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Fingering dynamics driven by a precipitation reaction: Nonlinear simulations
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A fingering instability can develop at the interface between two fluids when the more mobile fluid is injected
into the less-mobile one. For example, viscous fingering appears when a less viscous (i.e., more mobile) fluid
displaces a more viscous (and hence less mobile) one in a porous medium. Fingering can also be due to a local
change in mobility arising when a precipitation reaction locally decreases the permeability. We numerically
analyze the properties of the related precipitation fingering patterns occurring when an A + B → C chemical
reaction takes place, where A and B are reactants in solution and C is a solid product. We show that, similarly to
reactive viscous fingering patterns, the precipitation fingering structures differ depending on whether A invades
B or vice versa. This asymmetry can be related to underlying asymmetric concentration profiles developing when
diffusion coefficients or initial concentrations of the reactants differ. In contrast to reactive viscous fingering,
however, precipitation fingering patterns appear at shorter time scales than viscous fingers because the solid
product C has a diffusivity tending to zero which destabilizes the displacement. Moreover, contrary to reactive
viscous fingering, the system is more unstable with regard to precipitation fingering when the high-concentrated
solution is injected into the low-concentrated one or when the faster diffusing reactant displaces the slower
diffusing one.
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I. INTRODUCTION

A hydrodynamic fingering instability can arise at the
interface of two solutions because of differences in physical
properties, for instance, viscosity, density, surface tension, or
permeability across the interface [1–4]. The interface deforms
then into finger-shaped patterns frequently encountered in
geochemical processes such as enhanced oil recovery, environ-
mental remediation, CO2 sequestration, hydrology, etc. [4–6].
Fingering emerges typically when the mobility decreases in
the direction of the flow and this occurs in both miscible and
immiscible systems. This is, for instance, the case when a
less viscous, more mobile fluid displaces a more viscous and
hence less mobile one in a porous medium, giving rise to
viscous fingering (VF). Over the past few decades, viscous
fingering has been studied extensively in both nonreactive
[4,7–9] and reactive [10–20] systems from both experimental
and theoretical points of view. Mobility gradients can also
develop because of permeability gradients leading to fingering,
for instance because of porous matrix dissolution [21–26]. In
these reactive dissolution instabilities, an invading solution of
a given chemical reactant dissolves the porous matrix which
increases the porosity of the porous medium behind the moving
interface. This increase in porosity leads to a situation where
the region of higher permeability (and hence higher mobility)
displaces the lower permeability (and hence lower mobility)
zone, which triggers a fingering instability.

In the reverse situation of a traveling precipitation front,
the interface is expected to be stable because precipitation de-
creases the permeability behind the front such that the gradient
of mobility is stabilizing. Nevertheless, Nagatsu et al. [27]

*priyanka@iitm.ac.in
†adewit@ulb.ac.be

have recently shown that a localized precipitation reaction
induced by a simple A + B → C reaction when a solution of
A invades a solution of B with C being the solid product can
trigger fingering in the zone where the more mobile solution
of A displaces the less mobile precipitate C. A wealth of
various precipitation patterns can then be obtained [27–31].
This precipitation-driven fingering is of interest due to its
applications in CO2 sequestration and mineralization [32,33],
a process by which CO2 dissolved in water reacts with ions
such as Ca2+ and forms precipitates mostly carbonates, which
is useful for safe storage of CO2 in underground reservoirs
[5]. Nagatsu et al. [34] also experimentally investigated the
effects of a precipitation reaction on miscible viscous fingering
patterns in a Hele-Shaw cell. They found that the fingering
dynamics depends on the amount of precipitate and on the ratio
of the reactants concentration. Precipitation-driven fingering
can occur even at the interface between two aqueous solutions
of same viscosity because of a local decrease in mobility
along the displacement direction [27–29]. The model of this
precipitation-driven fingering bears analogies with the one of
reactive viscous fingering [15–18] in the sense that fingering
appears in both cases in a local region of negative gradient
of mobility formed by the reaction along the flow direction.
The negative gradient of mobility in reactive VF is due to
the changes in viscosity by reaction, whereas in precipitation-
driven fingering, it is due to a local change in permeability of
the porous medium. In both cases also, the fingering patterns
have been shown to be asymmetric whether A is injected
into B or vice versa, a difference that can be understood in
terms of asymmetric underlying concentration profiles when
the initial concentrations of the reactants or their diffusion
coefficients differ [15,27,30]. Thus, mathematically speaking,
precipitation-driven fingering and reactive VF are described by
similar reaction-diffusion-convection (RDC) models in which
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the mobility M = κ/μ is a function of the concentration of the
product C of the reaction, with κ and μ being the permeability
and viscosity, respectively.

Although reactive VF has been well studied [10–20], the
properties of precipitation-driven fingering are less under-
stood. In the case of precipitation, the solid product can
barely diffuse, which differs considerably from reactive VF
in which the reactants A and B and the product C can have
diffusion coefficients of the same order of magnitude. Whether
this slow diffusivity of the precipitation product C affects the
physical and statistical properties of precipitation patterns is
still unclear.

In this context, the objective of the present study is to
investigate numerically the characteristics of precipitation-
driven fingering patterns and to compare them with those
of reactive VF patterns [15] and in particular to investigate
the influence of the fact that the precipitate does not diffuse
much. In order to do so, the RDC model of precipitation-driven
fingering [27] is modified to allow the diffusivity of the solid
product to tend to zero. We show that this slow diffusivity of
the precipitate has important consequences on the fingering
patterns, including much earlier destabilization and smaller
wavelength.

