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Modelling the propagation of a dynamical
signature in gene expression mediated by
the transport of extracellular microRNAs†

Alexis Grau Ribes, ab Yannick De Decker,ab Claude Gérard*c and Laurence Rongy ab

Extracellular microRNAs (miRNAs) carried by exosomes can play a key role in cell-to-cell communication.

Deregulation of miRNA expression and exosome secretion have been related to pathological conditions

such as cancer. While it is known that circulating miRNAs can alter gene expression in recipient cells, it

remains unclear how significant the dynamical impact of these extracellular miRNAs is. To shed light on

this issue, we propose a model for the spatio-temporal evolution of the protein expression in a cell tissue

altered by abnormal miRNA expression in a donor cell. This results in a nonhomogeneous cellular

response in the tissue, which we quantify by studying the range of action of the donor cell on the surrounding

cells. Key model parameters that control the range of action are identified. Based on a model for a

heterogeneous cell population, we show that the dynamics of gene expression in the tissue is robust to random

changes of the parameter values. Furthermore, we study the propagation of gene expression oscillations in a

tissue induced by extracellular miRNAs. In the donor cell, the miRNA inhibits its own transcription which can give

rise to local oscillations in gene expression. The resulting oscillations of the concentration of extracellular miRNA

induce oscillations of the protein concentration in recipient cells. We analyse the nonmonotonic spatial evolution

of the oscillation amplitude of the protein concentration in the tissue which may have implications for the

propagation of oscillations in biological rhythms such as the circadian clock.

1 Introduction

MicroRNAs (miRNAs) are short sequences of 18–24 nucleotides
that repress gene expression in a post-transcriptional manner.1

Hundreds of different miRNAs are present in mammals and
target most mammalian messenger RNAs (mRNAs).2 MiRNAs
are important regulators for multiple biological processes such
as cell differentiation,3 cell growth and tumorigenesis,4–6 cancer
cell migration,7 morphogenesis,8 the immune system,9 the links
between inflammation and cell transformation,10,11 or the control
of biological rhythms.12 Moreover, they can confer robustness to
gene expression.13,14

In a multicellular organism, cell-to-cell communication is
crucial for the proper development and function of the organ-
ism as well as for the preservation of homeostasis. Besides
direct cell-to-cell contacts and secreted signals through soluble

factors, i.e. inflammatory mediators, cytokines or hormones, an
additional mechanism of intercellular communication mediated
by extracellular vesicles (EVs) such as exosomes and micro-vesicles
has recently been discovered.15,16 Exosomes are nano-vesicles
containing proteins, mRNAs and miRNAs protected by a lipid
bilayer. They are produced by multiple cell types and can be
secreted to neighbouring or distant cells by transport of EVs
through body fluids.17

Secretion of extracellular miRNAs by a donor cell, through
EVs, can alter gene expression profiles in a recipient cell.15

Indeed, several studies showed that miRNAs can be transferred
to immune, cancer or endothelial cells allowing for a modification
of their gene expression levels.18–20 These modes of cell-to-cell
communication are also important under physiological conditions
such as neuronal development and neuron excitability.21–23 EVs
and miRNAs are also key regulators under pathological conditions
such as inflammation and cancers.24–26 In this context, it was
shown that breast cancer cells could affect their surrounding
microenvironment by secreting exosomes that contain extra-
cellular miRNAs, thereby promoting tumorigenesis.27 Cancer cells
can thus create an oncogenic field around them by secreting
extracellular miRNAs.27 However, little is known about the
dynamical consequences of the presence of extracellular miRNAs
on the gene expression levels in the recipient cells. In particular,
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the parameters that could affect the range of action of an extra-
cellular miRNA are still poorly understood.

Previous theoretical studies involving miRNAs have accounted for
the kinetic signatures of their modes of action28,29 and the dynamics
arising as a result of miRNA-mediated translation repression. Other
mathematical models including the miRNA Let-7, a key tumor
suppressor, were proposed to describe the dynamics of gene
regulatory networks involved in the development of lung cancer
or in an epigenetic switch linking inflammation to cell
transformation.30,31 The role played by miRNAs in the dynamics
arising in competing endogenous (ceRNA) networks has been
studied with the help of minimal mathematical models.32,33 In
addition, numerous experimental and theoretical studies based
on reaction-diffusion models pertained to the spatiotemporal
analysis of the formation of morphogen gradients, which is
particularly crucial during embryonic development.34–37 However, to
the best of our knowledge, the spatio-temporal models describing
the dynamics arising as a consequence of extracellular miRNA
propagation are still missing.

In this context, we propose a minimal spatio-temporal
mathematical model based on partial differential equations
for the regulation of the level of a protein output in recipient
cells by the propagation of an extracellular miRNA. Our study
aims at better defining the parameters that could control the
range of action of extracellular miRNAs (see Section 2.1.3),
which can be of great importance for the oncogenic field
generated by cancer cells in their microenvironment. We will
further show how an extracellular miRNA could play a role in
synchronising gene expression in a tissue.

