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h i g h l i g h t s

• A model of chemical chaos in a crowded system is investigated.
• The model is studied with deterministic and stochastic simulations.
• Molecular crowding generates absorbing states which can destroy chaos.
• Inhomogeneous fluctuations can transform chaos into regular oscillations.
• Diffusion and system size act as effective bifurcation parameters.
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a b s t r a c t

In spatially restricted media, interactions between particles and local fluctuations of density can lead
to important deviations of the dynamics from the unconfined, deterministic picture. In this context, we
investigated how molecular crowding can affect the emergence of chaos in small reactive systems. We
developed to this end an amended version of the Willamowski–Rössler model, where we account for the
impenetrability of the reactive species. We analyzed the deterministic kinetics of this model and studied
it with spatially-extended stochastic simulations in which the mobility of particles is included explicitly.
We show that homogeneous fluctuations can lead to a destruction of chaos through a fluctuation-induced
collision between chaotic trajectories and absorbing states. However, an interplay between the size of
the system and the mobility of particles can counterbalance this effect so that chaos can indeed be
found when particles diffuse slowly. This unexpected effect can be traced back to the emergence of
spatial correlations which strongly affect the dynamics. The mobility of particles effectively acts as a
new bifurcation parameter, enabling the system to switch from stationary states to absorbing states,
oscillations or chaos.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Nanosystems offer a wide range of applications in materials
science, biology, medicine and catalysis. Polymeric or lipidic
micelles are for example used as drug delivery vehicles and the
geometry of the nanopores of zeolites allows one to improve the
selectivity of chemical reactions [1]. The dynamics of reactions
taking place in such small systems can reveal especially complex,
as it emerges from the interplay between numerous effects.
The small size of these structures induces the confinement of
molecules, which can lead to changes in the mechanism and in
the rate of the reactions, as compared to unconfined systems [2].
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The interactions between adjacent particles and the fluctuations of
particles densities can also lead to important deviations from the
traditional mass action law [3–5].

In this context, the very possibility of observing chaotic
dynamics at the nanoscale has been widely debated in the
literature. It is well established that at a macroscopic level the
traditional laws of chemical kinetics, despite their deterministic
nature, can lead to a chaotic evolution of the concentrations in both
time and space. However, reactions are intrinsically discrete events
taking place with a given probability. The number of particles
is thus a discrete and fluctuating quantity and the dynamics of
reactive systems is expected to be affected by such fluctuations of
internal origin. According to Fox and Keizer, in a chaotic system,
fluctuations are amplified and are of the same order of magnitude
as the variables of interest [6]. Chaos of deterministic origin should
thus not be expected in small systems. In fact, the authors put forth
the idea that the validity of the deterministic equations themselves
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becomes questionable. On the contrary, Nicolis et al. argued that
the existence of an underlying (strange) attractor confers a certain
robustness to deterministic chaos. The macroscopic laws would
still be valid and would correctly predict the evolution of the most
probable value of the variables [7]. As a consequence, a ‘‘blurred’’
form of deterministic chaos could be observed in systems subject
to internal fluctuations.

This question has also been addressed with numerical simu-
lations. For small well-stirred systems, chaos has been observed
with Gillespie simulations of the master equation for the Willam-
owski–Rössler model [8], while it was seen to disappear totally in
other instances [9]. It appears from these studies that the competi-
tion between the strange attractor and other attractors (like fixed
points) plays an important role. Several studies also addressed the
role of diffusion in the emergence of chaotic behaviors. Kapral and
Wu used reactive lattice-gas automata to analyze the behavior
of the Willamowski–Rössler [10,11] and of the autocatalator [12]
models in the case of dilute systems. They concluded that chaos
can indeed be observed when species diffuse sufficiently rapidly,
and that the presence of fluctuations reflects itself under the form
of dephasing and smoothing of the trajectories in phase space. For
slowly diffusing molecules, destruction of phase coherence is ob-
served and no form of structured chaos can be found.

