at z = 64
(except for (d) at z = 128) as a function of time, for (a) the NR case
illustrated in Fig. 2, (b) the R1 case in Fig. 3–5, (c) the R2 case in Fig. 6 and 7
and (d) the R3 case in Fig. 8 and 9.
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More precisely, we evaluate tNL as the time when the relative
difference between zm and the diffusive prediction (eqn (14) for
non-reactive cases or eqn (15) for reactive cases) becomes larger
than 5%. This time tNL decreases when DRCB increases (Fig. 11
and 12a), which is coherent with the predictions of the linear
stability analysis that the destabilizing effect of chemistry
increases when DRCB increases.14 For DRCB r 0.1, zm deviates
from the diffusive curve later than in the non-reactive case. This
value is of the same order as the critical value 0.32 predicted
by linear stability analyses.13,14 The difference might arise
because tNL is measured here on the basis of fingering

dynamics rather than on the basis of the perturbation with
regard to the base state.

We also define a time t0 for the onset of the instability on
the basis of a given magnitude in velocity, computed as

U2ðtÞ ¼
ÐH
0

Ð L
0 ux

2ðx; z; tÞ þ uz
2ðx; z; tÞ

� �
dx dz. To highlight the

dynamics at early times, we plot U2(t) in a log–log graph
(Fig. 13). For any value of DRCB, the perturbation initially
decreases until a given onset time t0 when it reaches its
minimum. Like tNL, this onset time t0 increases when DRCB is
increased (Fig. 12b). In other words, both linear growth and
non-linear regimes start earlier if DRCB is larger. The critical
value DRCB = 0.2 above which the reaction makes the system
more unstable is slightly larger than the one calculated with
tNL, but still smaller than the prediction of the linear stability
analysis.13,14

In addition, we classify the effects of reaction on convection
at later times, based on the time-averaged finger velocity żm

computed as the least-squares fitted slope of zm(t) between tNL

and the time when the fingers arrive at 95% of the depth of the
host phase. żm increases when DRCB increases (Fig. 12c), so that
as mentioned above we can define a critical value of DRCB above
which fingers advance faster than their non-reactive counter-
parts. This critical value of 0.5 is larger than that evaluated on
the basis of tNL and t0. Indeed for DRCB = 0.5, although fingers
start to accelerate earlier than their non-reactive counterparts
(smaller tNL), they move more slowly at later times and arrive
at the bottom at the same time as in the non-reactive case
(Section 4.1). This can be explained by non-linearities and
interactions between fingers that can slow down the vertical
progression of their tips in the host solution. In addition, for all
measurements tNL, t0 and żm, convection starts earlier and
fingers progress more slowly when RA = �1 than for RA = 1,
probably because of the buoyantly stable zone between the
interface and the reaction front.

In summary, classifying the effects of reactions on convec-
tion can be based on different criteria. This classification
depends on whether we are interested in the onset of the
convective instability, in the time when convection becomes
visible or in the average progression of the fingers in the host
fluid. For intermediate values of DRCB between 0.1 and 0.5,
convection can indeed start earlier but fingers still progress
more slowly than in the non-reactive case. This result

Fig. 11 Mixing length zm, defined as the most advanced position where
A + C 4 s = 0.01, as a function of time for RA = 1 and different DRCB

indicated in the graph. The dotted and dashed black curves represent the
mixing lengths in the diffusive regimes for the non-reactive (eqn (14)) and
reactive (eqn (15)) cases, respectively.

Fig. 12 (a) Time tNL, (b) onset time t0 and (c) finger velocity żm as a
function of DRCB for RA = 1 or �1 indicated in the graph. The dotted line
represents the data for the NR case.

Fig. 13 Perturbation U2 in velocity for RA = 1 and different DRCB indicated
in the graph.
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highlights that the criterion chosen for the classification
depends on what is required for the application: earlier devel-
oping or more intense convection.

4.2 Wavelength of the pattern

The power-averaged mean wavelength �l of the fingering pattern
is computed as45

�lðtÞ ¼ n�1ðtÞ
Ð 1=ð2dxÞ
1=L n Fð�rÞj j2dnÐ 1=ð2dxÞ
1=L Fð�rÞj j2dn

0
@

1
A
�1

; (16)

where n = 1/l is the number of wavelengths per unit distance
and F(�r) is the Fourier transform of the vertically averaged

RDC density profile �r(x,t) evaluated as �rðx; tÞ ¼ 1

H

ÐH
0 rðx; z; tÞdz.