Moreover, several studies indicate that miRNAs are also
key components for the regulation of the circadian clock in
mammals.12,38 Indeed, miR-132 and miR-219, two brain-specific
miRNAs, modulate the circadian rhythms in the suprachiasmatic
nucleus, which is the master circadian clock in mammals and
miR-122 in the liver was also identified as a modulator of the
negative feedback loop driving the circadian clock.12,39 In addition,
the expression levels of some circulating miRNAs were shown to
oscillate with a circadian period, suggesting a role for extracellular
miRNAs in the regulation of the circadian clock.40 To illustrate the
potential impact of extracellular miRNAs in the regulation of
circadian rhythms within a cell tissue, we extend the model by
considering that, in the donor cell, the secreted miRNA is
embedded in a negative feedback loop, which is the core regulatory
motif that allows for the generation of circadian rhythms. The
latter model will allow us to analyze the dynamical consequences of
an oscillating extracellular miRNA on the protein output in recipient
cells and will shed light on how a dynamical signature of gene
expression in a donor cell could be propagated to recipient cells.

2 Results
2.1 Minimal model for miRNA propagation in a cell tissue:
effect on protein output

2.1.1 Description of the model. We propose a minimal
model in order to focus on the effects arising from miRNA

propagation and to separate them from those due to the non-
linear dynamics inherent to the gene regulatory network present
in the cells. The system includes a single type of messenger RNA
whose synthesis is activated by a transcription factor (TF). This
RNA encodes the synthesis of a protein (Prot) and, by forming a
complex (C) with RNA, a miRNA regulates the expression of this
protein. One cell in the middle of the tissue shows abnormal
expression of miRNA and its influence on the protein expression
in neighbouring cells will be studied.

This cell (Cell 0), exhibiting abnormal miRNA expression,
may represent a progenitor cell surrounded by parenchyma
cells or may correspond to a deregulated, i.e. cancer cell. All the
other cells are considered identical so that the spatial concentration
profiles of the different species are symmetric around Cell 0 (Fig. 1).
Because of this geometry, two- or three-dimensional simulations are
not expected to give more information on the dynamics of the
system than one-dimensional (1-D) ones. We thus model the spatio-
temporal evolution of concentrations only in the cells at the right
side of Cell 0 using a symmetrical boundary condition. This
assumption is consistent with other theoretical works that model
the diffusion of miRNAs or morphogens through a 1-D tissue.41–43

We have shown that the conclusions for the 1-D and 2-D systems are
qualitatively the same (see supplementary material S1, ESI†).

The cells can communicate with each other by the transport
of miRNA. We suppose that other species do not travel from one cell
to another. The loading of miRNAs into exosomes, the secretion and
dissemination of these exosomes in the extracellular matrix and their
merging with neighbouring cells are modelled by an exchange term
with an effective transport coefficient (D). The spatio-temporal
evolution of miRNA, RNA, C and Prot is described in each cell by
four differential equations, one for the concentration of each species:

@miRNA

@t
¼ vsmiRNA � k1 �miRNA �RNAþ k2 � Cþ kdC � C

� kdmiRNA �miRNAþD
@2miRNA

@x2
; (1)

dC

dt
¼ k1 �miRNA �RNA� k2 � C� kdC � C; (2)

Fig. 1 Scheme of the minimal model. RNA encodes the synthesis of Prot.
RNA and miRNA can form C, an inhibitory complex that prevents Prot
synthesis. MiRNA is able to propagate to neighbouring cells where it inhibits
the synthesis of Prot. Cell 0 has an abnormal synthesis rate of miRNA
compared to the other cells and the 1-D tissue is symmetric around Cell 0.
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dRNA

dt
¼ vsRNA �

TF4

K4 þ TF4

� �
� k1 �miRNA �RNA

þ k2 � C� kdRNA �RNA;

(3)

dProt

dt
¼ ksProt �RNA� kdProt � Prot: (4)

The definition, value and units of the variables and para-
meters are presented in Table 1. Most terms of the evolution
equations rest on the mass action law such as the formation
and dissociation of the complex C (first two terms of eqn (2)),
the synthesis of the protein (first term of eqn (4)) and the
degradation of each species. We consider that only RNA is
degraded in the complex, C, and miRNA is released in its free
form again (fourth term of eqn (1)). A Hill function is used
for the RNA synthesis term, which is controlled by the oligo-
merization of TF, with a coefficient of cooperativity equal to 4
(first term of eqn (3)). Oligomerization of transcription factors in the
regulation of gene expression has been shown experimentally.44

2.1.2 Estimation of the parameter values of the model. The
calibration of the model was based on experimental measure-
ments for Prot, RNA and miRNA abundance45,46 and for the
rate constants for Prot and RNA degradation.47 RNA abundance
can vary from 1 to 100 copies per cell. Basing our calculations
on 10 copies per cell of 0.01 mm diameter, we estimate a
concentration of 10�2 nM. We therefore use parameter values
for the messenger RNA to obtain a concentration of 10�2 nM for
the basal concentration of RNA. Since protein abundance can
be a thousand times higher than their corresponding RNA copy
number (varying from 100 to 100 000 protein copies per cell),
the parameter values for the protein were chosen to obtain
approximately 10 nM as the basal concentration of the protein
(B13 nM in the first model, B7 nM in the model describing
oscillations). The average half-life durations of RNAs and
proteins are 9 h and 46 h, respectively.47 The corresponding
degradation rates are kdRNA = 0.077 h�1 and kdProt = 0.015 h�1,
respectively. The values of vsRNA, TF, K, k1, k2 and ksProt were

chosen to fit the basal concentration of messenger RNA and
protein. A similar approach was used for the expression of
microRNAs. The abundance of most expressed microRNAs can
vary from 100 to 2000 copies per cell.46 We therefore chose
1000 copies per cell in our model as a representative number
and fixed vsmiRNA and kdmiRNA accordingly. Another important
part of the calibration of the model was the evaluation of the
effective transport coefficient. Experimental measurements of
the velocity of exosomes in the cell, through the membrane
and in the extracellular matrix, have been performed and it can
vary from 10�3 to 1 mm2 s�1 (corresponding to 10�5 and
10�2 mm2 h�1).48 In our study, we have varied the effective
transport coefficient between 10�5 and 1 mm2 h�1.

