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The interplay of reaction and diffusion processes can trigger localized spatiotemporal patterns

when two solutions containing separate reactants A and B of an oscillating reaction are put in

contact. Using the Brusselator, a classical model for chemical oscillations, we show numerically

that localized waves and Turing patterns as well as reaction-diffusion (RD) patterns due to an inter-

action between these two kinds of modes can develop in time around the reactive contact zone

depending on the initial concentration of reactants and diffusion coefficients of the intermediate

species locally produced. We further explore the possible hydrodynamic destabilization of an ini-

tially buoyantly stable stratification of such an AþB! oscillator system, when the chemical reac-

tion provides a buoyant periodic forcing via localized density changes. Guided by the properties of

the underlying RD dynamics, we predict new chemo-hydrodynamic instabilities on the basis of the

dynamic density profiles which are here varying with the concentration of one of the intermediate

species of the oscillator. Nonlinear simulations of the related reaction-diffusion-convection equa-

tions show how the active coupling between the localized oscillatory kinetics and buoyancy-driven

convection can induce pulsatile convective fingering and pulsatile plumes as well as rising or sink-

ing Turing spots, depending on the initial concentration of the reactants and their contribution to

the density. Published by AIP Publishing. [http://dx.doi.org/10.1063/1.4990740]

When maintained out-of-equilibrium, physico-chemical

systems can spontaneously self-organize in so-called dissi-

pative structures featuring space and/or time symmetry

breaking. As an example, convective currents can

develop in fluids in the presence of given gradients of

temperature or of concentration. In the wide class of the

so-called reaction-diffusion (RD) systems, temporal oscil-

lations, traveling waves, or stationary Turing patterns in

which the variables are modulated in space can also

emerge in the presence of non-equilibrium constraints.

Thanks to the pioneering work of Prigogine, the condi-

tions of emergence of such spatio-temporal dynamics are

nowadays well understood. Important theoretical under-

standing of the properties of such dissipative structures

has benefited from progress using the Brusselator model,

a simple autocatalytic chemical model introduced by

Prigogine and Lefever in 1968. The simplicity and

genericity of this model still allow to deepen our under-

standing of chemo-hydrodynamic patterns resulting from

the interplay between reaction-diffusion structures and

convective motions.

I. INTRODUCTION

Far-from-equilibrium, self-organized systems can evolve

towards increased complexity, order and coordinated collec-

tive behaviours as well as chaotic dynamics to name a few.

Chemical oscillations of concentrations in both inorganic and

biological systems represent one of the most fascinating

examples of such complexity in time. Traveling waves and

stationary Turing structures in which the variable of interest is

modulated in space are other examples of the genuine capacity

of physico-chemical systems to organize themselves sponta-

neously when maintained out of equilibrium. Thanks to the

pioneering work of Prigogine and of the members of the

Brussels School of Thermodynamics, the spontaneous emer-

gence of order out of disorder has been rationalized within an

extended theory of non-equilibrium thermodynamics taking

into account far-from-equilibrium conditions where the so-

called dissipative structures can induce spontaneous space

and time symmetry breaking.1,2

In this context, Prigogine and co-workers made funda-

mental theoretical progress including, among others, the

formulation and detailed analysis of the first chemical

model giving a thermodynamically consistent description

of oscillations and spatiotemporal structures in a chemical

system, the Brusselator model.2–5 The simplicity of the

Brusselator has allowed analytical understanding and inter-

pretation of the conditions necessary to induce non-

equilibrium instabilities. As such, it has played an impor-

tant role in deciphering complex dynamics in experimental

systems such as oscillations and waves observed in the

more complex Belousov-Zhabotinsky (BZ)6,7 reaction or

Turing patterns first discovered with the chlorite-iodide-

malonic acid (CIMA) reaction.8 This model is still used to

understand analytically the key mechanisms of pattern for-

mation in spatially extended systems, not only in chemistry

but more generally in the wide class of the so-called reac-

tion-diffusion (RD) systems.
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The kinetic scheme of the irreversible Brusselator model

reads2,3,5

A!k1
X

Bþ X!k2
Y þ D

2X þ Y!k3
3X

X!k4
E :

(1)

This is a typical example of a positive feedback system,2

where fki; i ¼ 1; 4g represents the set of rate constants,

fA; Bg are the initial reactants, fD; Eg are waste products,

and fX; Yg the reaction intermediates with X the autocata-

lytic species. This reaction set embeds the minimal condi-

tions for the onset of chemical oscillations, namely the

production of at least two oscillatory intermediates, one non-

linear step featuring the autocatalytic production of one

intermediate (clock step), a mechanism by which the amplifi-

cation of this autocatalyst is limited and the chemical clock

reset.