In the following figures, the results are shown until the start of
the shutdown regime occurring after fingers have touched the

bottom of the solution. The wavelength �l typically increases
over time as shown in Fig. 14, i.e. the number of fingers
decreases as fingers become wider or merge with each other.

This increase follows a
ffiffi
t
p

trend in the first regimes of the
convective dynamics, i.e. diffusive, linear growth and flux
growth, when the roots of the fingers remain mostly immobile.

At later times corresponding to the merging regime, �l increases
approximately linearly with time. During this linear increase,
two different slopes can be distinguished: the first one is larger,
expressing intense merging, while the second one is smaller.
For example in case NR, between t E 7500 and 10 000 the
wavelength increases from 200 to 450 over this time period of
2500, while after t E 10 000, the wavelength increases only up
to 750 over a period of 15 000 (see Fig. 2c, d and 10). The slope

of �l(t) increases with DRCB, meaning that fingers merge faster.
In particular, the intense merging can occur faster (approxi-
mately when DRCB Z 0.5) or more slowly (for DRCB r 0.2) than
in the NR case.

By comparing Fig. 11 and 14, we note that the vertical and
horizontal dynamics are linked. In the merging regime, fingers
advance more slowly but merge faster. When two fingers merge,
the resulting finger is denser as solute coming from two fingers
has accumulated in only one finger, a more confined region of
space. Therefore, during the next stage, the resulting denser
finger sinks faster and merges more slowly with others probably

due to its amplified velocity. However, for DRCB r 0.2, fingers
do not accelerate after intense merging, probably because the
consequent increase of the average finger weight is not large
enough to significantly affect the vertical finger velocity.

The sharp increase of the wavelength at short times before
fingers are visible, as shown in Fig. 14 for RA = 1 and DRCB = �1,
might seem surprising but can be explained as follows. Because
perturbations are initially dampened, the largest wavelength
corresponding to the width L of the system has the largest
Fourier amplitude, which increases its weight in the computa-
tion of the power-averaged wavelength. This does not happen
for larger DRCB as the time when we compute the first �l(t) is
larger than the onset time of the instability.

We now compare the wavelength �l in the presence and in the
absence of reactions. During the linear growth of the instability
before merging, �l is always smaller in the reactive case than for
the NR case,16 as already discussed in Section 3 for specific
cases. However, as soon as merging starts, �l can become larger
than its non-reactive counterpart depending on the value of
DRCB, which affects the merging rate as explained here above.

In conclusion, we have highlighted that the horizontal
dynamics characterized by the mean wavelength of the finger-
ing pattern is correlated with the vertical dynamics of the finger
tips in the solution. In addition, although the dynamics of
the pattern remain similar in all cases, changing the value of
DRCB can modify the wavelength in the linear regime and the
merging rate in the successive intense and less intense merging
regimes. Our results also show that the conclusions drawn from
previous studies, i.e. reactions increase the number of fingers in
the pattern,14,16 are not always true in the fully developed non-
linear regime when fingers significantly interact with each other.

4.3 Reaction zone dynamics

Now that we have analyzed the effect of reaction on the
convective fingering dynamics, we turn to the influence of
convection on the dynamics of reaction fronts. We aim to
characterize how and where in the solution the dissolving
species A is converted into product C. Recently, we have
investigated such reaction dynamics in the absence of convec-
tion. To describe the evolution of these reaction–diffusion (RD)
fronts, we have derived analytical expressions for the concen-
tration profiles, valid when the reaction becomes limited by
diffusion, i.e. for times sufficiently larger than the chemical
time scale.12–14 In this limit, the position zf of the reaction front
evolves with time as

zf ¼ 2Zf
ffiffi
t
p
; (17)

where Zf is a constant depending on the control parameters of
the problem. Here, since all species diffuse at the same rate, Zf

depends only on the ratio b between the initial concentration B0

and the solubility A0 as Zf = erf�1(1/(1 + b)), which is E0.48
when b = 1. The RD front delimits two zones: a ‘‘reacted’’ zone
above the front, rich in dissolving species A and product C, and
an ‘‘unreacted’’ zone below the front, with mostly reactant B as
well as some C diffusing towards the bulk solution. With time,
the front moves from the interface towards the bulk of the

Fig. 14 Power-averaged wavelength �l(t) as a function of time for RA = 1
and different DRCB indicated in the graph.
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solution as reactant B is progressively depleted. We now

examine whether the reaction front zf still progresses as
ffiffi
t
p

in
the solution when convection affects the transport dynamics,
and evaluate whether modifying DRCB can alter the progression
of this reaction front or the evolution of its width.