The condition at the right boundary of the tissue is no-flux.
These equations are integrated numerically using finite differences
in space and a fourth-order Runge–Kutta time integration scheme.
Initial conditions are the stationary solution when the synthesis
rate of miRNA in Cell 0 is the same as in other cells (see Table 1).
The simulation is then initiated by setting the synthesis rate of
miRNA in the donor cell (Cell 0) to a higher value than in other
cells. The tissue is 100-cell long on each side of Cell 0 and
the distance between the centres of two cells is dx = 0.01 mm
in agreement with experimental data showing that 10 mm is a
representative size for the diameter of epithelial cells.49

The corresponding time step is dt = 10�5 h. The effect of the
size of the tissue on the dynamics of the system will be
discussed below.

2.1.3 Range of action of the donor cell. For all the para-
meter values studied here, a steady regime is reached where
stationary gradients of concentrations are observed in the tissue
(Fig. 2A and B). The miRNA concentration is maximum around
Cell 0 due to its abnormal production and then decreases
monotonically through the tissue. In contrast, RNA and protein
concentrations increase monotonically. We define the horizontal
dotted line in Fig. 2 as a threshold of protein concentration below
which the cellular response changes. As a consequence of the
miRNA gradient throughout the tissue, a certain number of cells

Table 1 Variable and parameter definitions, values, initial conditions (i.c.) and units in the minimal model

Symbol Definition Value Units

Variables
miRNA MicroRNA concentration 1.0 (i.c.) nM
RNA Messenger RNA concentration 0.01 (i.c.) nM
C Complex form by RNA and miRNA concentration 0.01 (i.c.) nM
Prot Protein concentration 13.3 (i.c.) nM

Parameters
vsmiRNA Synthesis rate of miRNA (in all cells except Cell 0) 10�1 nM h�1

vsRNA Synthesis rate of RNA 20 nM h�1

TF Transcription factor concentration 10 nM
K Michaelis constant for the activation of RNA synthesis by the transcription factor 10 nM
k1 Rate constant for the binding between miRNA and RNA 103 nM�1 h�1

k2 Rate constant for the dissociation of C 10�3 h�1

kdmiRNA Rate constant for miRNA degradation 10�1 h�1

kdRNA Rate constant for RNA degradation 0.077 h�1

kdC Rate constant for RNA degradation in the complex C 1 h�1

ksProt Rate constant for protein synthesis 20 h�1

kdProt Rate constant for protein degradation 0.015 h�1

D Effective transport coefficient of miRNA 10�5–1 mm2 h�1

Molecular BioSystems Paper



2382 | Mol. BioSyst., 2017, 13, 2379--2391 This journal is©The Royal Society of Chemistry 2017

have their protein concentration below the threshold which
allows us to define therefore the range of action of Cell 0 as the
distance between Cell 0 and the farthest of such cells. We set the
threshold arbitrarily at half the basal protein concentration in
the tissue. We have, however, verified that changing this threshold
does not qualitatively change our conclusions. The range of action
(ROA) is defined in terms of the distance to Cell 0 (xr) as

ROA � xr such as Prot xrð Þ ¼
Protbasal

2
: (5)

An analytical approximation for the range of action can be
obtained from eqn (1)–(4). Adding eqn (1) and (2), we obtain an
evolution equation for miRNA which has only three parameters:
the synthesis rate of miRNA, the rate constant for miRNA
degradation and the transport coefficient. Using no-flux boundary
condition at both the ends of the tissue and imposing a different
synthesis rate of miRNA in Cell 0 than in the rest of the tissue, the
stationary profile of miRNA concentration in the tissue can be
obtained analytically. The stationary concentration of the other
variables in each cell can be obtained by substitution into
eqn (2)–(4). After imposing that the range of action must be
zero when D = 0 and considering that the binding between
miRNA and RNA is much more favourable than their dissociation
(k1 c 1 c k2) and that the length of the tissue is much larger

than the distance between two cells (L c dx), the final
expression reads

ROA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

D

kdmiRNA

r
ln e

dx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D

kdmiRNA

r
� 1

0
B@

1
CAdvs

2

2
64

3
75� dx

2
; (6)

with

dvs ¼
v0smiRNA � vsmiRNA

vsmiRNA
; (7)

where v0
smiRNA and vsmiRNA are the synthesis rate of miRNA in

Cell 0 and in other cells respectively, and dx is the distance
between two cells. Calculations leading to eqn (6) are shown in
the supplementary material S2 (ESI†).

2.1.4 What controls the range of action? As shown in
eqn (6), the range of action only depends on the transport
coefficient, the synthesis rate of miRNA, the rate constant for
miRNA degradation and the distance between the cells. This
has been confirmed in numerical simulations where changing
the value of the other parameters of the model changes the
basal expression of the protein in the tissue only but does not
affect the range of action of the donor cell (see supplementary
material S3, ESI†).