The Brusselator has largely been used for the study of

reaction-diffusion (RD) dynamics in conditions where the

initial reactants are homogeneously distributed.2,9 The pres-

ence of gradients in the concentrations of one of the initial

reactants A and B has also been exploited as a means to

induce localized RD structures in the same system.2,9–14 This

can typically occur in experiments when non uniform pro-

files of concentrations of the main reactants result from the

feeding of the system from the sides.8,9,14–18 These concen-

tration gradients can lead to localized waves (such as excy-

clons for instance19,20), Turing patterns spatially confined in

a part of the reactor8,14–18 or coexistence in different parts of

the reactor of waves and Turing patterns.18 In parallel, the

Brusselator has also been largely used to decipher new

spatio-temporal dynamics arising from the interplay between

Turing and Hopf modes in the vicinity of a codimension-two

bifurcation point in conditions where the concentration of

reactants A and B is uniform in space.21–24

Recently, we also analyzed pattern localization in Aþ B
! oscillator systems, in which two gels, each of them con-

taining different reactants A or B of an oscillatory reaction,

are put in contact in a closed reactor.25 Once the gels are in

contact, the reactants can diffuse and fuel locally the nonlin-

ear chemical processes. This problem is the generalisation to

autocatalytic and excitable kinetics of the largely studied

AþB!C front case.26 In the context of the Aþ B ! oscil-

lator system, we used the Brusselator model to explore ana-

lytically the spatio-temporal deployment of waves and of

stationary Turing structures in localized zones of the reac-

tor.25 We provided a general classification of the possible

dynamics and spatial coexistence of different instability

modes as a function of the ratio of the initial concentration

of the two reactants and the ratio of diffusion coefficients of

the reaction intermediates. Depending on the values of

parameters, the system can exhibit either localized waves or

a combination of localized stationary Turing structures and

Hopf modes expanding in space around the codimension-two

Turing-Hopf (CTH) point.

An initial objective of this analysis was to understand

whether such Aþ B ! oscillator RD patterns could be used

as a localized oscillatory forcing of convective hydrody-

namic instabilities in a double-layer liquid system in the

absence of a gel. Concentration gradients triggered by RD

processes can indeed trigger unfavorable mobility gradients

(i.e., here in-situ density gradients) which, in turn, can

induce convection.27 An initially buoyantly stable stratifica-

tion of a less dense reactive solution on top of a denser one

in the gravity field can then undergo a convective instability

mediated by chemical processes when the reaction locally

produces either a product of different density or having a dif-

ferent diffusion coefficient than the one of the initial reac-

tants.27–32 The resulting hydrodynamic patterns show

convective fingers or plumes growing vertically.

Simple kinetic schemes of the AþB!C type have

been largely studied in this context. They have been shown

to drastically affect the space-time morphology of convec-

tive dynamics.29,30,32 In particular, such reactions are able to

break the up-down symmetry of the convective patterns30,32

or can generate different chemo-hydrodynamics structures in

the course of time.32 Nevertheless, in such AþB!C sys-

tems, the RD density profiles underlying the onset of convec-

tive patterns are asymptotically self-similar33 and cannot

feature transverse spatial breaking of symmetry in the

absence of flows or complex temporal dynamics.

The goal of this article is to move a step further in com-

plexity and probe the hydrodynamic destabilization of an ini-

tially stable stratification when an Aþ B ! oscillator

reaction provides the engine for dynamic localized periodic

variations of the density in space and time. Reaction-diffu-

sion-convection (RDC) interplay has already been thor-

oughly investigated for oscillatory systems when the initial

reactants of the oscillatory reaction are homogeneously dis-

tributed in the reactor, showing that RD structures can be

deformed and accelerated by convective flows (see Refs. 34

and 35 and references therein). The RDC interplay has also

been demonstrated to be at the basis of order-disorder transi-

tion in the BZ oscillator.36

Here, we focus on a double-layer system to show the

conditions in which the chemically mediated buoyancy forc-

ing sustained by an oscillator induces (i) pulsatile convective

flows and (ii) transverse breaking of symmetry due to RD

mechanisms (typically a Turing instability) coupling/com-

peting with hydrodynamics. So far, oscillatory and travelling

fingering has been for instance observed in immiscible or

partially miscible vertical double-layer systems, triggered by

Marangoni effects due to the mass transfer from the top to

the bottom layer or induced by a chemical reaction locally

producing a surfactant.31,37,38 A single example of pulsatile

hydrodynamic structures promoted by an oscillatory chemi-

cal source in double layer miscible systems has been

reported only recently39 in experiments where two solutions

each containing a subpart of the oscillating BZ6,7 reaction

are put in contact in the gravity field.

In this context, our objective is to give, via a numerical

study of the Brusselator model, an overview of the possible

chemo-hydrodynamic scenarios in Aþ B ! oscillator sys-

tems that can provide an interpretative framework for RDC
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dynamics already observed, but also inspire new experiments

in the search for new patterns.