To quantify the dynamics of the reaction zone in the fully
developed non-linear regime, we define the position zf of the
reaction front as the first moment of the horizontally-averaged
reaction rate profile %r(z) (see eqn (12)):

zf ¼
ÐH
0
z�rðzÞdzÐH

0
�rðzÞdz

; (18)

and the width wf(t) of the reaction front as the width of %r(z,t) at
x = 0.1 of its maximum value, proportional to the second
moment of %r(z) around zf:

wf ¼ 2 2 lnð1=xÞ
ÐH
0 z� zfð Þ2�rðzÞdzÐH

0
�rðzÞdz

 !1=2

: (19)

After some time, the reaction front position deviates from the
diffusive prediction (17), as illustrated in Fig. 15a. For DRCB r 0.2,
including the R1 case (RA = 1, DRCB = �1, Fig. 3–5), the reaction
front starts to evolve as t and thus moves faster than the RD
prediction because of convection, which is coherent with what
was observed in horizontal setups where gravity currents
occur.46,47 For DRCB 4 0.5, including the R2 case (RA = 1,
DRCB = 1, Fig. 6 and 7), the reaction front moves backwards and
then stays close to the interface, because amplified convection
brings the fresh reactant B to the interface efficiently. This
result is coherent with the concentrations fields shown in Fig. 7
illustrating that the dissolving species A is consumed as soon as
it enters the host solution. Fig. 15b shows that the width wf of
the reaction zone increases with time and that this increase
varies non-monotonically with DRCB. The largest values of
wf are obtained for intermediate values of DRCB (0–0.5).

The thinnest reaction zones are thus observed when DRCB is
small (o0) and the reaction zone cannot extend due to the
minimum of density, or when DRCB is large (40.5) and the
reaction is particularly efficient due to enhanced convective
transport.

In summary, we have shown that convection does not always
accelerate the progression of the reaction front in the host
solution, depending on the value of DRCB. When DRCB is large,
the reaction takes place in a thin stationary zone close to the
interface. When DRCB is small, the reaction zone is also narrow
but moves progressively to the bulk at a faster rate than in the
absence of convection. The reaction zone is larger for the
intermediate values of DRCB. This means that modifying
the composition of the solution, thus impacting DRCB, qualita-
tively affects the reaction zone dynamics during dissolution-
driven convection.

5 Storage rate in the presence of
reaction

In many applications such as, for example, CO2 sequestration,4,5 it
is desirable to accelerate the mixing between the dissolving phase
and the host phase. Convection increases the mixing between
both phases as it increases the movement of the dissolving
species A further away from the interface, and increases the flux
of A towards the host phase. Moreover, the reaction is expected to
also increase the intake of A through consumption. In this
context, what are the contributions of convection, on the one
hand, and of reaction, on the other hand, to the evolution of the
quantity of dissolved A over time? Is it possible to affect this
evolution by selecting given reactants? Does convection coupled
with reaction increase the degree of mixing compared with the
non-reactive or diffusive-only cases? To answer those questions,
we examine the coupled impact of convection and reaction on the
evolution of the quantity of dissolved A and more globally on the
storage rate of A in the host solution.

5.1 Volume-averaged concentrations

To quantify the storage rate during convective dissolution, we
compute the volume-averaged concentration hcii of species i as
a function of time as

cih i ¼
1

L

1

H

ðH
0

ðL
0

cidxdz: (20)

From this definition (20), we see that, initially, hAi and hCi are
equal to zero as the dissolving species A and the product C are
not present into the host solution yet, while hBi is equal to b.
When the host phase is saturated in A, hAi is equal to 1 which
corresponds to the dimensionless solubility of A in the host
solution and thus to its maximum possible concentration.
When the reaction is complete, all of reactant B has been
converted to C as A keeps dissolving into the host phase, so
that hCi = b and hBi = 0.
hAi increases with time as species A progressively dissolves

