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Localized stationary and traveling reaction-diffusion patterns in
a two-layer A + B → oscillator system
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When two solutions containing separate reactants A and B of an oscillating reaction are put in contact in a
gel, localized spatiotemporal patterns can develop around the contact zone thanks to the interplay of reaction and
diffusion processes. Using the Brusselator model, we explore analytically the deployment in space and time of
the bifurcation diagram of such an A + B → oscillator system. We provide a parametric classification of possible
instabilities as a function of the ratio of the initial reactant concentrations and of the reaction intermediate species
diffusion coefficients. Related one-dimensional reaction-diffusion dynamics are studied numerically. We find
that the system can spatially localize waves and Turing patterns as well as induce more complex dynamics such
as zigzag spatiotemporal waves when Hopf and Turing modes interact.
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I. INTRODUCTION

Propagation of localized reaction zones can be obtained
when initially separated reactants A and B meet by diffusion
and start to react. In the case of simple A + B → C reactions,
the properties of the related reaction-diffusion (RD) fronts have
been well characterized [1]. In gels, these fronts are known to
travel at a speed and in a direction that depend on the ratio of
initial reactant concentrations and diffusion coefficients [2]. In
absence of a gel, convective dynamics due to buoyancy effects
[3,4] or viscosity-driven [5,6] instabilities have been shown
to provide new reaction-diffusion-convection (RDC) patterns.
There is currently also interest in understanding the properties
of such localized reaction zones in the case of autocatalytic
reactions [7]. RDC dynamics for which localized traveling
waves couple to buoyancy-driven fingering phenomena have
been indeed characterized when two solutions each containing
a subpart of the oscillating Belousov-Zhabotinsky (BZ) [8,9]
reaction are put in contact in the gravity field [7]. In order
to understand the properties of these RDC patterns, there is
a need to first decipher the spatiotemporal properties of the
underlying autocatalytic RD fronts.

Localized autocatalytic RD structures have long been
studied in the presence of gradients in the concentrations
of given reactants [10,11]. In experiments, these localized
patterns emerge typically in a piece of gel fed from two
lateral sides with different reactants [so-called continuously
fed unstirred reactors (CFUR)]. Initially, the gel contains no
reactant and dissipative spatiotemporal dynamics develop in
the central part of the gel once the reactants meet by diffusion.
Either localized waves (such as excyclons for instance [12,13])
or Turing patterns spatially confined in a part of the reactor
[14–18] are then obtained experimentally depending on which
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instability is controlling the system. From a theoretical point of
view, several works have already characterized the properties
of RD patterns localized by ramps of concentrations of the
main reactants maintained by the feeding of the system from
the sides [10,11,16–24]. These concentration gradients can
lead to coexistence in different parts of the reactor of waves and
Turing patterns or to composite stationary spatial structures
[17,23–28]. Some analysis of this problem has been performed
with the classical Brusselator model [11,29,30] to investigate
the impact of nonuniform spatial distributions of one initial
reactant while the other is set homogeneously and works as
a bifurcation parameter. Typically, the concentration profile
of the nonuniform reactant is considered with a minimum in
the central zone of the reactor. It was reported numerically
that the system dynamics can switch from localized steady
structures to propagating chemical waves as a function of
the relative values of the initial reactant concentrations and
diffusion coefficients [10,11]. Deeper insights on the resulting
RD patterns, such as parametric conditions for the onset of
the instabilities, amplitude and wavelength, were obtained
analytically by means of a linear stability analysis [19,20].

Other localized RD structures like, for instance, a Turing
pattern localized in an oscillating background (or vice-versa)
can be obtained with homogeneous feeding of the reactants
in the vicinity of a codimension-two Turing-Hopf (CTH)
point, i.e., conditions for which the thresholds of the Turing
and Hopf instabilities coincide [17,27,28,31–39]. Similarly,
several types of complex behavior, including spatiotemporal
chaos induced by the interplay between Turing and Hopf
domains, have been predicted [40,41]. Finally, cross-diffusion
has been also shown to drive the formation of localized
reaction-diffusion patterns and their interaction with propa-
gating waves [42–46].