This paper is organized as follows. The problem description
and the related RDC model are given in Sec. II. In Sec. II B,
the numerical method used to integrate the model is discussed.
The characteristics of precipitation fingering patterns and in
particular the influence of the diffusivity of the solid product
are studied in Sec. III. A parametric study is carried out in
Sec. IV. The effect on asymmetry of precipitation fingering
patterns, whether A invades B or vice versa, of varying the
ratio of initial reactant concentration and diffusivity of reactant
B is explained in Secs. IV C and IV B, respectively. At the end,
conclusions are given in Sec. VI.

II. PROBLEM DESCRIPTION AND
GOVERNING EQUATIONS

We consider a homogeneous two-dimensional porous
medium or a horizontal thin Hele-Shaw cell, of length
Lx and width Ly with initial permeability κ0, as depicted
schematically in Fig. 1. In this system, a solution of reactant
B in initial concentration b0 is sandwiched between solutions
of reactant A with concentration a0 (a0 � b0). We assume
that the viscosity μ and density ρ of the two solutions are
equal and constant. Such an initial configuration allows us
to study two cases—namely when A invades B and vice
versa—simultaneously in one single numerical simulation.
The initial positions of the left and right miscible interfaces,
where A and B come into contact and react, are xl and xr ,
respectively. The solutions are displaced from left to right at
a constant speed U such that the solution A displaces the
solution B at x = xl while the solution A is being displaced
by the solution B at x = xr . A precipitation reaction of type
A + B → C takes place at the miscible interfaces producing a
solid product C in the reactive zone around the initial contact
lines. This solid precipitate is present in the solution as small
particles that can diffuse in the solvent with a low diffusivity
DC and be advected by the flow. Its concentration in the solvent
is denoted by c.

FIG. 1. Schematic diagram of a two-dimensional porous medium
of dimensions Lx×Ly with permeability κ0 in which a solution
of reactant B sandwiched between the solutions of reactant A is
displaced from left to right at a constant speed U . xl and xr are
the initial positions of the left and the right miscible interfaces,
respectively.

We assume here that the presence of the precipitate C does
not change the density ρ and the viscosity μ of the solvent,
which are thus kept constant. Moreover, we assume that the
porosity remains roughly constant and that the solid phase
changes only substantially the permeability κ of the porous ma-
trix. This simplifying assumption is motivated by the fact that
there is no universal relation between permeability and poros-
ity changes as the link between both quantities depends on evo-
lution processes [35–38]. Therefore, for simplicity, we assume
here that the porosity remains constant and that precipitation
affects only the permeability. This is, for instance, the case if
the precipitate is in small amounts and blocks preferentially
small-sized connecting pores [39]. This can induce a negligible
change of porosity while affecting much more drastically the
permeability. More detailed studies of precipitation fingering
in which both porosity and permeability [40,41] and poten-
tially the density, viscosity, and diffusion coefficients are af-
fected by the solid product of the reaction are left for the future.

In the present paper, we analyze thus the fingering in-
stability which arises due to changes in the permeability
κ of the porous medium by a precipitation reaction for a
constant viscosity μ, density ρ, and porosity φ. Fingering
develops locally in the zone where the reactant solution with
reference permeability κ0 (or mobility M0 = κ0/μ) pushes the
solution of the precipitate C of lower permeability (or lower
mobility). The flow field, considered as incompressible (1),
follows Darcy’s law (2) coupled to the evolution equations for
the concentrations (3)–(5) via the permeability κ = κ(c) (6),
which is a function of the local concentration c(x,y,t) of the
product C. The resulting RDC model reads [10,11,15–18,27]:

∇ · u = 0, (1)

∇p = − μ

κ(c)
u, (2)

∂a

∂t
+ u · ∇a = DA ∇2a − k a b, (3)

∂b

∂t
+ u · ∇b = DB ∇2b − k a b, (4)

∂c

∂t
+ u · ∇c = DC ∇2c + k a b, (5)
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where (a, DA), (b, DB), and (c, DC) denote the (concentration
and diffusion coefficients) of species A, B, and C, respectively;
p is the pressure; u = (u,v) is the two-dimensional velocity
vector and k is the kinetic constant. By analogy with previous
works on classical VF [7,8,42–45] or studies of rock disso-
lution [21,24,26] and reactive VF [15–18], the permeability
of the system is assumed to be a decreasing function of the
product concentration as [27]

κ(c) = κ0e
−R (c/a0), (6)

where κ0 is the permeability when c = 0, i.e., in absence of
any precipitate. Let κm = κ(a0) = κ0e

−R be the permeability
when c = a0. The parameter R = ln(M0/Mm) is then defined
as the log-mobility ratio where M0 = κ0/μ and Mm = κm/μ

are the mobilities when c = 0 and c = a0, respectively. The
parameter R quantifies the influence of precipitation on
permeability changes. When R > 0, the precipitate C reduces
the permeability of the porous matrix locally. A negative R

could describe dissolution of the rock upon production of C

but this will not be addressed here.