The article is organized as follows: in Sec. II, we intro-

duce the RDC model describing the development of the

Brusselator kinetics in the presence of diffusive and convec-

tive transport in a localized reaction zone upon contact along

a given interface between two solutions each containing a

different initial reactant of the chemical oscillator. In Sec.

III, we analyse the spatio-temporal evolution of one-

dimensional profiles of the species concentrations and of the

density, allowing us to predict qualitative features of the

chemo-convective instabilities that can develop depending

on the species contribution to the density. In Sec. IV, we

show spatio-temporal dynamics obtained from numerical

simulations of the full RDC model in two spatial dimensions.

We discuss these scenarios in relation to their density pro-

files and characterize their main features. A concluding dis-

cussion is drawn in Sec. V.

II. MODEL

We consider a two-dimensional system in the reference

frame (y, z), in which z points upwards against the gravita-

tional field g and y is the horizontal axis. In this vertical set-

up, we analyzed a two-layer configuration in which the pools

of miscible reactants A (with density qA) and B (with density

qB) of the Brusselator are initially separated along a horizon-

tal line located at z ¼ zo ¼ Lz=2 (see Fig. 1). This stratifica-

tion is assumed to be initially buoyantly stable (i.e.,

qB > qA). There are initially no intermediate species X and Y
such that the initial condition reads

ðA;B;X;YÞ¼ ðA0;0;0;0Þ Side-1ð Þ forz� z0¼ Lz=2; 8y; (2)

ðA;B;X;YÞ¼ ð0;B0;0;0Þ Side-2ð Þ forz� z0¼ Lz=2; 8y: (3)

We define b ¼ B0=A0 as the ratio between the initial concen-

trations B0 and A0 of reactants B and A, respectively and,

since in our simulations we will use A0 ¼ 1, we have

b ¼ B0.

Upon diffusive mixing and reaction between the two

reactants A and B, some nonlinear dynamics involving the

intermediate species X and Y start to develop in time across

the initial contact line. These spatio-temporal dynamics are

governed by a set of partial differential equations in which

the chemical kinetics is coupled to fickian diffusion and to

natural convection described by Stoke’s equations as

@tAþ ðu � rÞA ¼ DAr2A� k1A; (4)

@tBþ ðu � rÞB ¼ DBr2B� k2BX; (5)

@tXþðu �rÞX¼Dxr2Xþk1A�k2BXþk3X2Y�k4X; (6)

@tY þ ðu � rÞY ¼ Dyr2Y þ k2BX � k3X2Y; (7)

@tDþ ðu � rÞD ¼ DDr2Dþ k2BX; (8)

@tEþ ðu � rÞE ¼ DEr2Eþ k4X; (9)

rp ¼ lr2u� qðA;B;X; Y;D;EÞg; (10)

r � u ¼ 0 ; (11)

where u ¼ ðu; vÞT is the velocity field and p is the pressure.

The dynamic viscosity l, molecular diffusion coefficients

DJ of species J, and acceleration due to gravity g ¼ jgj are

assumed constant. Following a previously used parameter

setting,25 we consider that the main reactants, products and the

autocatalytic species have similar diffusion coefficients DA �
DB � DD � DE � Dx ¼ D while the so-called inhibitor Y dif-

fuses faster to allow for the possibility of observing a Turing

instability. We take here Dy ¼ 10D. The hydrodynamic equa-

tions are written in the Boussinesq approximation, assuming

that reaction-driven density changes only affect the gravita-

tional term qðA;B;X; Y;D;EÞg of Eq. (10) where

qðA;B;X; Y;D;EÞ is the density of the solution depending on

the concentration of all chemical species present in the system.

The concentrations are assumed small enough so that the den-

sity q can be expressed as a linear combination of the concen-

tration fields according to the state equation

qðA;B;X; Y;D;EÞ ¼ q0 1þ
X

J

aJ J
� �

; (12)

where q0 is the density of the solvent and aJ¼ 1
q0

@q
@J is the sol-

utal expansion coefficient of the J-th species with concentra-

tion J, with J 2 fA;B;X; Y;D;Eg.
Following a standard scaling of the variables for the

Brusselator RD equations (see Refs. 5 and 11), we introduce

the set of scaled variables f~t ¼ t=tc; ð~y; ~zÞ ¼ ðy; zÞ=lc; ~A

¼ A= �A; ~B ¼ B= �B; ~X ¼ X= �X; ~Y ¼ Y= �Y ; ~D ¼ D= �D ~E ¼ E= �E;