The situation that has not received as much attention yet
is the A + B → oscillator case, in which two gels, each of
them containing different reactants A or B of an oscillatory
reaction, are put in contact in a closed reactor. Each part of
this system is unable initially to yield any RD pattern as it
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FIG. 1. (a) Sketch of the two-layer configuration under analysis,
where two pieces of gels, each of them containing different reactants
of an oscillatory reaction, are put in contact; (b) spatial profiles
of the Brusselator chemical species (A,B, X, Y ) some time after
putting regions 1 and 2 in contact when reactant consumption can be
neglected.

contains only A or B that cannot give any nonlinear dynamics
alone. Yet, once the gels are in contact, the reactants can diffuse
and start to provide locally all species needed for the complex
chemical processes to start. This problem is the generalization
of a simple A + B → C front case to A + B → oscillatory
and excitable kinetics, much less characterized.

In this context, we have recently initiated the study of such
A + B → oscillator systems with the BZ reaction [47], in
which the oscillatory mechanism is active in the reaction zone
between two initially spatially separated pools of BZ reactants
slowly diffusing one into the other [as sketched in Fig. 1(a)].
Thanks to a combined experimental and numerical approach,
it has been shown how the two-layer configuration associated
with the nonlinear chemical kinetics is a convenient means to
induce self-sustained localized patterns and is a rich source of
complex dynamics [47]. Composite traveling structures result
from the interaction between chemical fronts and localized
waves, and the transition between different spatiotemporal
behaviors can be directly controlled by varying the initial
concentration of the organic substrate of the BZ medium
layered on one side, which affects the local excitability. The
complexity of the BZ oscillator calls for simpler model systems
through which spatiotemporal RD structures obtained with
the two-layer configuration can be theoretically analyzed and
classified.

To this end, we use here the Brusselator model, on which
both dynamical and stationary instabilities can be explored
and analytical progresses can be made [10,11,20,24,31,48,49].
We provide a first insight into the possible dynamics and
coexistence of different instability modes in an A + B →
oscillator system. We show analytically that, depending upon
the ratio of the initial concentration of the two reactants and the
ratio of diffusion coefficients of the reaction intermediates, the
system can exhibit either localized waves, localized stationary
Turing structures, or a combination of both modes expanding
in space around a codimension-two Turing-Hopf (CTH) point.
We study numerically the spatiotemporal properties of these
RD patterns in the case of a one-dimensional system. This
analysis provides a theoretical basis to develop experiments

studying localized RD patterns using oscillating reactions in
gels or RDC dynamics with the same reactants put in contact
in reactors in the presence of hydrodynamic instabilities.

The article is organized as follows: in Sec. II, we describe
the Brusselator model with the specific initial and boundary
conditions akin to obtain structures in a localized reaction zone
upon contact along a given interface between two solutions
each containing a different initial reactant of the chemical
oscillator. In Sec. III, we derive analytically the conditions to
obtain spatially localized Hopf, localized Turing, or a CTH
bifurcation. In particular, we study analytical spatiotemporal
bifurcation diagrams to be expected as a function of the relative
diffusivity and concentration of chemical species, culminating
in a general classification of the possible instability scenarios,
which can be obtained in this relevant parameter space.
Section IV presents results of numerical simulations of the
RD model in one dimension before a concluding discussion
(Sec. V) is drawn.

II. RD EQUATIONS

The kinetic scheme of the irreversible Brusselator model
reads [11,29,30]

A
k1−→ X, B + X

k2−→Y + D,
(1)

2X + Y
k3−→ 3X, X

k4−→E,

where {A, B} are the initial reactants and {X, Y } are
the reaction intermediates, featuring the autocatalytic (X)
and the inhibitor (Y ) species, respectively. {ki, i = 1,4}
represents the set of rate constants. Here, we study a two-layer
configuration in which the pools of reactants A and B are
initially separated at ζ = ζ0 along the spatial domain of length
Lζ (see Fig. 1). There is initially no intermediate species X
and Y such that the initial condition reads

(A,B,X, Y ) = (A0,0,0,0) (side 1) for ζ > ζ0 = Lζ/2,
(2)

(A,B,X, Y ) = (0,B0,0,0) (side 2) for ζ ! ζ0 = Lζ/2.

The formation of the intermediates X and Y occurs upon
diffusive mixing and reaction between the two reactants (or
more generally reactant pools) A and B across the initial
contact line localized at ζ0 = Lζ/2 [see Fig 1(b)].