into the solution (Fig. 16a). This increase is smaller in the

Fig. 15 Temporal evolution of the properties of the reaction front for
RA = 1 and different DRCB indicated on the graph: (a) position zf (18) with
the RD counterpart (17) plotted as a dashed curve, and (b) width wf (19).
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reactive case compared to its non-reactive counterpart, because
A is consumed by the reaction. When DRCB is amplified,
the increase of hAi over time becomes slower; actually, for
DRCB Z 0.5, hAi is nearly constant for a time period of at least
E10 000. We explain this steady-state regime in Section 5.2. In
addition, as C is produced by the reaction, hCi increases and
this increase is faster when DRCB increases (Fig. 16b). We define
the amount of stored A as hA + Ci, which reflects that species A
can be stored in the form of dissolved A or product C. hA + Ci
increases more slowly in the non-reactive case than in the
reactive case (Fig. 16c), which means that chemical reactions
improve the efficiency of the phase transfer by accelerating the
storage process. Most of the stored A is in the form of product C
and there is only a small amount of dissolved A, as concluded
from the comparison of Fig. 16a–c. Further, the larger DRCB, the
larger the quantity of A stored as product C.

To better understand why hcii evolves as shown in Fig. 16, we
derive evolution equations for these averaged values by inte-
grating over the whole spatial domain the equations (2a)–(2c)
of evolution for the solute concentrations and taking into
account the boundary conditions (3). In the non-reactive case,
the quantity of dissolved A in the host phase evolves with
time as:30

@hAi
@t
¼ J

H
; (21)

which expresses that hAi increases due to the dissolution flux J
scaled by the depth of the system H, as a deeper system takes

more time to achieve saturation. In the presence of reactions,
the hcii evolve as

@hAi
@t
¼ J

H
� r; (22a)

@hCi
@t
¼ r; (22b)

@hAþ Ci
@t

¼ J

H
; (22c)

where r is the volume-averaged reaction rate hABi. Eqn (22)
expresses that the evolution of the quantities of the solutes
depends on the dissolution flux J and the global reaction rate r,
which we analyze here below.

5.2 Dissolution flux and volume-averaged reaction rate

A dissolution flux through an interface can consist of two
different contributions: the convective flux �Au�n, where n is
the unit vector perpendicular to the interface and oriented
towards the outside of the host phase; and the diffusive flux

�@A
@z

across the interface. The convective flux across the inter-

face is here zero by definition (see boundary condition (3a)) and
has been shown to be negligible even when the dynamics in the
upper phase is taken into account.48 We thus compute the
interface-averaged dissolution flux J of species A as

J ¼ �1
L

ðL
0

@A

@z

����
z¼0

dx: (23)

In the diffusive regime, we evaluate the dissolution flux JD

for the non-reactive case as12

JD ¼
1ffiffiffiffiffi
pt
p ; (24)

and JRD for the reactive case as12

JRD ¼
1þ bffiffiffiffiffi

pt
p ; (25)

here equal to 2
� ffiffiffiffiffi

pt
p

as b = 1. Eqn (24) and (25) show that for all
time t, there is a constant ratio JRD/JD = 1 + b between the
reactive JRD and non-reactive JD fluxes in the diffusive regime.
Even without convection, the reactive flux is larger than its non-
reactive counterpart, as shown in Fig. 17a by the dashed curve
representing eqn (25) and the dotted curve representing
eqn (24), and this difference becomes larger when b is ampli-
fied. Chemical reactions amplify the flux of A across the inter-
face because the consumption of A by the reaction increases the
concentration gradient at the origin of the diffusive flux.

As shown in Fig. 17a, the flux initially decreases with time
following eqn (24) (dotted curve) or eqn (25) (dashed curve) as
long as diffusion remains the dominant transport process.
After some time, the flux starts to increase because of convec-
tion and eventually fluctuates around a steady-state value J*.
The temporal evolution of J is qualitatively the same for non-
reactive and reactive cases. Fig. 17b shows that the steady-
state flux J* increases when DRCB increases. We compute the

Fig. 16 Volume-averaged concentrations hcii as a function of time, for
RA = 1 and different DRCB values indicated in the graph.

Paper PCCP



This journal is© the Owner Societies 2017 Phys. Chem. Chem. Phys., 2017, 19, 18565--18579 | 18577

steady-state flux J* as the average over the last time interval
43000 when the variation of the flux with time (least-squares
fitted slope) is no more than a small threshold, here arbitrarily
chosen as 10�6. Some fluctuations occur around J* due to
reinitiation: the flux increases when protoplumes form at the
boundary layer and then become thinner, and conversely the
flux decreases when protoplumes merge with older fingers.9 We
compute J* in the non-reactive case as 0.019, in agreement with
previous studies.6,7,9

The evolution of the volume-averaged reaction rate r = hABi,
shown in Fig. 17c, is similar to that of the dissolution flux J (flux
b) (Fig. 17b): when J increases, r increases too. J and r thus
appear to be correlated as a more efficient reaction increases
the concentration gradient at the origin of the dissolution flux.
After a while r also fluctuates around a steady-state value r*,
which we compute similarly to J* but with a smaller threshold
(4 � 10�10) for the slope of r(t) given that r is three orders of
magnitude smaller than J.