A. Nondimensional equations

Mathematically, Eqs. (1)–(6) are similar to those describing
reactive VF induced by an A + B → C reaction changing the
viscosity at a given constant κ [15–20]. The main difference
between reactive and precipitation-driven fingering, however,
is in the order of magnitude of the diffusion coefficients.
In reactive VF, the reactants A and B and the product C

have diffusion coefficients of the same order while in the
precipitation case the product C barely moves, i.e., DC is small.
To take this specificity into account, we use here the diffusivity
DA of the reactant A as a reference scale for diffusivity.
The reference scales for velocity, time, length, concentration,
permeability, and pressure are thus taken as U , DA/U 2, DA/U ,
a0, κ0, and μDA/κ0, respectively.

For simplicity, we write Eqs. (1)–(6) in a reference frame
moving with velocity U , i.e., the flow direction x and flow
velocity u are transformed as x ′ = x − Ut and u′ = u − U ex ,
respectively, with ex being the unit vector along the x direction.
The dimensionless form of (1)–(6) in the moving frame
becomes

∇ · u = 0, (7)

∇p = − 1

κ(c)
(u + ex), (8)

∂a

∂t
+ u · ∇a = ∇2a − Da a b, (9)

∂b

∂t
+ u · ∇b = δb∇2b − Da a b, (10)

∂c

∂t
+ u · ∇c = δc∇2c + Da a b, (11)

κ(c) = e−Rc, (12)

where Da = DAka0/U 2 is the dimensionless Damköhler
number which quantifies the ratio of the hydrodynamic time
scale τh = DA/U 2 to the chemical time scale τc = 1/ka0 and
δb = DB/DA and δc = DC/DA are the diffusion coefficient

ratios. Taking the curl of equation (8) and introducing the
stream function ψ as u = ∂ψ/∂y and v = −∂ψ/∂x, we get

∇2ψ = R(ψxcx + ψycy + cy), (13)

at + axψy − ayψx = ∇2a − Da a b, (14)

bt + bxψy − byψx = δb∇2b − Da a b, (15)

ct + cxψy − cyψx = δc∇2c + Da a b. (16)

Note that, when Da = 0, we recover a model for nonreactive
fingering similar to the one studied by Tan and Homsy [7] in
which μ(c) = 1/κ(c) = eR c. For δc = 1, Eqs. (13) and (16) are
indeed the same as Eqs. (29)–(31) of Tan and Homsy [7]. When
Da �= 0, and δb and δc ∼ O(1), the model is similar to the one
investigated previously for reactive VF instability [15–20]. In
particular, we can recover the modeling of the specific case of
a simple A + B → C reaction when C is a solute changing the
viscosity of the solution and the solution of A and B have the
same viscosity [15]. Moreover, modulo a change of variable
(see Appendix), we recover the precipitation fingering model
studied by Nagatsu et al. [27]. The difference with that precious
study is that here we focus on the case δb ∼ O(1) and δc → 0
to analyze the fingering patterns due to the formation of a
barely diffusing precipitate C. Interestingly, our precipitation
model in which the permeability varies with concentration also
bears similarities with a generalized model for two-phase Hele-
Shaw flows [46], in which the mobility varies with saturation.
Our results might thus also shed light on dynamics related to
viscosity or permeability changes with saturation in two-phase
flow systems.

The last term of concentration equations, (14)–(16), quan-
tifies the reaction rate R defined as:

R(x,y,t) = Da a(x,y,t) b(x,y,t). (17)

The initial conditions for the stream function and product
concentration are ψ(x,y) = 0 and c(x,y) = 0 for all (x,y),
respectively. For the initial condition of the concentrations,
we use two back to back step functions centered at the two
locations xl and xr between A and B (see Fig. 1) with a
random noise being introduced at xl and xr [15]:

[a(x,y),b(x,y)]

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[1,0] for 0 � x < xl[
1
2 (1 + ζ r), 1

2 (1 − ζ r)φ
]

for x = xl

[0,φ] for xl < x < xr[
1
2 (1 − ζ r), 1

2 (1 + ζ r)φ
]

for x = xr

[0,1] for xr < x < Pe′

, (18)

for all 0 � y < Pe, where φ = b0/a0 is the initial concen-
tration ratio of solutions A and B, r is a random number
between 0 and 1, and ζ is an amplitude of order 10−2. The
Péclet numbers Pe′ = ULx/DA and Pe = ULy/DA represent
the dimensionless length and width of the numerical domain.
While Pe controls the number of fingers along the transverse
direction, Pe′ fixes the maximum time of simulations. The
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dynamics of reactive precipitation fingering depends on five
parameters, namely, R, Da , δb, δc, and φ.

B. Numerical method

To integrate Eqs. (13)–(16) numerically, we use a
pseudospectral numerical scheme [7,10,11,15,47,48] with
periodic boundary conditions along both directions. The
physical domain Pe′×Pe is taken to be 256×64. In order
to handle sharp jumps in the initial conditions leading
to Gibb’s phenomenon [7], we use a small spatial step
dx = dy = 0.125 (i.e., 2048×512 spectral modes) and time
step dt = 0.0025. This choice of spatial and time steps satisfies
the Courant-Friedrichs-Lewy (CFL) condition necessary for
the numerical stability [47–49], i.e., dt � ε(dx)2, where
ε is a numerical-scheme-dependent constant. We find that
the numerical stability is difficult to achieve if δc → 0,
and therefore we restrict our computation to δc � 0.01.
We checked that the spatial and temporal evolution of the
fingering pattern remains unchanged with time and spatial
steps refinement to confirm the convergence of numerical
solutions. We have also verified that the numerical results
are unchanged at a fixed Pe when Pe′ is increased as long as
the numerical domain is long enough for the fingers not to be
affected by the periodicity of the initial condition.