~u ¼ u=uc; ~r~p ¼ ~rp=pc � q0lcg=pcg, where tc ¼ 1=k4 is

the reaction time scale, lc ¼
ffiffiffiffiffiffiffi
Dtc

p
is the reaction–diffusion

characteristic length, and uc ¼ lc=tc ¼
ffiffiffiffiffiffiffiffiffi
D=tc

p
; pc ¼ l=tc and

f �A ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k3

4=k2
1k3

p
; �B ¼ �D ¼ ðk4=k2Þ; �X ¼ �Y ¼ �E ¼

ffiffiffiffiffiffiffiffiffiffiffi
k4=k3

p
g are

the velocity, the pressure, and the concentration scales, respec-

tively. We also define a dimensionless density ~q ¼ ðq�q0Þ=
qc, where qc ¼ pc=ðlcgÞ. Introducing the stream-function, W,

and vorticity, x, related to the velocity field as u¼ @zW; v
¼�@yW and x¼r�u, the model can then be written in the

dimensionless form

FIG. 1. (a) Schematic of the two-dimensional Aþ B ! oscillator system

under analysis. (b) Example of RD spatial profiles of the Brusselator chemi-

cal species (A;B;X; Y) after solutions A and B start mixing.
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@tAþ @zW@yA� @yW@zA ¼ r2A� kaA; (13)

@tBþ @zW@yB� @yW@zB ¼ r2B� kbBX; (14)

@tXþ@zW@yX�@yW@zX¼r2XþA�ðBþ1ÞXþX2Y; (15)

@tY þ @zW@yY � @yW@zY ¼ dr2Y þ BX � X2Y; (16)

@tDþ @zW@yD� @yW@zD ¼ r2Dþ kbBX; (17)

@tEþ @zW@yE� @yW@zE ¼ r2Eþ X; (18)

r2x ¼
X

J

RJ @yJ 8 J 2 fA;B;X; Y;D;Eg; (19)

r2W ¼ �x ; (20)

where ka ¼ k1=k4 and kb ¼ k2=
ffiffiffiffiffiffiffiffiffi
k3k4

p
; d ¼ DY=D ¼ 10 and,

for convenience, the tildes have been dropped. The solutal

Rayleigh number of the J–th species, RJ, is defined as32

RJ ¼
aJ

�Jgl3
c

�D
; (21)

where � ¼ l=q0 is the kinematic viscosity of the solvent and
�J is the concentration scale of the J–th species. These

Rayleigh numbers quantify the solutal contribution of each

chemical species to buoyancy-driven flows, as they relate the

dimensionless density of the solution to the concentration

fields according to

qðA;B;X; Y;D;EÞ ¼
X

J

RJ J: (22)

In the model, the rate of reactant depletion can be con-

trolled by means of the kinetic parameters ka and kb. When

the autocatalytic process and the consumption of the autocat-

alytic species are much faster than the reactant depletion

steps (in other terms when k1 � k4 and k2 �
ffiffiffiffiffiffiffiffiffi
k3k4

p
) the sys-

tem, though closed, can maintain far-from-equilibrium

chemical conditions and ka and kb can be neglected during

some time. This condition is experimentally possible in

chemical oscillators and is typically encountered in the BZ

system, where oscillations and RD structures persist in

quasi-stationary conditions quite a long time in batch reac-

tors before evolving to equilibrium. For the BZ system, we

have recently shown that numerical simulations of an analo-

gous two-layer system carried out by using the Oregonator

model without reactant consumption compare favourably

with the spatio-temporal dynamics found in the correspond-

ing experiments.40 On the basis of this evidence, we assume

here that ka ¼ kb ¼ 0.

Equations (13)–(20) are solved numerically by using the

Alternating Direction Implicit Method (ADI).32,41 In our simu-

lations, we consider a rectangular domain of dimensionless

width Ly¼ 400 and height Lz¼ 200, discretized over a grid of

800� 400 points (i.e., we use an integration space step

hy ¼ hz ¼ 0:5). We apply no-flux boundary conditions for all

the concentration fields of the chemical species at the bound-

aries of the simulation domain. No–slip conditions are required

at rigid walls for the velocity field32 (i.e., W ¼ 0). Simulations

are run using the integration time step ht ¼ 1� 10�3.

III. DENSITY PROFILES

Possible chemo-hydrodynamic scenarios in the AþB

!Brusselator system can be qualitatively predicted by analy-

sing the morphologies of the one-dimensional density profiles

along the gravitational axis z. These profiles can be re-

constructed from the reaction-diffusion concentration fields38

[i.e., solutions of Eqs. (13)–(18) with W ¼ 0] thanks to the

state equation Eq. (22), and allow us to single out the possible

formation of local areas featuring unfavourable density gra-

dients (e.g., denser fluid overlying less dense fluid or vice
versa) responsible for buoyancy-driven convective instabilities.