None of the above works considered the role played by
the molecular confinement that is characteristic of reactive
nanosystems. However, it is well known that crowding effects in
stochastic systems can result in the emergence of inhomogeneous
fluctuations of composition that affect diffusion [13] and the
chemical dynamics both quantitatively and qualitatively. Several
reactive nonlinear behaviors have for example been studied on
low-dimensional lattices :

1. the reversible reaction A + nX 
 (n + 1)X with n = 1 and
n = 2 [14–16];

2. the Schlögl models I and II [17];
3. a lattice Lotka–Volterra model [18,19];
4. a modified lattice Lotka–Volterra model where one of the

bimolecular reaction steps is replaced by a quadrimolecular
process [20];

5. nonspatial and spatial individual level models describing
prey–predator dynamics [21–23];

6. a Brusselator model with nonlocal interactions [24];
7. a population dynamics model involving four interacting

species and exhibiting chaotic behavior in the macroscopic
description [25].

The spatial restrictions induced by the substrate can lead to a
displacement of stationary states [14,15,17,18] or to the disap-
pearance of dynamical behaviors predicted by the deterministic
description (such as bistability [17] and oscillations [18]). The
dynamics of these systems is dominated by fluctuation-induced
transitions to poisoning or absorbing states where some species
are completely consumed, or in other cases, intrinsic fluctuations
can give rise to coherent cyclic behaviors [22,23] or to traveling
waves [24].

In this work, we investigate how confinement can affect
the conclusions drawn on the existence of chaotic behaviors in
fluctuating reactive systems. We develop to this end an amended
version of the classical Willamowski–Rössler model [26] where
we account for molecular crowding. This model is described in
Section 2. In Section 3, we analyze the deterministic kinetics of
this model. We focus in particular on the determination and on
the linear stability analysis of the stationary states, and on the
parametric conditions leading to deterministic chaos. Then, we
study the influence of fluctuations with stochastic simulations
(Section 4). We consider both the well-stirred limit and the
role of diffusion. We show that because of the existence of
absorbing states, chaotic behaviors are destroyed for a wide range
of parameters and system sizes for well-stirred systems.When the
mobility of the species is low, chaos disappears as well because
of a destruction of phase coherence similar to what has been
reported earlier in the literature. However, and more surprisingly,
we observe that chaos can reappear and that regular oscillations
can be found for intermediate mobilities of the reactive species. In
Section 5, we summarize the main conclusions of this study and
possible future work is presented.

2. Extension of the Willamowski–Rössler model

The Willamowski–Rössler model is a thermodynamically
consistent model for deterministic chaos in reactive systems. It
involves 5 chemical reactions taking place in a well-stirred, ideal
and isothermal system [26]:

A1 + X
k1


k−1

2 X (1)

X + Y
k2


k−2

2 Y (2)

A5 + Y
k3


k−3

A2 (3)

X + Z
k4


k−4

A3 (4)

A4 + Z
k5


k−5

2Z. (5)

The activities ai of the species Ai are kept constant thanks to
exchanges with external reservoirs (chemostats), in order to
maintain the system out of equilibrium. Deterministic chaos can
be observed for a wide range of parameters in this model. For
example, in the simplifying limit where k−2 = k−3 = k−4 = 0
and k2 = k4 the deterministic evolution laws for the populations
χx, χy and χz

dχx

dt
= k1 a1 χx − k−1 χ2

x − k2 χx χy − k4 χx χz (6)

dχy

dt
= k2 χx χy − k3 a5 χy (7)

dχz

dt
= −k4 χx χz + k5 a4 χz − k−5 χ2

z , (8)

lead to chaos through a succession of period doublings. This
dynamics can be traced back to a saddle-focus configuration
centered around one of the 6 possible steady states associatedwith
Eqs. (6)–(8).

The Willamowski–Rössler model rests on the assumption that
the reactions take place in an ideal (and thus a dilute) system.
At high concentration however, molecular crowding is expected
as a consequence of the finite size of the different molecules
involved. To include such effects,we consider that the three species
of interest X, Y and Z are contained in a system having a finite,
constant volume. We then divide space in a collection of boxes
forming a regular discrete lattice. Each of these boxes can either be
occupied by a single particle of X, Y or Z, or be empty (we denote
such empty boxes with the symbol S). Consequently, the molar
fractions of the different species of interest are connected at all
times by a conservation rule:

x + y + z + s = 1, (9)
wheremolar fractions are defined as the ratio between the number
of boxes occupied by a species and the total number of boxes. The
other reactants Ai are placed outside the volume of the reaction
chamber and their activities are maintained constant like in the
original Willamowski–Rössler model.
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Because the volume of the system must remain constant at all
times, and in order to comply with Eq. (9), the reactions (1)–(5)
must be changed to