We have validated our numerical code with the case when
all species diffuse at the same rate (δb = δc = 1) and R < 0
for which results of reactive VF when a chemical reaction
produces a more viscous product in between the two less
viscous solutions are recovered [15,18]. We note that, in this
case, the onset time at which fingering appears is much longer
than in the present precipitation case because, as will be seen
in Sec. III, when the diffusivity of the product is of the same
order as that of the reactants, the onset time of fingering is
large and the system is less unstable.

In Secs. III and IV, we study the effect of varying the
parameters δc, δb, R, Da , and φ on the fingering properties in
the specific case of precipitation for which the solid product
barely moves, i.e., δc ∼ 0. In the following sections, the
concentration fields (Figs. 2, 4, 8, and 12) are shown in a
color scale between 0 and 1, with red and blue denoting the
maximum and minimum values, respectively.

III. REACTIVE PRECIPITATE FINGERING

In the symmetric case, for which the reactants A and B

have the same initial concentration (φ = 1) and diffusion
coefficients (δb = 1), the concentrations of the product C and
the reaction rates R are shown in Fig. 2 for δc = 0.01, R = 2,
and Da = 1 (see the Supplemental Material for a movie [50]).
It is seen that, as time evolves, A and B meet, react, and are
transformed through the reaction to a solid precipitate C in
the reactive zone. This solid precipitate changes locally the
permeability of the porous medium, and, hence, the mobility
of the solution. Consequently, a situation arises where locally
a high-mobility solution of A invades a low-mobility zone
containing C which triggers the fingering instability, as shown
in Fig. 2. The corresponding reaction rate shows that the
reaction zone remains localized at the reactive front of the
displacement and moves with it. In the course of time, less and
less precipitate is formed and the fingers extend longitudinally
with less interactions. The precipitate is left behind the moving
reaction zone, which appears here at the fixed position of
the initial contact line as the images are shown in a moving
reference frame.

To understand the origin of precipitation fingering, it is
instructive to analyze the underlying reaction-diffusion (RD)
profiles of concentration for species A, B, and C, and of the
permeability κ = e−Rc, for various values of δc. As seen in
Fig. 3, the concentration profiles and permeability preserve
symmetry around the initial location of the interface for
φ = 1 and δB = 1. Thus, fingering patterns are the same at
both interfaces (only one of them is shown in Fig. 2) and
the cases where A invades B and vice versa are identical.
Furthermore, the product concentration is maximum at the
initial contact location and decreases rapidly around it, see
Fig. 3(a). Consequently, the permeability (hence mobility)
decreases rapidly along the flow direction and approaches a
minimum value at the initial contact position, as shown in
Fig. 3(b). The extreme value of the product concentration
(maximum) and permeability (minimum) at the contact lines
increases with decreasing δc. This decrease in permeability
and hence mobility is due to the formation of the precipitate
and fingering appears locally in the region where the negative
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FIG. 2. Concentration of the product C (first row) and reaction rate R (second row) for δc = 0.01, δb = 1, φ = 1, R = 2, and Da = 1, at
t = 20, 40, 60, 80, and 100 (from left to right).
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FIG. 3. Reaction-diffusion profiles for (a) concentrations and (b) permeability for three values of δc: 0.01 (thickest blue line), 0.1 (thicker
green line), and 0.2 (thick red line). Here the dashed, dash-dotted, and solid lines represent A, B, and C, respectively. The initial location at
x = xl = xr = x0 corresponds here to the black dotted line at origin. The other parameters are the same as those of Fig. 2.

permeability (hence mobility) gradient forms, i.e., where
dκ/dx < 0. Figure 3(b) shows that, as δc → 0, the gradient
dκ/dx becomes steeper, and therefore the system becomes
more unstable, leading to quicker fingering instability as shown
in Fig. 4.

Note that the precipitation fingering patterns differ from
those of reactive VF [15] in the sense that (i) precipitation
fingering appears at a constant viscosity and is due to the local
change in permeability, (ii) the solid precipitate C diffuses very
slowly as compared to other reactants, and (iii) the length and
time scales for the appearance of precipitation-driven fingering
are much smaller than for reactive VF.

FIG. 4. Comparison of the concentrations of the product for
decreasing values of δc at t = 80, 90, 100, and 110. The other
parameters are the same as in Fig. 2.

A. Effect of δc

To see the effect of varying δc on the nonlinear fingering
pattern, the concentrations of the product are shown in Fig. 4
for δc = 0.15, 0.10, 0.05, and 0.01. The instability starts earlier
and the number of fingers increases with decreasing δc, i.e., the
system becomes more unstable as δc → 0. This is related to
the fact that the unfavorable gradient dκ/dx becomes steeper
when δc → 0.