Fig. 2 Stationary profiles of protein concentration. (A) Temporal evolution of the protein concentration in five different cells with D = 10�3 mm2 h�1 and
vsmiRNA = 50 nM h�1 in Cell 0. (B) Stationary profiles of protein concentration in the tissue for several transport coefficients in mm2 h�1. (C and D) Protein
concentration at the steady state in some cells as a function of the transport coefficient of miRNA. (C) vsmiRNA = 50 nM h�1 in Cell 0 and (D) vsmiRNA =
10 nM h�1 in Cell 0. The dotted line is an arbitrary threshold of protein concentration below which the cellular response changes. The tissue is 100-cell long.
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Fig. 2B shows how the stationary gradient of protein concen-
tration in the tissue varies with the value of the transport coefficient
for a given value of the synthesis rate of miRNA. For small values of
the transport coefficient, miRNAs do not propagate far in the tissue,
the protein gradient is steep and the range of action is small. The
cellular response is therefore nonhomogeneous in the tissue. When
the transport coefficient is large, miRNA reaches all the cells and the
protein concentration is almost uniform. The cellular response is
therefore homogeneous in the tissue either below the threshold (see
Fig. 2C for a large synthesis rate of miRNA in Cell 0) or above the
threshold (see Fig. 2D for a small synthesis rate of miRNA in Cell 0).

The fact that transport can act as a sink term of miRNA for
the donor cell and those close to it, and as a miRNA source term
for cells further away in the tissue explains the dependence of
the steady protein concentration as a function of the transport
term. In Cell 0, miRNA concentration decreases and protein
concentration increases with the transport coefficient while the
opposite is true in the cells far away in the tissue. In inter-
mediate cells, the protein concentration goes through a minimum
as a function of D. Enhancing the transport indeed increases
miRNA (decreases the protein) concentration until D reaches a
critical value where increasing it further dilutes miRNA in the
tissue and therefore acts as a miRNA sink term for those
intermediate cells, thereby increasing the protein concentration
(see Fig. 2C and D).

Interestingly, we found that the rate constant for miRNA
degradation (kdmiRNA) has the exact opposite influence on the
range of action as D which cannot be seen straightforwardly
from eqn (1)–(4) but can be identified in eqn (6). Multiplying D
by a factor has the same effect on the range of action as dividing
kdmiRNA by the same factor. The influence of both the para-
meters can thus be analyzed by varying the D/kdmiRNA ratio.

Fig. 3 shows how the range of action depends on D/kdmiRNA

and on the synthesis rate of miRNA. Analytical and numerical
results show a good general agreement. First, we note that

increasing the synthesis rate of miRNA in the donor cell at fixed
D/kdmiRNA ratio always increases the range of action. When the
synthesis rate of miRNA in Cell 0 is not sufficiently large
compared with other cells, the range of action is zero regardless
of the value of the D/kdmiRNA ratio. There is not enough miRNA
produced in Cell 0 to bring the protein concentration below the
threshold (see the red line in Fig. 3 where vsmiRNA is ten times
larger than in the other cells). For intermediate values of the
synthesis rate of miRNA in Cell 0, the range of action presents a
maximum for intermediate D/kdmiRNA ratio and vanishes at
high D/kdmiRNA. This maximum can be understood by the same
mechanism explained above based on the competition between
increasing the distance of miRNA propagation and diluting it
when D/kdmiRNA increases. This maximum will therefore be
observed at a larger D/kdmiRNA ratio when the synthesis rate of
miRNA in the donor cell increases. From eqn (6), we can find an
analytical expression for this maximum. Assuming that the
distance where the maximum occurs, (ROA)max, is typically
larger than dx, we find

D

kdmiRNA

� �
max

¼ dx2
dvs
2e

� �2

; (8)

ROAð Þmax� dx
dvs
2e
� 1

2

� �
; (9)

and we see that the position of the maximum range of action
only depends on the difference between the synthesis rate of
miRNA in the donor cell versus the other cells. We can also find in
the same limit coordinates for which the range of action is zero:

D

kdmiRNA

� �
0

� dx2
dvs
2

� �2

¼ D

kdmiRNA

� �
max

e2: (10)

At sufficiently large D/kdmiRNA, the range of action reaches 0,
which corresponds to the case illustrated in Fig. 2D where all the
cells are above the threshold at large D. Our analytical formula-
tion predicts a negative value for the range of action at high
D/kdmiRNA which means that even Cell 0 is above the threshold for
those conditions. The abnormal expression of miRNA in Cell 0 is
compensated by a large exchange rate.

For higher values of the synthesis rate of miRNA in Cell 0,
since the system is defined by a finite number of cells (here,
100), the cellular response is altered in all the tissue (turquoise
line corresponding to the case illustrated in Fig. 2C where at
large D, all the cells have their protein concentration below the
threshold). This example illustrates the fact that the propaga-
tion of miRNA can be limited by the size of the tissue in in vivo
or in in vitro experiments. Finally, we notice that the analytical
interpretation fails to reproduce the numerical results at high
values of the synthesis rate of miRNA and D/kdmiRNA. This arises
from the assumption, in the analytical formulation, that the
tissue is very long (L c dx) while biological tissues have a
finite size.

2.1.5 Protein expression in a tissue with a heterogeneous
cell population. Cells from in vitro cell culture or from an in vivo
tissue may be very heterogeneous. This is particularly true in
cancer cell populations.50 To account for such heterogeneity,

Fig. 3 Parametric dependence of the range of action. Range of action as
a function of D/kdmiRNA for different values of the synthesis rate of miRNA
in Cell 0 (1, 5, 10, 20 and 50 nM h�1 from bottom to top) obtained with
numerical simulations (solid lines) and analytical formulation (dotted lines).
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we will resort to a model for a heterogeneous cell population
where the value of each parameter in each cell is chosen
randomly within an interval of �20% around its mean value
(Table 1). The model indicates that the protein concentration at
the steady state presents a large variability within the tissue
whether miRNA diffuses or not (see Fig. 4A for a low synthesis
rate of miRNA in the donor cell). This suggests that protein
concentration cannot be homogenised in a heterogeneous cell
population only by the transport of miRNA.