A1 + X + S
k1


k−1

2 X (10)

X + Y
k2


k−2

2 Y (11)

A5 + Y
k3


k−3

A2 + S (12)

X + Z
k4


k−4

A3 + 2 S (13)

A4 + Z + S
k5


k−5

2 Z. (14)

The first reaction now accounts for the fact that the creation of a
particle X in the system can only take place if an empty space S is
available. The destruction of a Y particle in reaction (13) frees an
empty space in the system since A2 is outside the volume where
spatial restrictions apply. The other reactions have been adapted
in a similar fashion.

Adopting the same restricted set of parameters as what is
done for the traditionalWillamowski–Rösslermodel, the evolution
equations for the molar fractions read

dx
dt

= k1 a1 x s − k−1 x2 − k2 x y − k4 x z (15)

dy
dt

= k2 x y − k3 a5 y (16)

dz
dt

= −k4 x z + k5 a4 z s − k−5 z2. (17)

These equations form a closed system because of the conservation
rule (9). To reduce the number of parameters we introduce the
adimensional time and constants

τ = k3 a1 t, α1 =
k1
k3

,

α−1 =
k−1

k2
, α3 =

a5
a1

,

α5 =
k5a4
k3a1

, α−5 =
k−5

k2
and we restrict ourselves to cases where k2 = k4 = k3 a1. The
set of deterministic evolution laws that will be used in this work is
consequently given by

dx
dτ

= α1 x (1 − x − y − z) − α−1 x2 − x y − x z (18)

dy
dτ

= x y − α3y (19)

dz
dτ

= −x z + α5 z (1 − x − y − z) − α−5 z2. (20)

Note that for dilute systems, x + y + z ≪ 1 and the above
equations have the same structure as Eqs. (6)–(8), assuming that
α5 ≪ (1, α−5). In the next Section, we discuss themost prominent
features of this amended Willamowski–Rössler model.

3. Deterministic behavior

As in the original Willamowski–Rössler model, the determinis-
tic evolution equations (18)–(20) admit 6 stationary states:

St1 ≡ (0, 0, 0)

St2 ≡


α1

α1 + α−1
, 0, 0



St3 ≡


0, 0,

α5

α5 + α−5


St4 ≡


α1α−5 − α5

α−1α−5 − α1 + α1α−5 − α5 + α−1α5 − 1
, 0,

α−1α5 − α1

α−1α−5 − α1 + α1α−5 − α5 + α−1α5 − 1


St5 ≡


α3,

α1 (1 − α3) − α−1α3

α1 + 1
, 0


St6 ≡


α3,

α1α−5 − α5 − α3 (α−1α−5 − α1 + α1α−5 − α5 + α−1α5 − 1)
α−5 (1 + α1)

,

α5 + α−1α3α5 − α3 − α1α3 − α3α5

α−5 (1 + α1)


.

Except for St6, the solutions represent ‘‘absorbing’’ states where
at least one species is absent and cannot be generated anymore,
since the corresponding productionmechanisms are autocatalytic.
States St1, St2 and St3 always exist and correspond to physically
acceptable values for the steady state molar fractions. The
stationary solutions for x, y or z can become negative for some
values of the parameters for St4, St5 and St6, the existence of which
is thus constrained to a subset of parameter space.

Linear stability analysis of these fixed points reveals that state
St1, which corresponds to an empty system, always has two
positive and one negative real eigenvalues and is thus a saddle.
State St2 is a stable node for α−1 α5 ≤ α1 ≤ α−1 α3/ (1 − α3) and
is a saddle otherwise. A similar situation holds for state St3, which
is a stable node whenever α1 ≤ α5 /α−5 and a saddle whenever
this inequality is not respected. State St4 behaves in the same way,
but its region of stability is delimited by more intricate constraints
acting on the parameters, the exact form of which is irrelevant for
our purpose.