B. Quantitative analysis

To understand the dynamics of precipitation driven fin-
gering, we perform a quantitative analysis by computing
the transverse averaged profiles of various properties. To
begin with, we calculate one-dimensional transverse averaged
concentration and reaction rate profiles which are defined as

〈c(x,t)〉 = 1

Ly

∫ Ly

0
c(x,y,t) dy and

〈R(x,t)〉 = 1

Ly

∫ Ly

0
R(x,y,t) dy, (19)

respectively.
In absence of any mobility gradients (R = 0), these profiles

are equivalent to one-dimensional RD profiles. For the simula-
tion of Fig. 2, the temporal evolution of transversely averaged
profiles of concentrations of A, B, and C, and reaction rate are
shown in Fig. 5. Beyond the diffusion regime and when A and
B start to react, the fingered precipitate starts to form in the
reaction zone. As the system evolves in time, more and more
precipitate is present which resists flow by decreasing locally
the permeability. The transverse averaged profiles 〈c(x,t)〉, see
Fig. 5(a), show that the concentration profiles are no longer
smooth in the presence of fingering and feature characteristic
bumps. The maximum of 〈c(x,t)〉 decreases with time, which
is due to the fact that the corresponding reaction rate 〈R(x,t)〉
decreases with time [see Fig. 5(b)] and that the precipitate is
left behind the moving reaction front.
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FIG. 5. Transverse averaged (a) concentration profiles of A (dashed line), B (dash-dotted line), and C (solid line), and (b) reaction rate
profiles for the simulation of Fig. 2 at t = 0, 20, 40, 60, 80, 100. Here x0 is the initial location of the left interface xl .

From transverse averaged profiles (19), one can next
compute the mixing length L of the product C defined as
the length of the zone where a precipitate is present, i.e., in
which 〈c(x,t)〉 is greater than 0.01 [15,51]. Figure 6 shows the
variation of this mixing length with time for various values of
δc. In the diffusive regime, the mixing length follows a square
root scaling with time, i.e., L ∝ α

√
t where α depends on the

diffusivity of the reactants and product [52]. Gálfi and Rácz
[52] showed that the width of the mixing zone depends on
the reaction rate R, (17), which is an implicit function of the
permeability κ . Hence R depends on the concentration of the
product as well as the diffusivity ratio δc. Thus, in the diffusive
regime the mixing length depends on δc (see inset of Fig. 6).

In the transition regime, the mixing length deviates from
the diffusive

√
t scaling once the system enters into the

convective regime for which the mixing length varies linearly
with time. A kink, seen in the mixing length, represents the

0 20 40 60 80 100
0

20

40

60

t

L 0.02 0.06 0.1 0.14 0.18
12

14

16

18

δc

t=10

20

FIG. 6. Temporal variation of the mixing length L for various
values of δc = 0.01 (solid line), 0.05 (dashed line), 0.1 (dash-dotted),
0.15 (dotted), and 0.2 (solid line with plus symbol). The inset shows
the variation of L with δc for two values of t = 10 and 20. Other
parameters are the same as in Fig. 2.

time t = tb beyond which the averaged concentration profiles
〈c(x,t)〉 show a bumpy nature [see Fig. 5(a)]. Furthermore,
by comparing Figs. 4 and 6 we see that, as δc decreases, the
system becomes more unstable and the onset time for fingering
decreases.

C. Statistical analysis

The moments of the transverse averaged profiles can be
calculated as well [15,51,53]. The first moment, i.e., the center
of mass mc of the transverse averaged product concentration
〈c(x,t)〉, is defined as

mc(t) =
∫ Lx

0
xg(x,t) dx, (20)

where g(x,t) = 〈c(x,t)〉∫ Lx
0 〈c(x,t)〉dx

is the probability distribution

function of 〈c(x,t)〉. A similar quantity can be computed for
the reaction rate distribution to give its first moment mR .

The temporal variation of the position of the first moment
for the concentration mc and reaction rate mR are shown for
various values of δc in Figs. 7(a) and 7(b), respectively. It is
seen in Fig. 7(a) that the center of mass of the concentration
profiles mc lags behind the reaction zone (i.e., moves backward
in the moving frame). This is related to the fact that the
precipitate fingers are left behind the reacting interface when
it moves forward, see Figs. 4 and 5(a). This effect is enhanced
when δc is decreased. The center of mass of the reaction rate
mR , shown in Fig. 7(b), first moves backward and then forward
along with back-and-forth motion, which is consistent with
what we see in the reaction rate in Fig. 2. For δc = 0.01 [see
the solid line in Fig. 7(b)], mR first moves towards the left of the
initial position of the interface until time t ∼ 30, beyond which
it travels to the right and eventually turns to the left at t ∼ 85.
This is due to the fact that when the convection is very strong
it pushes reactants towards the forward (right) direction, and
therefore mR travels to the right where convection dominates,
as shown in Fig. 7(b). By comparing mR for various δc we see
that the time at which mR travels towards the right decreases
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FIG. 7. Temporal variation of the center of mass for the (a) product mc and (b) reaction rate mR for various values of δc. The insets of panel
(a) and panel (b) show the corresponding variation of total concentration of the product, Ctot, and reaction rate, Rtot, respectively. Parameters
and line conventions are the same as those of Fig. 6.

with δc, which means that the system is more unstable as
convection starts earlier for decreasing δc.

The overall yield of the precipitate formation can be
determined by calculating the total precipitation amount Ctot

and the total reaction rate Rtot within the domain of interest,
as defined below:

Cl
tot =

∫ Ly

0

∫ Lx/2

0
c(x,y,t) dx dy,

Rl
tot =

∫ Ly

0

∫ Lx/2

0
R(x,y,t) dx dy, (21)

Cr
tot =

∫ Ly

0

∫ Lx

Lx/2
c(x,y,t) dx dy,

Rr
tot =

∫ Ly

0

∫ Lx

Lx/2
R(x,y,t) dx dy, (22)

where the superscript l and r denote the left and right
initial positions of interfaces, respectively. Note that for
the symmetric case (Cl

tot,Rl
tot) = (Cr

tot,Rr
tot) = (Ctot,Rtot). The

insets of Figs. 7(a) and 7(b) show the corresponding temporal
variation of Ctot and Rtot, respectively. It is seen that Ctot

increases with time as the amount of precipitation increases
with time, see Fig. 2, whileRtot decreases with time. However,
Ctot and Rtot are quite insensitive to changes in δc.