Let us then first focus on the dynamical evolution of RD

concentration profiles. The main reactants A and B of the

Brusselator evolve according to the analytical form

Aðy; z; tÞ ¼ 1

2
erfc �ðz� z0Þffiffiffiffi

4t
p

� �
; (23)

Bðy; z; tÞ ¼ b
2

erfc
ðz� z0Þffiffiffiffi

4t
p

� �
; (24)

describing the diffusive smoothing of the initial step function

distributions.

In our previous work,25 we showed that, for the species

X and Y concentration profiles, there are two possible RD

scenarios depending on the values of the diffusion ratio d
and of b. The first one occurs if

b < Fðd;A0Þ; (25)

where

Fðd;A0Þ ¼
A0ðdþ 1Þ2

ðd� 1Þð2
ffiffiffi
d
p
þ A0ðd� 1ÞÞ

8 d <

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

0

p
� 1

A0

 !2

and A0 > 0 : (26)

This regime is characterized by the formation of traveling

pulses of X and Y that emerge below the initial contact line,

move towards Side-2, and vanish at the border of the region

controlled by the Hopf instability.25 This dynamics is sum-

marized in Figs. 2(a) and 2(b) describing the spatio-temporal

evolution of the Brusselator intermediates X and Y.

A second scenario, parametrically defined by condition

b > Fðd;A0Þ ; (27)

shows coexisting and spatially adjacent Hopf and Turing

regimes. In Figs. 3(a) and 3(b), quasi-stationary structures of

the intermediates start forming in the region where the

Turing instability locally induces a transverse breaking of

symmetry. These structures experience in time a drifting

towards the bottom side as soon as they approach the region

where conditions for Hopf and Turing instabilities are simul-

taneously met (CTH point).25

In the most studied AþB!C case, the formation of a

chemical front of the product C across the reactive area leads

to asymptotically self-similar density profiles with no possi-

ble transverse symmetry breaking or temporal oscillations.33
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By contrast, the oscillatory kinetics coupled to diffusion can

sustain periodical changes in the concentration of the chemi-

cal intermediates both in time and space, and hence pulsatile

changes in the density profile. We study how these pulsating

density profiles can provide the engine for a buoyancy-

driven destabilization of initially stable stratifications (i.e.,

qA < qB) as well as for new chemo-hydrodynamic patterns.

To simplify the system, we assume that the reaction

products D and E negligibly contribute to density changes

(RD � RE � 0). Moreover, we consider that the oscillatory

X-species intermediate dominates dynamical and local den-

sity variations due to the reaction and pose RY � 0. This is in

line with what is found experimentally with the BZ reac-

tion,42–44 where density changes are mainly determined by

the periodic transformation of the catalyst from the reduced

into its denser oxidized form. This choice is further moti-

vated by the fact that, in the model dynamics, X is the species

that features a localized oscillatory behaviour close to the

interfacial area, while Y pulses are preceded by a leading

diffusion-limited front propagating towards the bottom layer

[see both Figs. 2(b) and 3(b)]. Since DX ¼ DA ¼ DB ¼ D,

we avoid the occurrence of possible differential diffusion

convective effects.

In the Hopf-dominated RD case, chemical pulses of the

intermediate X are exploited to induce a periodic buoyancy

forcing across the initial interface both when X contributes

positively (RX > 0) or negatively (RX < 0) to the density. In

Figs. 2(c) and 2(d), we show two examples of possible

FIG. 2. Hopf-dominated RD spatio-

temporal behaviour of the Brusselator

intermediates X (a) and Y (b) in the

AþB!Oscillator configuration (A0

¼ 1;B0 ¼ 2). Spatio-temporal density

profiles for X contributing positively

[RX ¼ 1:2, panel (c)] and negatively

[RX ¼ �0:2, panel (d)] to the density.

In (c) RA ¼ 0;RB ¼ 1 while RA ¼ 1;
RB ¼ 1 in (d). z� z0 ¼ 0 represents

the initial position of the interface.

FIG. 3. Turing-Hopf-dominated RD

spatio-temporal behaviour of the

Brusselator species X (a) and Y (b) in

the AþB! oscillator configuration

(A0 ¼ 1; B0 ¼ 15). Corresponding

spatio-temporal density profiles for X
contributing positively [RX ¼ 0:8,

panel (c)] and negatively [RX ¼ �0:2,

panel (d)] to the density. In (c) RA

¼ 0;RB ¼ 1 while RA ¼ 1;RB ¼ 1:1 in

(d). z� z0 ¼ 0 represents the initial

interface.
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shapes of the related density profiles. Panel (a) illustrates the

spacetime evolution in the morphology of the density profile

when RX is positive. We can observe a periodic formation of

a steep density maximum corresponding to the emergence of

new concentration pulses in X which, at the beginning, are

periodically “absorbed” in the downwardly increasing den-

sity profile [see arrows in Fig. 2(c)]. In time, the intensity of

these pulsed density maxima as well as the period by which

they form increase and the system is then expected to switch

to a persistent convective instability. A symmetrical scenario

is found when negative values for RX are considered. In Fig.