No-flux boundary conditions are considered for all species
at the borders ζ = 0 and ζ = Lζ . For simplicity, we consider
that the main reactants present similar diffusivity Da ∼
Db = D. Following a standard scaling of the variables (see
Refs. [21,30,50]), the reaction-diffusion (RD) equations of the
irreversible Brusselator read

∂tA = D ∇2A − kaA, (3)

∂tB = D ∇2B − kbBX, (4)

∂tX = Dx ∇2X + A − (B + 1)X + X2Y, (5)

∂t Y = Dy ∇2Y + BX − X2Y, (6)

with ka = k1/k4 and kb = k2/
√

k3k4 [50]. In a closed system,
our out-of-equilibrium description requires that the initial con-
centrations A0 and B0 of the reactants are much larger than the
intermediate concentrations and that they are slowly consumed
(so-called pool chemical approximation) as compared to the
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timescale characterizing the RD dynamics of the intermediate
species, so that they change mainly because of diffusion. In
the model Eqs. (3)–(6), the rate of reactant depletion can be
controlled by means of the kinetic parameters ka and kb.

The pool chemical hypothesis, enabling us to neglect equi-
libria and reactant consumption, holds as long as the system
maintains far-from-equilibrium conditions and, referring to
the definition of ka and kb, it successfully applies to the
Brusselator when k1 ≪ k4 and k2 ≪

√
k3k4 (in other terms,

when the autocatalytic process and the consumption of the au-
tocatalytic species are faster than the reactant depletion steps).
This condition is physically possible in chemical oscillators
and is particularly reliable with the Belousov-Zhabotinsky
system, able to maintain oscillations and RD structures in
quasistationary conditions quite a long time in batch reactors
before evolving to equilibrium. For the BZ system, we have
recently shown that numerical simulations of an analogous
two-layer system carried out by using the Oregonator model
without reactants consumption compare favorably with the
spatiotemporal dynamics found in corresponding experiments
[47]. On the basis of this evidence, we assume here that
ka = kb = 0, which greatly simplifies the complexity of the
problem and allows us to develop analytical progresses.

In a homogeneous system with constant concentration A0
and B0 in space and time, Eqs. (5) and (6) admit the homoge-
neous steady state (SS) (Xss,Yss) = (A0,B0/A0). If B0 is cho-
sen as the bifurcation parameter, this SS may become unstable
toward a Hopf instability if B0 > BH

c = 1 + A2
0, evolving then

into a homogeneous limit cycle characterized by a critical
frequency ω = iA0. In the presence of differential diffusion,
this SS can become unstable toward a Turing instability when
B0 > BT

c = (1 + A0
√

δ)2, where δ = Dx/Dy . A stationary
spatial pattern emerges then characterized by an intrinsic
critical wave vector k2

c = A0/
√

DxDy . The thresholds of these
two instabilities coincide at the Turing-Hopf codimension-two
(CTH) point such that Bc = BH

c = BT
c . In a homogeneous

system, the CTH is obtained for the critical ratio of diffusion

coefficients δc = [(
√

1 + A2
0 − 1)/A0]2. A characterization of

the instability regions of the homogeneous system is given for
A0 = 1 in the parameter space (δ,B0) shown below [Fig. 4(a)].

Our objective here is to analyze how these instability
thresholds develop in space and time when the profiles of
reactant concentrations A(ζ,t) and B(ζ,t) are themselves
evolving dynamically when controlled by a diffusive process.
This characterization is then correlated to the phenomenology
observed from numerical simulations of the RD Eqs. (3)–(6).
The validity of our analytical predictions obtained without
reactant consumption (ka = kb = 0) are finally discussed in
regard to the simulations of the full Eqs. (3)–(6) with nonzero
values of the kinetic parameters ka and kb.

III. SPATIOTEMPORAL BIFURCATION DIAGRAMS AND
PARAMETRIC CLASSIFICATION

Analytical solutions to the diffusive Eqs. (3) and (4) starting
from the initial conditions Eq. (2) with no-flux boundary

conditions and ka = kb = 0 are [51]

A(ζ,t) = A0

2
erfc

(
− (ζ − ζ0)√

4Dt

)
, (7)

B(ζ,t) = B0

2
erfc

(
(ζ − ζ0)√

4Dt

)
. (8)

As the consumption of the initial reactants is neglected, the
different role played by species A and B results from their
different initial distributions Eq. (2).