The analysis of states St5 and St6 reveals features that suggest
a possible emergence of chaos. Depending on the choice of pa-
rameters, St5 is either a stable node, a saddle, a stable focus-node
or a saddle-focus. State St6 can either be a stable node, a stable
focus-node or a saddle-focus. As we discuss hereunder, the coex-
istence of two saddle-foci can lead, under certain conditions, to
chaotic trajectories. We performed numerical integrations to ana-
lyze the nonlinear dynamical behavior of the system for conditions
under which these states become unstable. These investigations
revealed that state St6 plays a central role in the appearance of
chaos. Keeping all parameters constant and varying α1 from large
to smaller values, St6 becomes unstable as it switches from a sta-
ble focus-node to a saddle-focus through a Hopf bifurcation, which
leads to simple sustained oscillations. Figs. 1(a) and 2(a) depict
time series and a power spectrum corresponding to such oscil-
lations. Decreasing α1 further leads to a period-doubling cascade
and thus to multiperiodic oscillations of increasing complexity (as
shown in Figs. 1(b) and (c)) that culminates in deterministic chaos
(see Fig. 1(d)). The chaotic character of the dynamics can be con-
firmed in differentways. The associated power spectrum (Fig. 2(b))
is characterized by the coexistence of numerous incommensurate
frequencies. Oscillations and chaos can also be easily distinguished
in phase space in view of the fractal structure of the chaotic at-
tractor (Fig. 3), which is characterized by a correlation dimension
D2 ≈ 1.9 (as calculated with the routines in Tisean 3.0.1 [27]).
Finally, the maximal Lyapunov exponent computed with Rosen-
stein’s algorithm [28] is positive and ≈1.63 × 10−3.

Note that in the chaotic region, St5 and St6 are both saddle-
foci. The corresponding two-dimensional manifolds are thus
respectively stable and unstable spirals. The observed chaotic
kinetics corresponds to trajectories switching between these
two spirals via the one-dimensional manifold of St5. The same
mechanism appears in the Willamowski–Rössler model analyzed
by Aguda et al. [29].
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a b
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Fig. 1. Asymptotic behavior of x vs t for α1 = 0.82 (simple oscillations — P1) (a), α1 = 0.80 (biperiodic oscillations — P2) (b), α1 = 0.782 (quadriperiodic oscillations — P4)
and α1 = 0.77 (chaos). Other parameters are α−1 = 0.1, α3 = 0.2, α5 = 0.8 and α−5 = 0.9 and initial conditions are x = y = z = 0.1.
a b

Fig. 2. Power spectra of x(t) for α1 = 0.82 (a) and α1 = 0.77 (b). Other parameters are α−1 = 0.1, α3 = 0.2, α5 = 0.8 and α−5 = 0.9 and initial conditions are
x = y = z = 0.1.
0.3

0.2

0.1

0
0.4

0.3
0.2

0.1
0.1

0.2
0.3

x xy y

z z

0.4

0.4

0.3

0.2

0.1

0
0.5

0.4
0.3

0.2
0.1

0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

a b

Fig. 3. Phase space representations forα1 = 0.82 (simple oscillations) (a) andα1 = 0.77 (chaos) (b). St6 is represented by the red star inside the limit cycle. Other parameters
and initial conditions are the same as on Fig. 1.
Fig. 4 plots the corresponding bifurcation diagram,which shows
the stationary states aswell as theminima andmaximaof the time-
dependent solutions as a function of the parameter α1. St4 has not
been represented on the diagram, because its domain of existence
is very limited for our choice of parameters. As α1 decreases,
the chaotic behavior appears via period-doubling bifurcations and
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Fig. 4. Bifurcation diagram for the z variable. Parameters are α−1 = 0.1, α3 =

0.2, α5 = 0.8 and α−5 = 0.9. Continuous and dashed lines represent stable and
unstable steady states, respectively.

coexists with a stable stationary state (St3). The size of the chaotic
attractor increases as α1 is further reduced, which finally results in
a collision between this attractor and one of the steady states and
consequently in a disappearance of chaotic trajectories.