We now analyze the variation of the steady-state reaction
rate r* (dot-dashed curve) and scaled flux J*/H (full curve)
as a function of DRCB in Fig. 18. Both J* and r* increase with
DRCB, with a change of slope at DRCB = 0. When RA = 1, this
increase can be described between DRCB = �1 and 0 by the
empirical fits:

r* = (1.2 � 0.1) � 10�5 + (0.50 � 0.02) � 10�5DRCB, (26a)

J*/H = (1.56 � 0.06) � 10�5 + (0.53 � 0.04) � 10�5DRCB, (26b)

and between DRCB = 0 and 1.2 by:

r* = (1.2 � 0.1) � 10�5 + (1.97 � 0.02) � 10�5DRCB, (27a)

J*/H = (1.56 � 0.06) � 10�5 + (1.69 � 0.04) � 10�5DRCB. (27b)

For RA = �1 and DRCB between 0.5 and 1.2, we have the
empirical fits:

r* = (�0.3 � 0.2) � 10�5 + (2.2 � 0.2) � 10�5DRCB, (28a)

J*/H = (�0.4 � 0.1) � 10�5 + (2.3 � 0.2) � 10�5DRCB. (28b)

The increase of J* and r* with DRCB, described by eqn (26)–(28),
can be explained as follows. When the contribution of the
product C to the density increases, convection starts earlier
and reaches a larger amplitude (Fig. 13). This increased con-
vection accelerates the transport of the fresh reactant B to the
interface, which increases the efficiency of the reaction and
thus the dissolution flux.

For any value of DRCB, the steady-state reaction rate r* is
smaller or equal to the scaled steady-state dissolution flux J*/
H: the reaction is limited by the dissolution rate of A into the
host solution. When RA = 1, we note that if DRCB o 0.5, r* is
typically smaller than J*/H, so that A accumulates in the host
fluid, and hAi increases with time (eqn (22a) and Fig. 16a).
However, as r* increases faster than J*/H when DRCB increases
(see eqn (27a) and (27b)), we see that above DRCB Z 0.5,
r* E J*/H so that hAi remains constant in the steady-state
flux regime (eqn (22a) and Fig. 16a): as soon as A enters
the host fluid, it is consumed by the reaction with B. When
RA = � 1, J*/H E r* for all cases as shown in Fig. 18 and
expressed by eqn (28a) and (28b).

We can explain the change of slope appearing around DRCB = 0
in r*(DRCB) and J*(DRCB) for RA = 1 (see eqn (26) and (27)) as
follows. Let us first recall that when all species diffuse at the
same rate, the density at the interface is given by RA + DRCBb,

Fig. 17 (a) Dissolution flux of species A as a function of time for RA = 1 and
b = 1. The full black and magenta curves represent the fluxes JDC and JRDC

computed using eqn (23) from the numerical simulations for the non-
reactive and reactive cases (DRCB = 0), respectively. The dotted black and
dashed magenta curves represent the fluxes JD (24) and JRD = (1 + b)JD (25).
(b) Influence of varying DRCB on the temporal evolution of the flux.
(c) Reaction rate r = hABi as a function of time for RA = 1 and different DRCB.

Fig. 18 Comparison between J*/H, steady-state flux scaled with regard
to the height of the host solution (full lines) and the steady-state reaction
rate r* (dashed-dotted lines) for RA = 1 (blue), RA = �1 (red) and b = 1. The
scaled steady-state flux JNR*/H in the non-reactive case is plotted as a
black dotted line. (1 + b)JNR*/H, plotted as a black dashed line, is the
theoretical RD value of the scaled steady-state flux in the presence
of reaction.
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the density at the reaction front is DRCBb and the density
of the bulk solution is 0 (see ref. 14 for more details). For
DRCB o 0, the RD density profile in the host solution has a
minimum of density. The difference of density at the origin
of the instability, i.e. the difference between the density at
the interface and at the minimum, is then equal to RA.
Increasing DRCB does not modify this difference but
decreases the amplitude of the stabilizing barrier, i.e. the
difference of density �DRCBb between the minimum and the
bulk solution. By contrast, for DRCB Z 0 the density profile in
the solution is monotonic. The density difference at the
origin of the instability is then the one between the interface
and the bulk solution, which is equal to RA + DRCBb. This
explains why increasing DRCB affects J*/H and r* less when
DRCB o 0 and more when DRCB Z 0.