We now turn to the situation where one cell has an abnormally
large synthesis rate of miRNA. We show here that the concept of
range of action discussed in the previous section extends to the
case of a heterogeneous cell population. For small transport
coefficients, several cells close to Cell 0 have their protein
concentration below the threshold because of the large synth-
esis rate of miRNA in Cell 0 (see the red curve in Fig. 4B).
The number of cells with a protein concentration below the
threshold depends on the transport coefficient and the synthesis

rate of miRNA in Cell 0 as illustrated in Fig. 4C. When there is no
diffusion of miRNA, the number of cells below the threshold
varies between 0 and 10 from one simulation to another due to
natural parameter variability (cf. Fig. 4A). We observe a good
agreement between the range of action defined in a homo-
geneous cell population and the number of cells below the
threshold in a heterogeneous cell population. This suggests
that the range of action is in general robust to random variations
in gene expression in the tissue. However, for large values of the
transport coefficient and small values of the synthesis rate of
miRNA in Cell 0, the range of action fails to describe the
dynamics in a heterogeneous cell population. The number of
cells below the threshold indeed saturates around a certain value
in a heterogeneous cell population, while the range of action goes
to zero in a homogeneous cell population for large transport
coefficients as explained in the previous section. This can be
understood by looking at the protein concentration in a hetero-
geneous cell population for large D and low vsmiRNA (Fig. 2D).

Fig. 4 Robustness of gene expression in a heterogeneous cell population. (A) Protein concentration profiles with (green line) and without (black line) transport
of miRNA in the tissue. A random variation of �20% around the default value is used for each parameter in each cell while vsmiRNA = 0.1 nM h�1 in Cell 0.
(B) Protein concentration profiles in the tissue for two different values of the transport coefficient where vsmiRNA = 10 nM h�1 in Cell 0. (C) Number of cells in the
tissue having their protein concentration below the threshold as a function of D for 4 different values of vsmiRNA in Cell 0: 5, 10, 20 and 50 nM h�1 from bottom to
top. 30 simulations were performed for each value of D and vsmiRNA. Dotted lines represent the range of action as a function of D for a homogeneous cell
population. (D) Numerical probability distribution of the protein concentration in Cell 25 for two different values of D in mm2 h�1 and vsmiRNA = 50 nM h�1 in Cell
0 obtained from 3000 simulations. The horizontal dotted line in (A) and (B) and the vertical dotted line in (D) are the defined threshold for cellular response.
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The protein concentration is above the threshold in all the tissues
but close to its value. Therefore, with random variation in the
parameter values, we observe that there is always a certain number
of cells below the threshold (see the blue curve in Fig. 4B).

Finally, we calculated the numerical probability distribution
of the protein concentration in each cell for different values
of the transport coefficient. Fig. 4D shows two probability
distributions in Cell 25 for a large synthesis rate of miRNA in
Cell 0. The absolute variability of the protein concentration is
smaller at large D conferring robustness to the cellular response
(above or below the defined threshold).

In conclusion, it is important to notice that only miRNA can
be transported in our model and that, although its transport is
not enough to smooth out the natural variability in protein
concentration, it is at the origin of the propagation of a dynamical
signature in the protein expression within a range of action even in
a heterogeneous cell population.

2.2 Propagation of temporal oscillations in gene expression
by intercellular exchanges of miRNA

2.2.1 Description of the model. As mentioned earlier,
miRNAs are involved in many biological processes including
biological rhythms.6,12,51,52 Some miRNAs are embedded in a
complex gene regulatory network containing negative or positive
feedback loops53,54 and many miRNAs have been shown to
regulate their own transcription.55 Since miRNAs can move from
one cell to another, one might ask how this transport affects the
dynamics of gene regulatory networks and, conversely, how these
networks influence the transport of miRNA. In this context, we
propose a model to study the impact of diffusive miRNAs
embedded in a negative feedback loop (NFL) in a donor cell (Cell
0) on the expression of a protein output in neighbouring cells. In
Cell 0, one type of miRNA is expressed that can bind with a first
messenger RNA (RNA1). This inhibits the synthesis of a protein
(Prot1). Prot1 is the transcription factor for a second messenger
RNA (RNA2) that encodes the synthesis of another protein (Prot2)
which is the transcription factor for the miRNA (Fig. 5). In
summary, the miRNA inhibits Prot1 expression and therefore its
own transcription. The evolution equations of the concentration of
the different species involved in the NFL in Cell 0 are:

@miRNA

@t
¼ vsmiRNA �

Prot24

K2
4 þ Prot24

� �
� k1 �miRNA �RNA1

þ k2 � C1þ kdC1 � C1� kdmiRNA �miRNA

þD
@2

@x2
miRNA; (11)

dC1

dt
¼ k1 �miRNA �RNA1� k2 � C1� kdC1 � C1; (12)

dRNA1

dt
¼ vsRNA1 � k1 �miRNA �RNAþ k2 � C1

� kdRNA1 �RNA1;