To summarize, the number of steady states is the same in
the original and the extended models and chaos appears through
the same type of mechanism. Confinement does not induce new
type of instabilities but, as additional numerical investigations
show, changes slightly the size of the basin of attraction of the
different states and displaces the bifurcation points. Confinement
seems to play only a minor role in the deterministic behavior of
the extended Willamowski–Rössler model, which thus behaves
qualitatively like the original (unconfined) one. In the next section,
we analyze towhat extent fluctuations influence the dynamics and
the interactions between the chaotic trajectories and the stationary
states.

4. Stochastic dynamics

We performed stochastic simulations of the extended Willam-
owski–Rössler model presented above to assess the role played by
intrinsic (internal) fluctuations of composition on the robustness
of the chaotic dynamics. We first discuss the case of homogeneous
fluctuations.

4.1. Fluctuations in a homogeneous system

We used the Gillespie algorithm [30,31], which is an off-lattice
stochastic simulation method where the system is considered to
be perfectly stirred. This algorithm relies on the use of extensive
propensity functions and thus on the definition of an extensivity
parameter, which we chose to be the total number of boxes in the
system (N0). The algorithm is detailed in Appendix A.

Similarly to what has been reported for other chaotic models,
we observe that the presence of steady states can strongly
affect the dynamics of the chaotic regime in the presence of
fluctuations. Generally speaking, the parametric domain where
chaos can be found is greatly reduced with respect to the mean-
field case. A simple dynamics, corresponding to a relaxation to
one of the absorbing states, is observed for most of the parameter
values where chaos should be found in view of the deterministic
predictions. This behavior is seen in small as well as in large
systems (up to N0 = 107) and the final state in which the
system ends up often depends on its size. A typical example
of such a relaxation is given in Fig. 5, where the deterministic
behavior is also shown for comparison. When the amplitude of the
strange attractor is small and for sufficiently large systems, chaos
is observed but only for finite times: the system eventually reaches
one of the absorbing steady states mentioned above and remains
Table 1
Typical behavior of the system in function of its size (N0) and the particles’ mobility
(Γ ). SSt: stationary state, ASt: absorbing state.

Γ = 1 Γ = 10 Γ = 100 Γ = 1000 Gillespie

300 × 300 SSt SSt Oscillations Chaos Chaos
100 × 100 SSt SSt Chaos ASt ASt
50 × 50 SSt SSt ASt ASt ASt
10 × 10 ASt ASt ASt ASt ASt

there indefinitely. Examples of these transient chaotic kinetics are
given in Fig. 6, for two different system sizes and Fig. 7 depicts a
case where chaos possesses a longer lifetime.

The disappearance of chaos can be traced back to the fact that
most chaotic trajectories come very close to one of the steady
states. Even fluctuations of very small amplitude can induce a
collision with these states, which results in the disappearance
of chaos. We should thus expect chaos to be observed in
homogeneous systems only in the limit where N0 → ∞. Spatial
confinement thus plays an important role in the homogeneous
stochastic dynamics. The proximity of chaotic trajectories and
steady states that leads to the disappearance of chaos is indeed
due to the confined character of phase space, which is itself a
consequence of having x + y + z ≤ 1 at all times. We now turn
to the role played by inhomogeneous fluctuations.

4.2. Inhomogeneous fluctuations

To assess the role of inhomogeneous fluctuations of compo-
sition, lattice kinetic Monte Carlo (KMC) simulations were per-
formed. We used square lattices whose nodes either contain a
single particle or are empty. In addition to the reactive processes
considered so far, themobility of the particles needs to be included
explicitly in the stochastic description of the system. As explained
in more detail in Appendix B, we did so by adding a process corre-
sponding to the hopping of particles to neighboring empty nodes.
This additional process is characterized by a jump probability per
time unit, Γ . In this work, we considered that all the species have
the same hopping probability andwe consequently setΓX = ΓY =

ΓZ = Γ .
We varied two parameters: the size of the system (N0) and the

mobility of particles (Γ ). Based on the results from the previous
section, the kinetic parameters were selected such that the chaotic
attractor is compact and occupies a central position in phase
space, in order to minimize the interactions with the absorbing
states and to maximize the probability of observing chaotic
dynamics. Table 1 summarizes the results of the spatially extended
simulations. We were able to distinguish between 4 qualitatively
different behaviors: absorbing states, stationary states, oscillations
and chaos. We discuss below the emergence of these different
dynamics and the transitions between them.