IV. PARAMETRIC STUDY

As discussed in Sec. III, the nondimensional parameters, the
change of which keeps fingering the same whether A invades
B or vice versa, are the log-mobility ratio R, the Damköhler
number Da , and the diffusivity ratio δc. This is due to the
fact that they keep the underlying RD concentration profiles
symmetric with regard to the initial contact position between
the A and B solutions, see Fig. 3. The parameters that induce,
on the contrary, an asymmetry are the initial concentration
ratio φ and the diffusivity ratio δb of the reactant B when
their value differs from 1. A different fingering dynamics is

then expected whether A is injected into B or vice versa. In
this section we characterize the precipitation-driven fingering
dynamics when varying these various parameters.

A. Effect of mobility ratio R and Damköhler number Da

As the log-mobility ratio R increases, the system becomes
more unstable, producing more intense and expanded precipi-
tate fingering patterns. This can be understood by the fact that,
as R increases, the amplitude of the minimum of permeability
increases [cf. (6)], which makes the system more unstable.
As the effect of the Damköhler number Da is concerned, we
note that the fingering patterns are observed earlier when Da

is increased because the reaction time is then decreased with
respect to the hydrodynamic time. This implies a larger produc-
tion of the precipitate C in the reactive zone for a given time,
leading to a favorable condition for precipitation fingering.

B. Effect of initial concentration ratio φ

Let us now analyze the effect of changes in the initial
concentration ratio φ on fingering. Figure 8 shows the product
concentration for φ = 1, 1.5, 2.0, and 2.5. The fingering
patterns are the same in both reactive zones for φ = 1, see
Fig. 8(a), while for φ �= 1 they differ whether A displaces
B (left interface) or B invades A (right interface), see
Figs. 8(b)–8(d). With increasing φ, the fingering patterns of
the left reactive zone become more regular, straight, and less
interactive while those of the right reactive zone feature more
splitting and merging [see the Supplemental Material for a
movie of Fig. 8(d) [50]].

The origin of such an asymmetry of fingering patterns can
be explained on the basis of the corresponding RD profiles
of concentration and permeability, as shown in Fig. 9. If
φ > 1, then the reaction-diffusion front moves in time from
the higher-concentrated region of B to the lower-concentrated
zone containing A. The profile of the precipitate C is therefore
asymmetric with a steeper gradient in the B-rich zone. The cor-
responding permeability profile, shown in Fig. 9(b), has thus
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FIG. 8. Asymmetric fingering: Comparison of the product concentration for various values of φ: (a) 1.0, (b) 1.5, (c) 2.0, and (d) 2.5 at time
t = 40,50,60, and 70 (from top to bottom). Other parameters are the same as Fig. 2.

−40 −20 0 20 40
0

0.5

1

1.5

2

2.5

x − x0

A B

C

(a)

−40 −20 0 20 40
0

0.2

0.4

0.6

0.8

1

x − x0

κ

φ = 1.5
2.0
2.5

(b)

FIG. 9. Asymptotic RD profiles for (a) concentrations and (b) permeability for φ: 1.5 (thickest blue line), 2.0 (thicker green line), and
2.5 (thick red line). The dashed, dash-dotted, and solid lines represent the concentrations of A, B, and C, respectively. The initial location at
x = xl = xr = x0 corresponds here to the black dotted line at origin. The other parameters are the same as those of Fig. 8.
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FIG. 10. Temporal variation of the mixing length for various
values of φ: 1.0 (solid line), 1.5 (square), 2.0 (star), and 2.5 (circle).
All solid and dashed lines represent the left and right reactive zones,
respectively. The other parameters are the same as those of Fig. 2.

also a steeper gradient dκ/dx in the B-rich part. Hence if B dis-
places A, then the corresponding unfavorable mobility profile
is steeper then if A invades B, which explains the difference in
patterns, as seen on Fig. 8. We also observe that, when increas-
ing φ, the gradient dκ/dx increases. Consequently, the RDC
system becomes more unstable with increasing φ, see Fig. 8.

The asymmetric characteristics of fingering can also be
traced in the variation of the mixing lengths for different
φ when comparing them with the reference case φ = 1, as
shown in Fig. 10. It is observed that the averaged concentration
profiles of the product become asymmetric sooner with
increasing φ because the onset time t = tb for the appearance
of asymmetry decreases. Thus, for φ > 1, (i) L increases with
increasing φ in the convective regime and (ii) L in the right
reactive zone is greater than that of the left reactive zone.
From these observations, we conclude that the system becomes
more unstable with increasing φ and that the fingering patterns

are more intense at the right reactive zone, where the more
concentrated solution B invades A, than in the left zone.

In order to look further on the role of asymmetry, the tempo-
ral evolution of the first moment of the product concentration
and reaction rate profiles are shown for different φ, in Fig. 11.
At the left reactive zone, the first moment of the product
concentration (mc) and of the reaction rate (mR) move towards
the negative direction and decrease sharply in the presence of
fingering. For this reason, the deviation of mc and mR from
the initial location increases in time. By comparing the main
panels of Figs. 8(a) and 8(b), we see that the reaction rate and
the concentration of fingering are larger in the back of the left
reactive zone as compared to those at the right zone.