(13)

dProt1

dt
¼ ksProt1 �RNA1� kdProt1 � Prot1; (14)

dRNA2

dt
¼ vsRNA2 �

Prot14

K1
4 þ Prot14

� �
� kdRNA2 �RNA2; (15)

dProt2

dt
¼ ksProt2 �RNA2� kdProt2 � Prot2: (16)

The definition, value and units of the variables and parameters are
presented in Table 2. Hill functions are used for the synthesis of
miRNA (first term of eqn (11)) and RNA2 (first term of eqn (15))
where we consider a coefficient of cooperativity equal to 4 between
the transcription factors, Prot1 and Prot2, respectively. The other
kinetic terms are similar to those in the previous model. The other
cells are assumed to produce only one type of messenger RNA
(RNA3) which encodes the synthesis of a protein (Prot3). These
cells also produce miRNA that inhibits the expression of Prot3.
Since this miRNA is the same as that produced in Cell 0, Prot3
expression is also inhibited by miRNA propagating from Cell 0.
The evolution equations in cells 1 to 100 read:

@miRNA

@t
¼ vsmiRNA � k3 �miRNA �RNA3þ k4 � C3

þ kdC3 � C3� kdmiRNA �miRNA

þD
@2

@x2
miRNA;

(17)

dC3

dt
¼ k3 �miRNA �RNA3� k4 � C3

� kdC3 � C3;
(18)

dRNA3

dt
¼ vsRNA3 �

TF4

K3
4 þ TF4

� �
� k3 �miRNA �RNA3

þ k4 � C3� kdRNA3 �RNA3; (19)

dProt3

dt
¼ ksProt3 �RNA3� kdProt3 � Prot3: (20)

Fig. 5 Scheme of the model for the propagation of temporal oscillations
of gene expression. In Cell 0, miRNA is involved in a NFL in which it
represses its own transcription. Two proteins and two messenger RNAs are
also involved in this loop. In other cells, miRNA regulates the transcription
of Prot3. In these cells, miRNA is not involved in a NFL.
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This model allows the study of how temporal oscillations of miRNA
concentration driven by the NFL in a single cell can propagate in a
tissue and how these oscillations influence the protein output in
neighbouring cells. Initials conditions are the stationary concen-
tration of each variable of the model without Cell 0.

2.2.2 Temporal dynamics emerging from the NFL in Cell 0.
We first focus on the temporal dynamics of the NFL described
in eqn (11)–(16) without considering the transport of miRNA.
Fig. 6A shows the bifurcation diagram of miRNA concentration
as a function of its synthesis rate. Before the Hopf bifurcation
(HB), the system reaches a stable steady state characterised by
a constant miRNA concentration. At the HB, this branch loses
stability (dashed line) and the system presents sustained
oscillations. The green lines represent the minima and the
maxima of the oscillations of miRNA concentration. Fig. 6B
and C show the temporal evolution of the concentrations of
miRNA, Prot1 and Prot2 in the system on both the sides of the
HB. For small synthesis rates of miRNA, concentrations show
damped oscillations before reaching their stationary value. For
larger values, the system reaches an asymptotic oscillatory regime
where the amplitude and the period of oscillations are constant.

2.2.3 Propagation of gene expression oscillations in the
tissue. When miRNA is excreted from the donor cell (Cell 0) and
propagates in the tissue, oscillations in gene expression are
observed in all the cells reached by the miRNA. Fig. 7A shows
the temporal evolution of miRNA concentration in 4 different
cells (Cells 1, 10, 20 and 60). The amplitude of the oscillations
of miRNA concentration is large in Cell 1 because of its
proximity to Cell 0. The amplitude of the oscillations of miRNA
concentration decreases with the distance to Cell 0. At some
distance to Cell 0, miRNA concentration does not oscillate and
remains constant within numerical precision at a value equal to
its initial concentration. The oscillations of miRNA concentration
induce oscillations of RNA3 and Prot3 concentration. Interestingly,
the amplitude of the oscillations of Prot3 concentration is a
nonmonotonic function of the distance to Cell 0. The origin of
this nonmonotonic dependence is discussed below. We also
notice that the shape of the oscillations of Prot3 concentration
changes from one cell to another. This shape depends on the
ratio between miRNA and RNA3 concentration in each cell.
This property is intrinsic to the NFL and is observed in a
homogeneous system as well.

Table 2 Variable and parameter definitions, values, initial conditions (i.c.) and units in the model based on a NFL

Symbol Definition Value Units

Cell 0
Variables
miRNA MicroRNA concentration 0.5 (i.c.) nM
RNA1 Messenger RNA 1 concentration 0.001 (i.c.) nM
C1 Inhibitory complex RNA1–microRNA concentration 0.001 (i.c.) nM
Prot1 Protein 1 concentration 0.5 (i.c.) nM
RNA2 Messenger RNA 2 concentration 0.6 (i.c.) nM
Prot2 Protein 2 concentration 0.2 (i.c.) nM
Parameters
vsmiRNA Synthesis rate of miRNA 10 nM h�1

vsRNA1 Synthesis rate of RNA1 10�1 nM h�1

vsRNA2 Synthesis rate of RNA2 10�3 nM h�1

K1, K2 Michaelis constants for the activation of the synthesis of RNA1
and 2 by the transcription factor (Prot1 and 2)