As a consequence of Eqs. (7) and (8), the critical value of
the control parameter B0 above which the system becomes
unstable toward a Hopf bifurcation also evolves as a function
of space and time as

H (ζ,t) = 1 + A2(ζ,t) = 1 +
[
A0

2
erfc

(
− (ζ − ζ0)√

4Dt

)]2

. (9)

Similarly, the critical curve above which a Turing instability
sets in writes

T (ζ,t)= [1+
√

δA(ζ,t)]2 =
[

1+
√

δA0

2
erfc

(
− (ζ − ζ0)√

4Dt

)]2

.

(10)

An illustration of how the stability of the system changes
in space in response to the spatial distribution of the main
reactants is sketched in Fig. 2 for a given time, t . The lower
curve [either H (ζ,t) or T (ζ,t)] indicates which instability
is locally governing the system dynamics, provided that it
also lies below the concentration profile B(ζ,t). For instance,
by following from top to bottom the downward increasing
curve B(ζ,t), we observe stationary states for ζ > ζT , where
B(ζ,t) < T (ζ,t) < H (ζ,t). The system becomes unstable
to a Turing instability for ζCTH < ζ < ζT , where T (ζ,t) <
B(ζ,t) < H (ζ,t). For ζ < ζCTH, H (ζ,t) < T (ζ,t) < B(ζ,t)
and the Hopf instability locally controls the dynamics.

FIG. 2. Schematic of spatially dependent concentration profiles,
A(ζ,t) (red), B(ζ,t) (blue), and critical thresholds, H (ζ,t) (gray) and
T (ζ,t) (black), at a given time t . In this view B(ζ,t) goes out of scale.
ζCTH locates the codimension-two point, where H (ζ,t) intersects
T (ζ,t), while ζH and ζT identify the intersection points of B(ζ,t)
with H (ζ,t) and T (ζ,t), respectively.
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In general, the Hopf instability controls the regions of the
spatial coordinate where

H (ζ,t) < B(ζ,t)

H (ζ,t) < T (ζ,t),

while Turing structures can develop where the following
conditions are met simultaneously

T (ζ,t) < B(ζ,t)

T (ζ,t) < H (ζ,t).

The points where the instability profiles cross each other
and intersect B(ζ,t) define important references for mapping
the spatiotemporal deployment of the different regimes.
The location ζCTH(t) of the codimension-two point, where
H (ζ,t) = T (ζ,t), permits us to separate the domains in which
one instability prevails on the other. This border point is found
to evolve as

ζCTH(t) − ζ0 = −erf−1

[

1 − 4
√

δ

(1 − δ)A0

]
√

4Dt,

with A0 > 0 and
√

δ ∈

⎛

⎝0,

√
1 + A2

0 − 1

A0

⎞

⎠. (11)

The Hopf regime dominates the Turing one [i.e., H (ζ,t) <
T (ζ,t)] in the spatial domain, where

ζ < ζCTH(t) . (12)

For δ values beyond the constraints given in Eq. (11), no
intersection is possible and the Hopf threshold lies below
T (ζ,t). Also, note that ζCTH(t) depends explicitly on A0 and
δ, while it is independent of B0.

A dependence in B0 is found by solving the inequality
H (ζ,t) < B(ζ,t), from which we obtain that the system is
also locally in the Hopf regime when

ζ < ζH (t), (13)

where

ζH (t) − ζ0 = −erf−1

⎛

⎝
B0 + A2

0 −
√

B2
0 − 4A2

0(1 − B0)

A2
0

⎞

⎠

×
√

4Dt ∀ A0 > 0,B0 " 1 .

According to Eqs. (12) and (13), the system can destabilize
into Hopf modes either for

ζ < ζH (t) < ζCTH(t) (14)

or

ζ < ζCTH(t) < ζH (t) . (15)

As discussed below, the former condition [Eq. (14)] holds
when the Hopf instability can only develop while the latter
[Eq. (15)] is operational in the presence of both instabilities
along the system.