When diffusion is fast enough, the trajectories are similar those
obtainedwith the Gillespie simulations for similar size and chaotic
behaviors are thus destroyed in favor of absorbing states. For
instance, with a system ofN0 = 2.5×103 sites (a 50×50 lattice), a
hopping probability per unit timeΓ = 100 is sufficient to induce a
transition of chaotic trajectories to an absorbing state (ASt). Since
they are more readily mixed, small systems (say, a 10× 10 lattice)
reach absorbing states for lower mobilities (Γ = 1 being here
sufficient). These result further confirm the destructive role that
homogeneous fluctuations of composition have in the emergence
of chaos.

For very slow diffusion, chaos is usually lost as well, regardless
of the size of the system. We observe that the molar fractions
instead first fluctuate around a ‘‘pseudo-stationary’’ state with
non-vanishing values, before eventually switching to an absorbing
state. For example, Fig. 8 depicts a case where the composition
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Fig. 5. Stochastic (plain curves) and deterministic (dotted lines) time series of z for α1 = 0.093, α−1 = 0.12, α3 = 0.03, α5 = 0.08 and α−5 = 0.9. Initial conditions are
x = y = z = 0.1. In Fig. 5(a) the system size is N0 = 104 and the trajectory ends up in state St3 , while for Fig. 5(b), N0 = 107 and the state St2 is reached for long times.
Fig. 6. Stochastic (plain curves) and deterministic (dotted lines) trajectories of x. In this case, α1 = 0.77, α−1 = 0.1, α3 = 0.2, α5 = 0.8 and α−5 = 0.9 and initial
conditions are x = y = z = 0.1. The system size is N0 = 103 in Fig. 6(a) and 104 in Fig. 6(b). In each case, the steady state St3 is eventually reached.
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Fig. 7. Stochastic trajectory in the phase space for α1 = 0.77, α−1 = 0.1, α3 =

0.2, α5 = 0.8 and α−5 = 0.9 and initial conditions are x = y = z = 0.1. The size
of the system is N0 = 9 × 104 .

fluctuates around (0.27, 0.23, 0.078) before settling on (0.27,
0.30, 0). The lifetime of these pseudo-stationary state (denoted
as SSt in Table 1) increases with the size of the system. Note
that the chemical composition of the low-mobility steady states
reached in this way differs from that of the states predicted by
the deterministic approach. The destruction of complex dynamics
(such as oscillations) and the displacement of steady states have
already been reported in previous works on chemical dynamics on
lattices (see Section 1). These deviations have been traced back to
the presence of strong short-range spatial correlations, which arise
thanks to a combination of the low dimensionality of the support,
of the nonlinearity of the reactive processes and of the lowmobility
of particles. We reach a similar conclusion, as simulations show
that the first-neighbors spatial correlations of the different species
are always large in the limit of low mobility hereby considered.

More surprisingly, we also observed that chaos can be gradually
re-obtained for intermediate mobilities. To illustrate this, we plot
in Fig. 9 the phase space trajectories obtained with different
Fig. 8. Stochastic trajectories of x (black), y (red) and z (green) for a system size
N0 = 2.5× 103 and a mobility Γ = 1. The other parameters are α1 = 0.77, α−1 =

0.1, α3 = 0.2, α5 = 0.8 and α−5 = 0.9 and initial conditions are x = y = z = 0.1.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

mobilities for a 100 × 100 system. For slow diffusion, the
composition of the system fluctuates around a pseudo steady-
state, as explained above (Fig. 9(a)). As we increase Γ , the
fluctuations of composition around this stationary state first seem
to be amplified and become more and more regular. For a small
range of Γ , it is possible to observe damped oscillations sustained
by fluctuations, which is a frequently reported phenomenon in the
neighborhood of a Hopf bifurcation in noisy oscillating systems.
As the mobility is further increased, these changes translate in an
unfolding of the corresponding attractor, which takes the form
of a noisy cycle (Fig. 9(b)). For large enough (but not too high)
mobilities, this cycle gradually bends to give amanifold resembling
the deterministic chaotic attractor, as can be seen in Figs. 9(c)
and 9(d). The chaotic character of the dynamics can be confirmed
with Fourier power spectra of the autocorrelation function of
the time series, which show strong similarities with those of
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Fig. 9. Phase representations in a 100 × 100 system with Γ = 25 (a), Γ = 50 (b), Γ = 75 (c), Γ = 100 (d) and Γ = 1000 (e). The other parameters are
α1 = 0.77, α−1 = 0.1, α3 = 0.2, α5 = 0.8 and α−5 = 0.9 and initial conditions are x = y = z = 0.1.
a b