In contrast to the left reactive zone, mc at the right reactive
zone moves first towards the positive direction until fingering
appears beyond which it moves towards the negative direction.
This can be understood by the fact that the corresponding
RD profiles around the interface initially located at xr where
B invades A are pushed towards the right reactive zone (or
towards the lower concentration). In the presence of fingering,
mc at the left shifts more towards the negative direction than
that of the right, see Fig. 11(a). Since mc at the left zone deviates
more from its initial location as compared to the right, fingers
at the left zone (where A invades B) cover a larger area towards
the left than at the right reactive zone (where B pushes A), see
Figs. 8(b)–8(d). It is observed in Fig. 11(b) that mR moves
towards the negative (positive) direction for the left (right)
reactive zone. For the left (right) reactive zone, an increased
reaction rate is present at the back (front) of the fingering zone.
The total production of concentration Ctot and total reaction
rate Rtot are more or less the same at both reactive zones, as
shown in the insets of Figs. 11(a) and 11(b), respectively.

C. Effect of diffusivity ratio δb

Another parameter which affects the symmetry of RD
concentration profile is δb. Different panels of Fig. 12 show
the product concentrations for various values of δb. When
δb �= 1, i.e., DA �= DB , the underlying RD profiles become
asymmetric, see Fig. 13(b). When δb < 1, the fastest diffusing
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FIG. 11. Temporal variation of (a) mc (main panel) and Ctot (inset) and (b) mR (main panel) and Rtot (inset). Other parameters along with
convention of lines and symbols are the same as Fig. 10.
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FIG. 12. Asymmetric fingering: Concentration of the product at t = 40,60,80, and 100 (from top to bottom) for δb: (a) 0.25, (b) 0.5, (c)
0.8, and (d) 1.0. Other parameters are the same as in Fig. 2.
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FIG. 13. Asymptotic transverse averaged RD profiles for (a) concentrations and (b) permeability for δb: 0.25 (thickest blue line), 0.5 (thicker
green line), and 0.8 (thick red line). The dashed, dash-dotted, and solid lines represent the concentrations of A, B, and C, respectively. The
initial location at x = xl = xr = x0 corresponds here to the black dotted line at origin. The other parameters are the same as those of Fig. 12.
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FIG. 14. Variation of the mixing length with time for δb: 0.25
(square), 0.5 (star), and 0.8 (circle). The solid line without symbol
represents δb = 1. All solid and dashed lines represent left and right
interfaces, respectively. Other parameters are the same as Fig. 2.

reactant A invades the slowest diffusing B, see Fig. 13(b), and
an asymmetric permeability gradient develops which in turn
gives rise to asymmetric fingering patterns in both reactive
zones. It is clear from Fig. 13(b) that the unfavorable gradient
dκ/dx < 0 is sharper in the left reactive zone where the system
is thus more unstable as seen in Fig. 12 [see the Supplemental
Material for a movie of Fig. 12(a) [50]]. In addition, the
intensity of fingering increases with decreasing δb. This is
due to the fact that dκ/dx increases with decreasing δb, see
Fig. 13(b).

Figure 14 shows that the corresponding mixing length
significantly changes when δB is varied. Initially the mix-
ing length decreases when δb decreases, however, in the
convection-dominated regime, the instability sets in faster and
the linear convective growth is steeper at the left interface
when δB decreases. This observation is consistent to what
we see in Fig. 2, viz. the fingering patterns at the left reactive

zone are more unstable when we decrease δb. The reverse
is obtained at the right interface. In the inset of Fig. 14,
we show the variation of L with δb at time t = 5 and 10
in the diffusion-dominated regime. It is observed that the
diffusive mixing length is a monotonic increasing function of
δb [52,54], which means that, even in the case of no fingering,
the zone of local precipitation increases with δb. It is noted
that, in the convection dominated regime, the mixing length
at the left interface deviates in some cases from a linear
growth later (see the δb = 0.25 and 0.5 curves in Fig. 14),
probably due to merging between fingers due to transverse
diffusion.

The effect of δb on mc and mR are shown in Fig. 15. In
the left reactive zone mc first travels towards the right until
convection dominates. However, in the right zone mc always
travels towards the left, Fig. 15(a). We can conclude that
the precipitation fingering patterns cover a larger area in the
right reactive zone. It is also verified that the absolute values
of mc and mR increase and decrease with δb, respectively.
Subsequently, mR shifts more towards the right (left) when
A invades B (B invades A) as we decrease δb, as shown in
Fig. 15(b).

V. COMPARISON WITH THE EXPERIMENTS

Our numerical results can be compared with the experi-
ments reported by Nagatsu et al. [27]. As an example, the
lowest panel of Fig. 12(a) compares the fingering at the left
interface when the fast diffusing A invades the slow diffusing
B (δb = 0.25), producing a solid product that barely diffuses
(δc = 0.01) with the reverse case of B displacing A (right
interface). This simulation is equivalent to the experimental
case (shown in Fig. 1 of Ref. [27]) when A = Fe+3 is the
displacing or displaced reactant in the experiment [27]. The
diffusivity of the solution of Fe+3 is indeed larger than that of
reactant B (= K4[Fe(CN)6]) i.e., DA > DB (δb < 1). From
Fig. 12, we see that the present simulation results are in
qualitative agreement with the experiment. For the case when
A pushes B (Fig. 12(a) left versus Fig. 1(e) in Ref. [27]),
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FIG. 15. Temporal variation of (a) mc (main panel) and Ctot (inset) and (b) mR (main panel) and Rtot (inset). Other parameters along with
convention of lines and symbols are the same as those of Fig. 14.
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the precipitation fingers are more involved and uniformly
distributed. On the contrary, when B pushes A (Fig. 12(a)
right versus Fig. 1(f) in Ref. [27]), we see that the fingers
are more concentrated at the right reactive zone. The present
results are in good agreement with the experiments as well as
previous simulations [27].