4 nM

k1 Rate constant for the binding between miRNA and RNA1 103 nM�1 h�1

k2 Rate constant for the dissociation of C1 10�3 h�1

kdmiRNA Rate constant for miRNA degradation 0.02 h�1

kdRNA1, kdRNA2 Rate constant for RNA1 and RNA2 degradation 0.077 h�1

kdC1 Rate constant for RNA1 degradation in the complex C1 1 h�1

ksProt1, ksProt2 Rate constant for the synthesis of Prot1 and Prot2 50 h�1

kdProt1, kdProt2 Rate constant for Prot1 and Prot2 degradation 0.015 h�1

Other cells
Variables
miRNA MicroRNA concentration 1.0 (i.c.) nM
RNA3 Messenger RNA3 concentration 0.01 (i.c.) nM
C3 Inhibitory complex RNA3–microRNA concentration 0.01 (i.c.) nM
Prot3 Protein 3 concentration 13.3 (i.c.) nM
Parameters
vsmiRNA Synthesis rate of miRNA 10�1 nM h�1

vsRNA3 Synthesis rate of RNA3 20 nM h�1

TF Transcription factor concentration 10 nM
K3 Michaelis constant for the activation of RNA3 synthesis by TF 10 nM
k3 Rate constant for the binding between miRNA and RNA3 103 nM�1 h�1

k4 Rate constant for the dissociation of C3 10�3 h�1

kdmiRNA Rate constant for miRNA degradation 10�1 h�1

kdRNA3 Rate constant for RNA3 degradation 0.077 h�1

kdC3 Rate constant for RNA3 degradation in the complex C3 1 h�1

ksProt3 Rate constant for the synthesis of Prot3 20 h�1

kdProt3 Rate constant for Prot3 degradation 0.015 h�1

D Effective transport coefficient of miRNA 10�5–1 mm2 h�1
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2.2.4 What controls the amplitude of gene expression
oscillations in the tissue? The spatial evolution of the average
concentration of miRNA and Prot3 in the asymptotic oscillatory
regime is similar to that of the minimal model: sharp gradients
of concentration are observed for small transport coefficients
while for large transport coefficients the average concentration is
identical in all the cells (Fig. 8A and B). For miRNA concentration,
the amplitude of the oscillations decreases with the distance

from Cell 0 (as shown in Fig. 8C for different D). By increasing the
transport coefficient, oscillations of miRNA concentration can be
observed in all the cells of the tissue. The model shows that,
unlike miRNA, the amplitude of the oscillations of Prot3 concen-
tration shows a nonmonotonic dependence on the distance from
Cell 0 (Fig. 8D). In the cells close to Cell 0, oscillations of Prot3
concentration have small amplitudes because of the high concen-
tration of miRNA in these cells (see the blue curve in Fig. 8E). At
large distance from Cell 0, the amplitude of oscillations of miRNA
concentration is so small that amplitudes of oscillations of RNA3
and Prot3 concentration are also small (see the red curve in
Fig. 8E). The largest oscillations of Prot3 concentration are observed
in intermediate cells where the miRNA average concentration is low
and where the amplitude of the oscillation of miRNA concentration
is large (see the green curve in Fig. 8E). Finally, Fig. 8D shows that
the position of the maximum of amplitude in the tissue increases
monotonically with the value of the transport coefficient. The model
thus predicts a counter-intuitive dynamical behaviour where the
influence of the donor cell can be greater on distant cells than on
cells in its close proximity.

A displacement of the Hopf bifurcation point arises from the
excretion of miRNA from Cell 0, which decreases its local
concentration (see Fig. 9A). An increase in the transport coefficient

Fig. 6 Temporal dynamics of the miRNA-based NFL. (A) Bifurcation
diagram of the miRNA concentration. Before the HB, the red line is the
stationary value of miRNA concentration as a function of vsmiRNA. After the
HB, the stationary state is unstable (dashed line). The green lines are
the minima and the maxima of the oscillations as a function of vsmiRNA.
Temporal evolution of the concentration of miRNA, Prot1 and Prot2 for
vsmiRNA = 0.003 nM h�1 (B) and for vsmiRNA = 0.02 nM h�1 (C). Other
parameter values are as in Table 2.

Fig. 7 Propagation of oscillatory behaviour in gene expression induced by
an extracellular miRNA. Time evolution of the concentration of miRNA in
cells 1, 10, 20 and 60 from top to bottom (A) and of Prot3 in cells 1, 10, 20
and 60 from bottom to top (B). D = 10�4 mm2 h�1 and vsmiRNA = 10 nM h�1

in Cell 0.
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means the synthesis rate of miRNA in Cell 0 must be increased to
compensate for the loss of miRNA. The amount of miRNA
synthesised in Cell 0 is thus an important control parameter as
shown in Fig. 9B. By varying this parameter, one can change the
amplitude of oscillations, displace the maximum of the amplitude
of Prot3 oscillations and also destroy oscillations. Indeed, when

the synthesis rate of miRNA in Cell 0 is small, there is no
oscillation in the tissue and the system reaches a steady state
while at larger values sustained oscillations of Prot3 concentration
appear in the tissue. The amplitude of these oscillations increases
with the value of the synthesis rate of miRNA in Cell 0 and
saturates at large values.