2(d), we can follow a typical evolution of the density profile

with RX < 0. In both examples, the periodic occurrence in

time of the density extrema is expected to sustain in the grav-

itational field pulsatile fingering or plumes.

In the scenario where both Hopf and Turing modes coex-

ist, quasi-stationary bands emerging in the concentration pro-

file of X [see Fig. 3(a)] result in density maxima if X
contributes positively to the density and in density minima in

the opposite case. These density profiles, plotted as a function

of the time in Figs. 3(c) and 3(d), respectively, suggest the pos-

sible formation of buoyancy-driven sinking or rising structures.

IV. REACTION-DIFFUSION-CONVECTION PATTERNS

The qualitative information extracted from the morphol-

ogy of the density profiles can be compared to the spatio-

temporal dynamics obtained from the nonlinear simulations of

the full equation system (13–20) for the general cases consid-

ered above. An overview of these chemo-hydrodynamic pat-

terns is presented in Fig. 4. Following the discussion in Sec.

III, this parameter space classifies the possible dynamics on

the basis of the inherent RD case (controlled here by B0 with

d¼ 10) and of the contribution of X to the density profile

(controlled by RX). We can identify four regions. Two of them

correspond to the Hopf-dominated dynamics with RX > 0

(pulsatile sinking fingering) and RX < 0 (pulsatile rising
plumes). The two other ones are obtained when the Turing

instability also comes into play. We can then find Turing

spots, respectively, sinking (RX > 0, Turing rain) or rising

(RX < 0, Turing bubbling) in the gravitational field. Let us

now provide a detailed description and characterization of the

associated spatio-temporal dynamics.

A. Hopf-dominated dynamics, RX > 0

The phenomenology of this scenario is illustrated in the

spacetime plot of density [Fig. 5(a)] featuring the dynamics

of the representative finger framed by the red box of Fig. 4.

There is an initial periodic formation of planar fronts, mov-

ing from Side-1 to the bottom layer, within the expanding

region dominated by the Hopf instability. As described in

Sec. III, for RX > 0 these fronts feature a pulsatile buoyancy

forcing that destabilizes the initially stable stratification

(RA ¼ 0;RB ¼ 1). In time, the planar front deforms into fin-

gers. As observed in the evolution of the density profiles,

during the first stages of the instability, some density max-

ima form and vanish, thus activating and suppressing the

driving force of the buoyancy-driven hydrodynamic instabil-

ity. As a consequence, convective fingers form, grow, and

then smooth-down by spreading in the bottom layer. This

mechanism results in a transient oscillatory fingering, the

lifespan of which decreases by increasing RX. As a matter of

fact, the amplitude of the concentration pulsations in the

chemical intermediate X then increases in time and the corre-

sponding density maxima, though showing an oscillatory

dynamics, cannot be “absorbed” any more in the down-

wardly increasing density profile. The convective fingers

appear then persistently and experience pulsations at their tip

inducing new pulses. These follow pre-existing convective

currents giving rise to segmented fingering patterns.

In order to show the occurrence of oscillatory fingers

close to the interface, we plot in Fig. 5(b) the temporal evo-

lution of the velocity field at y ¼ 20; z ¼ Lz=2, which is the

small square shown in the first frame of the space-time plot

of Fig. 5(a). When convection sets-in (after around 280 time

units), both velocity components show an oscillatory behav-

iour indicative of the pulsatile nature of the flow. A further

quantitative evidence of the oscillatory fingering is given by

plotting the extension of the convective area, L, as a function

of time [Fig. 5(d)]. To compute L, we consider the vorticity

profile, xðy; z; sÞ transversely averaged over the y–direction

hxiðz; tÞ ¼ 1

Ly

ðLy

0

xðy; z; tÞ dy; (28)

and localize tip points of the convective area as the top and

the bottom positions where hxiðz; sÞ becomes less than 0.01.

In Fig. 5(d), we can appreciate how L(t) undergoes after a

FIG. 4. Classification in the parameter space (B0;RX) of the buoyancy-

driven chemo-hydrodynamic scenarios observed in the AþB!Brusselator

system. Red boxes frame a selection of the spatial domain used to build the

spatio-temporal plots of the system, while the horizontal red dashed lines

locate the contact line between the two initial layers. The threshold Fðd;A0Þ
is described by Eq. (26).
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while an oscillatory trend in correspondence of the oscilla-

tory fingering. This is different from the standard AþB!C

cases where L(t) follows a smooth linear growth in the con-

vective regime. Note that, by increasing RX, convection starts

earlier and spreads faster.