By taking into account condition T (ζ,t) < B(ζ,t) com-
bined to Eq. (12), the spatiotemporal evolution of the Turing

regime can be isolated by

ζCTH(t) < ζ (t) < ζT (t), (16)

where

ζT (t) − ζ0 = −erf−1

×

⎧
⎨

⎩
B0+2

√
δA0+δA2

0−
√

B0[B0+4
√

δA0(1+
√

δA0)]

δA2
0

⎫
⎬

⎭,

×
√

4Dt (17)

provided A0 > 0, B0 " 1, and
√

δ ∈ (0,

√
1+A2

0−1
A0

).
Due to geometrical constraints, the intersection ζCTH(t)

between the profiles T (ζ,t) and H (ζ,t) can solely precede or
follow the position of points ζH (t) and ζT (t) ∀ t . Together with
condition Eq. (12), this fact implies that the relative evolution
of these critical thresholds follows either

ζT (t) < ζH (t) < ζCTH(t) ∀ t (18)

[see Fig. 3(a)] or

ζCTH(t) < ζH (t) < ζT (t) ∀ t, (19)

as shown in Fig. 3(b).

FIG. 3. Spatiotemporal bifurcation diagrams showing the evo-
lution of the critical points ζCTH(t), ζH (t), and ζT (t) for the two
typical situations of our problem, when the reactant consumption
is neglected. A0 = 1, D = Dx = 1, δ = 0.1, ka = kb = 0, and
(a) B0 = 2, only the Hopf instability can locally develop, (b) B0 = 15,
both the Turing and Hopf instability coexist.
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Equations (18) and (19) are the relevant conditions for
localizing the instability domains and describing the spa-
tiotemporal development in these two possible scenarios. They
are analyzed graphically in Fig. 3, where we compare ζCTH(t),
ζH (t), and ζT (t). Figure 3(a) illustrates the case where only
the Hopf instability can locally set in [Eq. (18)], while in
the second example [Fig. 3(b)], the Turing instability is also
at play [Eq. (19)]. In Fig. 3(a), we observe that ζT (t) (red
curve) is strictly lower than ζCTH(t) (black curve), hindering
the possibility of satisfying condition Eq. (16) for the existence
of a Turing-controlled domain. Bearing in mind the illustrative
Fig. 2, it can be realized that, in the region ζ < ζCTH(t), the
Turing threshold T (ζ,t) lies always beyond H (ζ,t) [H (ζ,t) <
T (ζ,t)] and the Hopf instability thus dominates exclusively
the system dynamics as soon as B(ζ,t) > H (ζ,t). Indeed, the
Hopf domain extends for ζ < ζH (t) (blue curve) consistently
with condition Eq. (14). Notice that, in our problem, it is not
possible to find any analog to this situation with Turing modes
exclusively active.

Figure 3(b) shows that ζT (t) > ζCTH(t) at all times and the
spatial region embedded between these two trends is unstable
toward a Turing instability. ζH (t) lies within this region and the
Hopf instability can thus prevail only below ζCTH(t), according
to condition Eq. (15).

Thanks to relation Eqs. (13)–(17) and corresponding
parametric constraints, we can also derive the conditions
(independent of time and space), in which these possible
instability scenarios can develop, as a function of δ and B0, for
a given A0. In particular, Eqs. (16) and (17) allow us to predict
where Hopf and Turing instabilities can separately coexist
over the spatial domain. From the comparison between the
members of Eq. (16), it follows that ζCTH(t) < ζT (t), which,
since the inverse error functions, −erf−1(), are monotonically
decreasing in the domain (−1, 1), is satisfied when their
arguments obey

1 − δA0 − 4
√

δA0

1 − δ

>
(2

√
δA0 + B0) −

√
B0

(
B0 + 4

√
δA0 + 4δA2

0

)

δA0
. (20)

This leads to

B0 >
A0(δ + 1)2

(δ − 1)[2
√

δ + A0(δ − 1)]
(21)

∀ δ <

⎛

⎝

√
1 + A2

0 − 1

A0

⎞

⎠

2

and A0 > 0.

Starting from condition Eq. (14) [namely ζH (t) < ζCTH(t)],
an analogous procedure to identify parametric domains for
the case in which the Hopf instability can only set in yields
analogous information.