VI. CONCLUSION

A simple A + B → C precipitation reaction is able to
change locally the permeability of a porous medium and
trigger a fingering instability. We have numerically studied
the properties of this precipitation-driven fingering when
a solution of a reactant A displaces a solution of B to
produce a solid product C in the miscible reactive zone.
While mathematically the RDC model of precipitation-driven
and that of reactive VF bear similarities, a specificity of the
precipitation case is that the product C barely moves as it is
a solid phase while, in reactive VF, the reactants A, B, and
product C have diffusion coefficients of the same order of
magnitude. The model of precipitation-driven fingering needs
thus to allow the possibility for DC , the diffusion coefficient
of solid C to tend to zero. We show that decreasing DC

destabilizes the system and that, in this limit of DC → 0, the
onset time of precipitation fingering is much faster than that of
reactive VF. Apart from this difference, precipitation fingering
patterns are similar to their reactive VF equivalent if only the
mobility is affected. In particular, they are similar whether A

invades B or vice versa when the underlying RD concentration
profiles are symmetric around the initial contact position. This
is the case when the ratio of the initial concentrations and the
diffusivity ratio of the reactants are equal to 1 (φ = 1,δb = 1).
Failing any of these conditions, when φ �= 1 or δb �= 1, leads to
asymmetric RD concentration profiles, subsequently leading
to different precipitation patterns whether A displaces B or the
reverse. Our results show that the system is more unstable with
regard to precipitation fingering when the invading solution
is either more concentrated or contains the fastest diffusing
reactant.

Our results suggest that in order to develop given precipitate
patterns by an A + B → C precipitation reaction within a
flow, the ratio of initial concentrations and diffusivity can
be tuned to obtain a more or less important influence of
the fingering patterns on the solid phase. For what concerns
CO2 sequestration techniques, the present study provides a
first mathematical framework in which to analyze the optimal
conditions for safe and permanent mineralization of CO2

upon injection into aqueous solutions and precipitation with
dissolved minerals.

The model studied here relies on simplifying assumptions
such as the use of a constant porosity to focus on the effect
of a concentration-dependent permeability only. This has
allowed us to underline the mathematical analogy between
reactive viscous fingering and precipitation- (and by extension
dissolution) driven fingering. This is important because it
suggests that all studies of effects that are known to influence
viscous fingering (such as heterogeneities [42,43], velocity-
dependent dispersion [44], or nonmonotonic mobility changes
[55] to name a few) should straightforwardly be transposed
to studies of channeling due to permeability changes. In

effect, however, fingering due to changes in the porous matrix
by either dissolution or precipitation reactions can be more
involved because of the feedback on porosity, too. It will
be of interest to analyze if this feedback can lead to new
properties of fingering not seen in viscous instabilities. In
this regard, future work on precipitation-driven fingering
should focus on using more realistic porosity and permeability
dependence on concentration of precipitates to be able to
tackle the situation in real porous media. This calls for
additional experimental studies of such relations in model
porous systems. Meanwhile, simpler experiments studying
precipitation patterns can also be performed in Hele-Shaw cells
[27–30]. In some cases, interplay with viscous fingering has
been observed [31]. Progresses in modeling of such fingering
dynamics in Hele-Shaw geometries should incorporate 3D
effects in the gap of the cell [56,57] as well as viscous [30,31]
or mechanical effects due to cohesive properties of the solid
matrix [28].
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APPENDIX

The results obtained here can be compared with those
discussed in Nagatsu et al. [27] modulo a change of variable. In
dimensional form, our model is the same as given in Ref. [27].
However, Nagatsu et al.’s characteristic scales are based on
DC , the diffusion coefficient of the solid product. To allow us to
tackle the δc → 0 limit specific to precipitation more easily, we
use here other characteristic scales based on DA, the diffusion
coefficient of the reactant A. To compare both approaches, the
following relationship between parameters should be used:

δc = 1

δN
a

, δb = δN
b

δN
a

, Da = DN
a δN

a , and

Pe′×Pe = 1

δN
a

(Pe
′N×PeN ), (A1)

where the superscript N refers to the parameters used in
Ref. [27]. For example, the parameters δN

a = 20, δN
b = 5,

and DN
a = 1 in Ref. [27] correspond to δc = 0.05, δb = 0.25,

and Da = 20 in the present model. If the dimensionless
length and width in Ref. [27], for example, are set to
(Pe

′N×PeN ) = (2048×1024), then in the present model these
correspond to (Pe

′×Pe) = (102.5×51.2). Similarly, in the
reverse case, parameters corresponding to Fig. 2 here, i.e.,
δc = 0.01,δb = 1,Da = 1, correspond to δN

a = δN
b = 100 and

DN
a = 0.01, respectively.
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