Fig. 8 Influence of the transport coefficient on the amplitude of gene expression oscillations in the tissue. Average concentrations over time of miRNA
(A) and Prot3 (B) at the asymptotic oscillatory regime are shown together with the amplitude of the oscillations of miRNA (C) and Prot3 (D) in the tissue for
different values of the transport coefficient (in mm2 h�1). (E) Trajectories in the phase plane defined by miRNA and Prot3 concentrations in nM for
different cells with D = 10�4 mm2 h�1 and vsmiRNA = 10 nM h�1 in Cell 0.
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3 Discussion

Because they allow for cell-to-cell communication between
cancer cells and normal host cells, it has been suggested that
extracellular miRNAs are crucial components for the regulation
of the tumor microenvironment.27,56–58 In that context, we
proposed a first minimal spatio-temporal mathematical model
for the propagation of an extracellular miRNA from a donor cell
to recipient cells with the aim of highlighting the qualitative
dynamical changes induced by miRNA on the gene expression
profiles in recipient cells (see the scheme in Fig. 1). The model
shows that miRNA produced by the donor cell can significantly
reduce the protein expression in recipient cells. An increase in
the transport coefficient of the extracellular miRNA increases
its range of action (Fig. 2). However, this range of action has a
nonmonotonic dependence on the transport coefficient as we
showed both numerically and analytically (Fig. 3). If the trans-
port coefficient and the extracellular miRNA concentration are
sufficiently large, the model predicts that the protein levels of
all the recipient cells in the tissue could be below a threshold
needed to trigger a cellular response (Fig. 2 and 3). The model
also indicates that an increase in the transport coefficient is
identical to a decrease in the rate constant of miRNA degradation
(Fig. 3).

Exosomal transport can also play a role in the propagation of
drug resistance in tumors.59 The P-glycoprotein is a trans-
membrane protein that can be transferred by exosomes and
its overexpression contributes to drug resistance in cancer cells.

Our modelling approach could be used to study the propagation
of drug resistance by protein-carrying exosomes, which would
represent an interesting step forward in understanding how
propagation phenomena can be simply studied in heterogenous
tissues.

In addition, we have shown that the presence of extracellular
miRNAs could act as a cell-to-cell messenger to synchronise
gene expression levels of multiple cells within a cell tissue.
Indeed, simulations of the model in a heterogeneous cell
population, where 20% of random variation around the average
value is considered for each parameter, indicate that the levels
of protein output in all the cells are below the threshold needed
for a cellular response if sufficient levels of extracellular miRNA
are considered (Fig. 4). The results obtained for a homogeneous
cell population are even more generic since they are robust to
fluctuations in the parameter values and only depend on three
key parameters controlling the transport and the reactivity of
the microRNAs. In that context, extracellular miRNAs could be
viewed as an important cell-to-cell communicator allowing for a
robust homogenisation/synchronisation of the gene expression
levels within the different cells of the tissue. This property could
explain why cancer cells secreting aberrant levels of extracellular
miRNAs can generate an oncogenic field that can modify the
gene expression profile of neighbouring cells.27

We also showed that dynamical signatures of gene expression
can also be propagated to recipient cells through extracellular
miRNAs. Indeed, the secreted miRNA from a donor cell can
oscillate in a periodic manner if it is embedded in a negative
feedback loop (Fig. 5 and 6). The secretion of this oscillating
miRNA generates sustained oscillations of its target transcripts
in recipient cells, even if these transcripts are not involved in
negative feedback regulations (Fig. 7). The model indicates that
an increase in the transport coefficient increases the number of
cells where the protein concentration oscillates but reduces the
amplitude of oscillations (Fig. 8).

The role of extracellular miRNAs in the propagation of
sustained oscillatory behaviours could be of particular importance
for the regulation of biological rhythms such as the circadian
clock. A key issue is to better understand how the circadian clock
from the suprachiasmatic nucleus can be transmitted through
peripheral tissues and how the 24 h-periodic oscillations of the
circadian clock components can be synchronised between the cells
of a tissue. In this context, the model predicts that oscillations
in extracellular miRNAs could be propagated to protein output
in recipient cells. As a consequence, a dynamical signature in a
donor cell, here sustained oscillations, can be propagated
through recipient cells, which can be crucial for cell synchroni-
sation within a tissue. Furthermore, since the protein output in
recipient cells is not directly involved in the negative feedback
regulations defining the circadian clock oscillator, the model
also indicates that extracellular miRNAs could considerably
enlarge the oscillatory potential of numerous gene expressions
within a cell tissue.60 The latter result could explain why gene
expression between cells within a tissue can be synchronised
and why a relatively large proportion of transcripts are oscillating
within a cell.60,61

Fig. 9 Influence of the synthesis rate of miRNA in Cell 0 on the dynamics
of the system. (A) Displacement of the Hopf bifurcation as a function of D.
vc

smiRNA is the critical value of the synthesis rate of miRNA at the HB (in nM
h�1). (B) Amplitude of the oscillations of Prot3 concentration in each cell of
the tissue for different values of vsmiRNA in Cell 0 and for D = 10�4 mm2 h�1.
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Finally, we note that the content of extracellular vesicles
(EVs) reflects the physiological state of their cells of origin.16,62

It was shown that EVs and extracellular miRNAs found in body
fluids may represent a promising source of biomarkers that
could be specific to multiple cancers or other pathological
conditions.63,64 Numerous potential therapeutic strategies arise
to counteract the effect of extracellular miRNAs that promote
cancer development (oncomirs).63,65 Indeed, one option will be
to deliver exosomes containing miRNA sponges that either
target the recipient cells to counteract the oncomirs, or inter-
cept the cancer exosomes directly in the body fluids.65 In future
studies, the spatio-temporal dynamics of specific extracellular
miRNAs involved in cancers could be considered. Such models
would be useful complementary theoretical tools to better
define the conditions leading to a reduction in the oncogenic
field effect and to link the level of oncogenic biomarkers with
the dynamics of gene regulatory networks involving extracellular
miRNAs.
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