Based on Eq. (21), we can hence classify possible instability
scenarios for our two-layer problem in a reduced parameter
space (δ,B0) as shown in Fig. 4(b), where, for simplicity,
we consider the representative case A0 = 1. The parameter
space can be subdivided into three regions. In region I

FIG. 4. Classification of the possible instabilities in the (δ,B0)
parameter space (A0 = 1) for the system with (a) homogeneously
distributed reactants and with (b) the two-layer configuration defined
by Eqs. (2). The solid curve describes condition Eq. (21).

corresponding to all values of δ and B0 ! 1 no instability
is expected and the system intermediates stabilize to nonzero
steady states [scenario illustrated in Fig. 3(a)]. In region II
a Hopf instability is the only one that can occur along the
spatial domain and we can expect the formation of waves
[scenario Fig. 3(b)]. The black curve describes Eq. (21),
which delimits the lower borderline of region III where both
Hopf and Turing instabilities can develop in space and time
[scenario Fig. 3(c)]. Note that this curve tends to a vertical
asymptote when δ → (

√
2 − 1)2, which is the corresponding

Turing threshold for the analogous homogeneous system. In
region III, we expect the emergence of localized stationary
structures which can interact and eventually transmute into
traveling structures around the CTH point.

IV. NONLINEAR SIMULATIONS

In order to validate the analytical approach above, we
perform numerical simulations of the nonlinear Eqs. (3)–(6).
The systems is solved by using the Crank-Nicolson method
[52] over a one-dimensional spatial domain of length Lζ =
500, with a space integration step hζ = 0.5. No-flux boundary
conditions are imposed for the concentration fields at the
boundaries of the reactor. Simulations are run for 5000 time
units, using the integration time step ht = 1 × 10−3. We set
A0 = 1, the diffusivities D = Dx to 1 and δ = 0.1, while we
vary the relative amount of the initial reactant B0 to explore
changes in the spatiotemporal evolution of the system. To be
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FIG. 5. Spatiotemporal dynamics of the inhibitor Y when B0 =
0.5 (a), B0 = 2 (b), and B0 = 15 (c). Bright areas correspond to high
concentration values of Y . Here A0 = 1, D = Dx = 1, δ = 0.1, and
ka = kb = 0. The morphology of each space-time plot is correlated
to the corresponding threshold curves ζCTH(t), ζH (t), and ζT (t).

more specific, we follow the transition from region I to III of
the parameter space (δ,B0) by varying B0 with δ fixed to 0.1.

An overview of the main spatiotemporal dynamics observed
is shown in Fig. 5. In each panel we report the space-time
plots of the inhibitor Y , obtained by piling-up the spatial
distribution of the concentration Y (vertical axis) as a function
of time (horizontal axis). The spatiotemporal evolution of
X is complementary to those shown. In order to correlate
directly the morphology of the space-time plots with the
spatiotemporal bifurcation diagrams described in Fig. 3, we
overlap the corresponding threshold curves ζH (t), ζT (t), and
ζCTH(t).

A common aspect characterizing the system dynamics in
all the scenarios explored is that X rapidly stabilizes to the

steady-state X = A0 over side 1 due to the first step of the
kinetic model Eq. (1). Here, Y → 0 because B → 0 and
it is autocatalytically depleted. The diffusion of the species
X toward side 2 triggers the development of a diffusion-
controlled front of the species Y regulated by the second and
third kinetic steps of reaction scheme Eq. (1).

This phenomenology is typically illustrated by Fig. 5(a),
where we show the space-time plot for B0 = 0.5. We are then in
case I and we can only observe the propagation of a diffusion-
limited chemical front (bright area) from the initial contact
point between the two reactant pools A and B toward side
2. As predicted in the classification drawn above, there is no
location in space where B(ζ,t) > H (ζ,t) or T (ζ,t) if B0 < 1
and hence no corresponding breaks of symmetry take place.