Finally, in Fig. 5(c), we characterize the dependence of

the onset time of the convective instability, t	, (defined as

the time at which fingers appear in the concentration fields)

and the characteristic wavelength at convection onset, k	, as

a function of RX. As expected, since RX controls the magni-

tude of the destabilizing density maxima, t	 decreases when

increasing RX, but the effect on k	 is not dramatic in the

range considered.

B. Hopf-dominated dynamics, RX < 0

The RD dynamics associated with this scenario is simi-

lar to the previous case, but since here X is locally decreasing

the density, we can observe the formation of rising plumes

after a given induction period. Once more, in Fig. 6(a), we

capture the spatio-temporal dynamics by following a repre-

sentative portion of the spatial domain (see red box in Fig. 4)

as a function of time. As soon as the hydrodynamic instabil-

ity breaks the transverse symmetry, the resulting chemical

drops rise in the gravitational field and sink again when the

density depletion is overcome. This dynamics results in

chemical spots following a circular trajectory across the

reactive zone as detailed in Fig. 7.

Consistently, the flow is characterized in this region by

an oscillatory velocity profile in time, as seen in Fig. 6(b) giv-

ing the temporal evolution of the horizontal and the vertical

component of the velocity field at the point y ¼ 20; z ¼ Lz=2,

i.e., the red square of the first snapshot of Fig. 6(a). The con-

vective lengths L(t) for values of RX 2 ½�0:6;�0:2
, plotted

in Fig. 6(d), similarly show a non-monotonic and oscillatory

behaviour. The onset time and the wavelength of the pattern

are only slightly affected when RX is varied in the range

[�0.6,�0.2].

C. Turing-dominated dynamics

The dynamics changes drastically when quasi-stationary

Turing structures can locally develop. In the two-

dimensional double-layer configuration under analysis, the

RD system can initially break the transversal symmetry

when the Turing instability is at work. Concentration spots

are then seen to form close to the reactive interface. In the

gravitational field, the emerging array of spots becomes

hydrodynamically unstable45 and these concentration dots

start then falling down if RX > 0, slaved to the local velocity

field that they themselves induce. The spatial distribution of

this Turing rain pattern is characterized by a shorter wave-

length then the one of the pure RD analogues [cfr Fig. 8(a)

vs Fig. 8(b)]. This might be due to the enhanced mixing by

convection at the interface which changes the local concen-

tration of reactant A controlling the pattern wavelength as

k2 ¼ 4p2
ffiffiffiffiffiffiffiffiffiffiffiffi
DXDY

p� �
=Aðy; z; tÞ. The chemical spots decrease

their size when going downward the z-axis, as they progres-

sively homogenize in the bottom layer where the concentra-

tion of X is initially equal to zero. In Fig. 9 (black solid

lines), we track the temporal evolution of the vertical extent

of this RDC Turing rain by plotting the temporal evolution

of the location of the upper and the lower extremes of the

zone embedding the chemical spots. Due to the formation of

locally denser zones, the chemo-hydrodynamic pattern

extends more downwards in the bottom layer with respect to

the related RD dynamics (blue dotted lines).

FIG. 5. (a) Spatio-temporal dynamics

of a representative finger of the pulsa-

tile fingering scenario (A0 ¼ 1;B0 ¼ 2)

obtained for RX ¼ 1:2;RA ¼ 0;RB ¼ 1.

(b) Temporal evolution of the velocity

components vy and vz at the interfacial

check point (y ¼ 20; z ¼ Lz=2) [see the

box in the first snapshot of panel (a)].

(c) Instability onset time t	 and related

wavelength k	 as a function of RX. (d)

Temporal evolution of the mixing

length L(t) for RX 2 ½0:6; 1:2
.
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A reverse behaviour is obtained for negative values of

RX as shown in Fig. 8(c). In this case, Turing spots behave

like bubbles (Turing bubbling) rising in the gravitational

field. Spots form at preferential nucleation points along the

initial two-layer contact line [see arrows in panel (c)] and

tend to follow the upward paths traced by previous spots. As

a result, they are arranged and characterized by a new wave-

length as compared to the RD pattern. As can be observed in

Fig. 9 (dashed red lines), the pattern develop asymmetrically

towards the top layer, while the downward growth of the

FIG. 6. (a) Spatio-temporal dynamics

of a representative plume of the pulsa-

tile plume scenario (A0 ¼ 1;B0 ¼ 2)

for RX ¼ �0:2;RA ¼ 1;RB ¼ 1. (b)

Temporal evolution of the two velocity

components at the interfacial check

point (y ¼ 20; z ¼ Lz=2) [see the red

box in the first snapshot of panel (a)].

(c) Instability onset time t	 and related

wavelength k	 as a function of RX. (d)

Temporal evolution of the mixing

length L for RX 2 ½�0:6;�0:2
.