Fig. 10. Power spectra and section in a 100 × 100 system with Γ = 100. On Fig. 10(a), the stochastic spectrum (red line) is compared to the deterministic curve (black
dotted line). On Fig. 10(b), the section is taken across the phase representation along plane y = 0.2. Black dots represent the deterministic data while red circles correspond
to the stochastic section. The other parameters are the same as on Fig. 9.
the corresponding deterministic signals (Fig. 10(a)). Moreover,
sections taken across the attractor show a dispersion of points
along lines, which is a typical signature of chaos (Fig. 10(b)).
These sections are also qualitatively similar to the ones obtained
by numerical integration of the deterministic equations. The
chaotic trajectories disappear abruptly for largermobilities and the
dynamics of Gillespie simulations (leading to an absorbing steady
state) is re-obtained, as expected.

In larger systems (e.g. 300 × 300 lattice), the transition from
oscillations (Fig. 11(a)) to chaos (Fig. 11(b)) appears even more
clearly. When oscillations are obtained in simulations, a dominat-
ing frequency and the corresponding subharmonics can distinctly
be identified in the power spectrum presented in Fig. 11(c), where
we also plotted the corresponding chaotic deterministic spectrum
for comparison.When increasing Γ , the spectrum gradually trans-
forms into a continuum of peaks at incommensurate frequencies
characteristic of chaotic trajectories (Fig. 11(d)). This transition is
also reflected in the cross sections of the attractors, for which we
observe that the clouds of dots in Fig. 11(e), which are typical of a
noisy limit cycle, deform and stretch out to give lines (Fig. 11(f)).

Like before, the deviations from the deterministic behavior can
be traced back to the presence of spatial correlations between
particles. The intensity of the first-neighbors spatial covariance for
example decreases gradually as Γ decreases, and as the dynamics
switches from a pseudo-steady state to oscillations and to chaos.
It thus appears that the mobility of particles effectively acts as
a new bifurcation parameter: increasing the hopping probability
while keeping the other parameters constant has an effect on the
system’s behavior that is qualitatively similar to a decrease of α1 in
the deterministic case (see Fig. 4).

5. Conclusions

We have studied how fluctuations and mobility influence the
chaotic behavior of an amended Willamowski–Rössler model,
which takes into account the molecular crowding that character-
izes small systems. We showed that because of the presence of
fluctuations, the size of the system and the mobility act as two
new bifurcation parameters. Varying these parameters allows one
to switch from a stationary state to oscillations or to chaos, un-
der conditions for which the deterministic equations predict that
only chaos can be found. Moreover, they can be used in synergy
to prevent the destruction of chaotic dynamics by the absorbing
states induced by the aforementionedmolecular crowding. A large
system size coupled to an intermediatemobility prevents the com-
plete consumption of the species, and thus the emergence of triv-
ial, non-reactive dynamics. It should be noted that in this model,
an efficient synchronization of the oscillations does not always
prevent the system from falling into absorbing states, which is in
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Fig. 11. Phase space representations, power spectra and sections taken along plane y = 0.2 across the phase trajectory in a 300 × 300 system. Figures (a), (c) and (e)
correspond to Γ = 100 and cases (b), (d) and (f) to Γ = 1000. The other parameters are the same as on Fig. 9. In Figures (c) to (f), the deterministic data are represented in
black for comparison.
opposition to what has been reported for the population dynamics
model analyzed by Efimov et al. [19].