Nevertheless, dynamical differences take place when B0
is increased. Figure 5(b) displays the system dynamics when
B0 = 2 (case II). According to the parametric characterization
of Fig. 4, in these conditions the system can locally undergo
a Hopf instability that extends in the zone ζ < ζH (t) [curve
shown in blue in the space-time plot Fig. 5(b)]. The related
dynamics exhibits the nucleation of waves effectively along
ζH (t) and their development toward side 2. This area is
increasingly refractory (high inhibitor concentration) down-
wards the spatial coordinate and the waves can only travel
a short distance, vanishing before the bottom wall. This
dynamics is reminiscent of tracking waves [53] found in the
1,4-cyclohexanedione Belousov-Zhabotinsky medium. Also,
due to the spatial localization of the domain where waves
can propagate and to the no-flux boundary conditions at the
borders of the reactor, new waves are forced to interact with
previous waves. As a result the spatiotemporal plots become
progressively more complex, showing aperiodic dynamics
across the ζH (t) threshold. Similar patterns (not shown)
characterize the system dynamics within region II for larger
values of δ.

The third case considered in Fig. 5(c), for B0 = 15,
illustrates the spatiotemporal dynamics when the Hopf and
Turing regimes can coexist and intersect along the spatial
domain. This corresponds to region III of the diagram in
Fig. 4(b). From the phenomenological viewpoint, we can
appreciate how stationary structures form on side 1, where the
Turing instability can locally induce a breaking of symmetry.
In agreement with analytical calculations, these transient
stationary structures form in the region ζCTH(t) < ζ < ζT (t),
confined between the red and the black curves in the space-time
plot of Fig. 5(c). A further increment in B0 has the effect of
extending this Turing domain. In time, the stationary patterns
forming in the Turing domain present an oscillatory amplitude
(not visible in the space-time plot) and experience a drifting
towards side 2 as soon as they approach the CTH point.
While feeling the influence of the Hopf instability [i.e., for
ζ < ζH (t)], these structures undergo intermittent pulsations
reflecting the local frequency of the chemical oscillator. This,
in turn, depends upon the local concentration of A: the
lower the A concentration the lower the oscillation frequency.
As a result, the waves progressively develop as a sort of
wave packet showing aperiodic and increasingly delayed
accelerations as the leading waves approach the lateral border
of side 2, where the concentration of A is the lowest in the
reactor. This phenomenology gives rise to characteristic zigzag

062207-6



LOCALIZED STATIONARY AND TRAVELING REACTION- . . . PHYSICAL REVIEW E 93, 062207 (2016)

spatiotemporal patterns and features a genuine manifestation
of the Turing-Hopf interaction.

Note that, in all the described scenarios, we have focused
on the initial transient of the dynamics. In the long-term limit,
where the concentration profiles A and B homogenize to the
asymptotic values A0/2 and B0/2, the global dynamics of
the system obeys the standard instability conditions of the
homogeneous Brusselator as mentioned in Sec. II. However,
our far-from-equilibrium assumptions then do not hold any
longer and lead to physically meaningless results.

The validity of the pool chemical approximation used in the
analytical calculations is tested by comparing the dynamics

FIG. 6. Spatiotemporal dynamics of the inhibitor Y obtained with
the same parameter setting as described in the caption of Fig. 5
[B0 = 0.5 (a), B0 = 2 (b), and B0 = 15 (c)], but ka = kb = 0.0001.

obtained when the reactant consumption is neglected [i.e.,
with ka = kb = 0 in Eqs. (3) and (4); Fig. 5] with analogous
simulations performed with increasing values of ka and kb

(Fig. 6). Comparing Figs. 5 and 6, we can appreciate how sim-
ilar spatiotemporal dynamics develop for ka = kb < 0.0005,
while for larger values of these parameters, the depletion of the
main reactants critically impacts the dynamics and, after a short
transient, chemical species monotonically evolve towards the
final stationary states.