FIG. 7. Detailed illustration of the circular motion of chemical spots in the

dynamics shown in Fig. 6(a). The image stacks and superimposes consecu-

tive snapshots zoomed across the initial interface (z 2 ½50; 120
; y 2 ½0; 20
)
in the time interval.36,48 Red and blue numbers along the dashed and the

dotted-dashed arrows trace the first (36–43 time units) and the second

(44–48 time units) cycle, respectively.

FIG. 8. Spatio-temporal evolution of chemical patterns (concentration field

of species X) when the Hopf and the Turing domains coexist in the

AþB!Brusselator system (A0 ¼ 1;B0 ¼ 15). Panel (a) shows the forma-

tion of Turing spots in the convection-free system (RX¼ 0), while panels (b)

and (c) sketch the pattern development for positive and negative RX (0.8 and

�0.2), respectively. The arrows in panel (c) indicate the nucleation points of

Turing spots at the interface. The horizontal red dashed lines locate the posi-

tion of the initial contact line between the two reactant layers.
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pattern is very slow. Also note that, though convection is at

play, the upward evolution of the pattern occurs on similar

time and space scales as the RD dynamics. Both for positive

and negative RX, when increasing the absolute value of RX,

the intensity of the local convection intensifies, thus leading

to more complex and disordered dynamics.

V. CONCLUDING DISCUSSION

We have here extended the analysis of the widely stud-

ied buoyancy-driven convective instabilities of AþB!C

systems to the more complex class of AþB! oscillator

reactions, in which reaction intermediates present an oscilla-

tory dynamics.

This nonlinear process occurs at the interface between

two layers containing separately two different reactants of

the chemical oscillator. The destabilizing effect of the reac-

tion is studied for two cases. In the first case, the RD dynam-

ics features a Hopf instability and oscillatory intermediates

form homogeneously along the initial contact line between

the layers. In the second case, the RD dynamics induces a

local transversal symmetry breaking via the formation of

transient Turing structures. These two scenarios were

recently shown to be the only RD dynamics possible for the

system under analysis.25 Guided by the properties of these

RD dynamics and of the associated density profiles along the

gravitational field, we show that, in the absence of gels, new

chemo-hydrodynamic scenarios such as pulsatile convective

flows can develop. In order to point out the role of a periodic

chemical forcing, we considered that only one oscillatory

intermediate species can change the local density. We found

that four spatio-temporal dynamics are possible depending

whether the Hopf or the Turing instability initially develops

across the reactive area and, for each of them, whether the

oscillatory intermediate locally increases or decreases the

density.

When the Hopf instability rules the dynamics, a hydro-

dynamic transverse destabilization of the initial interface can

be observed due to the periodic formation and annihilation

of density maxima (RX > 0) or minima (RX < 0). As a result,

oscillatory and pulsatile fingers or plumes are promoted,

respectively. The experimental identification of some of

these scenarios could be achieved by studying in a Hele-

Shaw cell a photo-sensitive BZ oscillator.46 This would

allow to locally activate the oscillatory mechanism by a dif-

ferent irradiation through the excitable medium. The inter-

face of an initially buoyantly stable stratification of the two

reactant pools could be then periodically forced by means of

an external pulsated and collimated light. Similarly, photo-

chromic species giving a transition between structural iso-

mers with different densities when irradiated could be

suitably exploited in this context, by imposing external peri-

odic irradiation of the double-layer system at the interface.

Based on a similar concept, chemo-convective oscillations

have been devised.47

In the Hopf domain, we can also obtain RD waves that

travel transversely along the reactive zone.25 In this case,

travelling fingers or plumes can be expected, provided that

the waves locally increase or decrease the solution density.

Such a kind of dynamics has been observed with the

Belousov-Zhabotinsky reaction carried out in a double-layer

configuration.39,48 In this system, oxidized waves moving

horizontally along the reactive interface couple to vertically

growing fingers induced by in-situ buoyancy chemical

forcing.

When a reaction-diffusion Turing mechanism triggers a

transversal break of symmetry and spots form across the

reactive interface, Turing rain or Turing bubbling dragged

by the spot-wise chemically driven velocity field can then

occur depending whether RX > 0 or RX < 0. Note that, in

this case, when the absolute value of RX is increased, a trans-

versal breaking of symmetry due to a hydrodynamic instabil-

ity may occur first and the spatio-temporal dynamics is then

closer to the pulsated fingering observed in the Hopf-

dominated regime. The possibility for these scenarios could

be explored by using the BZ reaction in a micellar medium,

where conditions for different morphologies of the Turing

structures can be obtained.

A possible extension of this theoretical investigation

should include the contribution of the second chemical inter-

mediate Y to the density and, hence, its synergetic interplay

with X in the convective dynamics. Similar studies should

also be developed to take into account possible reaction-

driven viscosity changes in autocatalytic systems. This should

allow for the uncovering of new chemo-hydrodynamic pat-

terns and dissipative structures merging the complexity of

both convective and RD patterns.
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