To analyze the effects of the reaction on the steady-state
scaled flux J*/H, we compare J*/H to its non-reactive counter-
part JNR*/H for RA = 1, plotted in Fig. 18 as a dotted line. For all
DRCB scanned here, J*/H is larger in reactive cases than in the
NR case. This is not surprising as already without convection,
the reaction–diffusion (RD) flux (eqn (25)) is always (1 + b) times
larger than the diffusive flux (eqn (24)).12 To understand
whether this increased steady-state flux is due to RD effects
only or also due to convection amplified by the reaction, we
compare J*/H to the theoretical value (1 + b)JNR*/H for the
reactive case where only RD effects would affect the dissolution
flux. As J*/H increases with DRCB, it becomes larger than
(1 + b)JNR*/H for a critical value of DRCB = 0.2, which corresponds
to the critical value computed from the onset time t0 (see Fig. 12).
In other words, below that critical value, the increase of J* in the
reactive case is due to the consumption of A by the reaction only,
while above that critical value, the increase of J* is also due to
convection amplified by the reaction.

In summary, the presence of reactant B in the solution can
accelerate the storage of A, even before dissolution-driven
convection develops. This can completely change any long-
term predictions concerning the fate of A into the host phase.
However, depending on the composition of the host solution
(impacting DRCB), the convection can be amplified by the
reaction so that the storage occurs even faster than predicted
on the basis of reaction and diffusion alone.

6 Conclusion

We have numerically characterized how the interplay between
an A + B - C reaction and dissolution-driven convection affects
the spatio-temporal non-linear dynamics of fingering and
reaction fronts as well as the storage efficiency of a phase A in
a host fluid phase. Compared to the non-reactive case, reactions
can accelerate or slow down fingering development depending
on DRCB quantifying the difference between the solutal contribu-
tions of product C and of reactant B to density. We have revisited
the classification previously established on the basis of a linear
stability analysis,13,14 showing that in some reactive cases con-
vection starts earlier but fingers progress more slowly in the

solution than in the non-reactive case, due to non-linear inter-
actions between fingers at later times.

In addition, we have presented different types of convective
dynamics, depending on the type of RD density profile building
up in the host phase before convection sets in. We have high-
lighted the fact that, when the product C contributes less to the
density than the reactant B, a local minimum of density slows
down the development of convection and the progression of
fingers in the host phase compared to the non-reactive case.
Hence the reaction front follows the finger tips, but moves
downwards at a faster pace than without convection. The finger-
ing pattern originates then mainly from the dissolving species A,
progressively accumulating in the host solution as its dissolution
takes place at a larger pace than its consumption by the reaction.
By contrast, when C contributes much more to the density than
B, the reaction, which has a destabilizing effect, takes place
mostly in a stationary zone close to the interface. In the steady-
state regime, the dissolving species A is consumed as soon as it
enters the host solution such that the quantity of A in the host
phase remains constant and the fingering pattern is formed
mostly by the denser product C. We have also discussed the case
where the reaction is at the origin of dissolution-driven convec-
tion, because a local maximum forms in the density profile. Due
to this specific density profile, fingers then have a characteristic
shape and form at a given distance below the interface with
phase A.

In the case of reaction, the steady-state flux can be larger than
its non-reactive counterpart because the consumption of the
dissolving species A by the reaction amplifies the concentration
gradient at the origin of the dissolution flux. Both steady-state flux
and reaction rate increase with DRCB as convection develops
earlier and becomes more intense, amplifying the mixing between
phase A and the host phase. Although this model could be
extended to include differential diffusivity effects12 and a variable
solubility depending on the solute concentrations,40 our results
already highlight that selecting an appropriate composition for
the host phase allows us to maximise the positive effect of the
reaction for amplifying the storage rate of A in the host fluid.

These conclusions are useful to predict the fate of CO2 during
its sequestration in subsurface formations and to select storage
sites with geochemical reactions optimal in enhancing convective
dissolution. Knowing the kinetic properties of the geochemical
reaction is not enough to quantify the storage rate; one also needs
to know the contributions to density of all dissolved species. For
other applications where convection enhances mass transfer,
controlling the properties of the dissolution-driven convection
should become possible by selecting the appropriate reactant to
be dissolved in the host solution.
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