In conclusion, the mean field description of this low-
dimensional system correctly predicts the evolution of the chem-
ical dynamics only in the limit of macroscopic and well-mixed
systems. It breaks down for systems containing low-mobility parti-
cles and for small finite size systems, whatever the mobility. Clus-
ters of particles generated by the inhomogeneous fluctuations of
composition appear to be the main source of deviations from the
mean field behavior. As we expect the sensitivity to fluctuations
and to mobility to depend on the system considered, it would be
appropriate to perform a similar study on different models to as-
sess the generality of the results we present here. Other potentially
compensating effects should also be investigated, such as the ge-
ometry and the dimensionality of the system, which are known to
affect fluctuation-induced behaviors.
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Appendix A. Gillespie simulations

The Gillespie method neglects the local interactions between
species but takes fluctuations into account. In this algorithm, the
selection of the processµ and the calculation of the time increment
∆τ involve the propensity functions wµ (n) = cµhµ (n), where
cµ depends on the kinetic constant of the reaction µ,n is a
vector containing the number of molecules of each species and
hµ (n) gives the number of combinations formedwith nmolecules
reacting according to µ. More precisely, ∆τ is given by

∆τ = −
ln (r1)
w (n)

(A.1)

and µ is chosen such that

µ−1
i=1

wi (n)

w (n)
< r2 ≤

µ
i=1

wi (n)

w (n)
, (A.2)

where r1 and r2 are random numbers and w (n) is the total
propensity function. The propensity functions for each reaction are
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given by :

w1 = α1
nx


N0 − nx − ny − nz


N0

w−1 = α−1
nx (nx − 1)

N0

w2 =
nxny

N0

w3 = α3ny

w4 =
nxnz

N0

w5 = α5
nz


N0 − nx − ny − nz


N0

w−5 = α−5
nz (nz − 1)

N0
, (A.3)

where N0 corresponds to the size of the system.

Appendix B. Spatial KMC simulations

In the spatial KMC method, we consider an L × L lattice
composed of N0 sites of coordinates R, characterized by a local
occupation number Sγ (R, t). This number is defined as follows :

Sγ (R, t)

≡


1, if the site R is occupied by species γ at time t
0, if the site R is not occupied by species γ at time t. (B.1)

The ensemble of these variables, S (t) ≡

Sγ (R, t)


, defines the

instantaneous microscopic configuration of the system. The intrin-
sic probability associated to a chemical reaction is proportional to
its kinetic constant. In the case of a diffusion process, we introduce
a jump probability, Γ , related to the mobility of the particles. The
probabilities are given by:

pX =
ΓX

ktot
pY =

ΓY

ktot
pZ =

ΓZ

ktot

p1 =
α1

ktot
p−1 =

α−1

ktot
p2 =

α2

ktot
=

1
ktot

p3 =
α3

ktot
p4 =

α4

ktot
=

1
ktot

p5 =
α5

ktot

p−5 =
α−5

ktot
, (B.2)

where ktot = ΓX +ΓY +ΓZ +α1 +α−1 +α2 +α3 +α4 +α5 +α−5.
At every time, a site, a first-neighbor and a process are randomly
selected. Process I is selected if :
I−1
i=1

pi < r ≤

I
i=1

pi, (B.3)

where pi corresponds to one of the reaction probabilities given in
(B.2) and r is a random number. The process occurs if it is compat-
ible with S (t):
• For the diffusion of species γ (γ ≡ X, Y or Z), the algorithm
selects a pair of adjacent sites, where one of the two has to
contain the species γ and the other one has to be empty. If this
condition is satisfied, species γ moves to the empty site.

• For the direct reaction (11), if site R contains X and if the chosen
neighbor is an empty site, the reaction occurs and both sites
subsequently contain an X particle.

• For the reverse reaction (11), if site R contains X , and so does its
randomly picked neighbor, the X particle leaves the site R.

• For reaction (12), if siteR contains X and if the selected neighbor
contains Y , X is converted into Y .

• For reaction (13), if site R contains Y , this site becomes empty.
• For reaction (14), if site R contains X and that the selected

neighbor contains Z , both sites become empty.
• For the direct reaction (14), if site R contains Z and the adjacent

site is free, a Z particle forms on the formerly empty site.
• For the reverse reaction (14), if site R contains Z and so does the

selected neighbor, the Z particle disappears from site R.

If the instantaneous configuration is not compatible with the
selected process, the lattice is not modified. In both cases, the time
is incremented by a Monte Carlo Step (MCS) :

∆τ =
1

ktotN0
, (B.4)

where ∆τ represents the duration of an MCS in the adimensional
time used in the lattice Willamowski–Rössler model.
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