V. CONCLUDING DISCUSSION

The spatial deployment of waves and of stationary Turing
structures has been investigated theoretically when two regions
containing the main reactants A and B, initially separated
in space, are put in contact and a RD dynamics fueled
by an A + B → oscillator reaction takes place around the
contact zone. This two-layer configuration allows us to
localize different instability zones over the spatial domain of
the system. Using the Brusselator model, we have derived
analytically the conditions for localization and interaction in
space and time of Turing and Hopf modes in the parameter
space of the problem spanned by the ratio δ of the intermediate
species diffusion coefficients and the initial value B0 of the
bifurcation concentration B(ζ,t). We found that only two
scenarios are possible: (i) localized Hopf-controlled spatial
domains and (ii) coexisting and spatially adjacent Hopf and
Turing regimes. Our approach to predict these conditions
relies on the extension of the stability analysis valid for the
homogeneous system (i.e., where the reactants are constant in
space and time) to our space-time-dependent problem in which
the reactants are initially spatially separated. Though simple,
this strategy allows us to classify in the parameter space (δ,B0)
which instabilities are to be expected and to predict analytically
the spatiotemporal deployment of these instability domains.
While our theoretical approach gives quantitative constraints
for instability scenarios, it can only provide qualitative insights
on the characteristics of the resulting patterns. A more rigorous
study could be developed via a linear stability analysis of
Eqs. (5) and (6) by including the space-dependent distribution
of the main reactants and their consumption in Eqs. (3)
and (4), as proposed in Refs. [10,19,20]. In principle, by
means of such methods it is possible to get the wavelength
of stationary structures around the reactive zone and the
oscillation frequency in the localized Hopf domain. However,
given the nonstationarity of the problem presented here (the
two main reactant concentrations change in space and time),
these characteristics also depend on space and time, making
our case more complicated. Also, the confinement of the
dynamics imposed by no-flux boundary conditions (differently
from the infinite spatial domain considered in typical analytical
approaches) confers further complexity. In order to tackle this
problem, we have thus performed direct nonlinear simulations
to study the dynamics as a function of B0 with δ fixed.
Numerical results confirm the reliability of our theoretical
framework and related analytical outcomes. In detail, we
observe simple diffusion-limited chemical fronts when no
instability can set in. By contrast, traveling waves emerge
and move confined within a specific spatial region when the
system is locally unstable toward a Hopf instability. Finally,
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stationary structures can form locally and evolve in time into
dynamical structures if both the Turing and the Hopf domains
can coexist in the spatial domain. The interaction between the
two instabilities is found to be at the basis of spatiotemporal
zigzag waves.

To check to which extent our analytical results based on
the pool chemical approximation are valid, we have also
run numerical simulations of the model including (i) A and
B consumption and backward reactions [30], or (ii) main
reactant constant inflow at the lateral borders of the reactor.
In this paper, we reported a comparison of the scenarios
obtained with and without reactant consumption. As expected,
we observed that analogous spatiotemporal instabilities as
predicted by means of the analytical procedure can emerge
when the reactants are slowly depleted, while no dissipative
structures have a chance to form if A and B are consumed too
fast and the system monotonically decays to the equilibrium.

To conclude, this work complements previous studies on
pattern formation across the interface between two pools

of reactants and aims at extending the wide literature of
the classical A + B → C problem to A + B → autocatalytic
and oscillatory kinetics. Given the rich spectrum of possible
reactant composition by which a two-layer configuration can
be realized and the variety of possible different regimes,
the present study paves the way to further experimental (for
instance with BZ-microemulsions [54]) and theoretical inves-
tigations on this new class of systems. Also, the exploration
and the classification of possible reaction-diffusion dynamics
in two-layer systems feature the fundamental building block
to understand complex interfacial pattern formation where
hydrodynamic contributions are also at play and which are
currently of utmost interest.
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Rev. Lett. 97, 178301 (2006).

[37] A. Bhattacharyay, J. Phys. A: Math. Gen. 39, 8557 (2006).
[38] J. C. Tzou, A. Bayliss, B. J. Matkowsky, and V. A. Volpert,

Math. Model. Nat. Phenom. 6, 87 (2011).
[39] J. C. Tzou, Y.-P. Ma, A. Bayliss, B. J. Matkowsky, and V. A.

Volpert, Phys. Rev. E 87, 022908 (2013).
[40] A. De Wit, G. Dewel, and P. Borckmans, Phys. Rev. E 48, R4191

(1993).

062207-8

http://dx.doi.org/10.1103/PhysRevA.38.3151
http://dx.doi.org/10.1103/PhysRevA.38.3151
http://dx.doi.org/10.1103/PhysRevA.38.3151
http://dx.doi.org/10.1103/PhysRevA.38.3151
http://dx.doi.org/10.1103/PhysRevA.42.7483
http://dx.doi.org/10.1103/PhysRevA.42.7483
http://dx.doi.org/10.1103/PhysRevA.42.7483
http://dx.doi.org/10.1103/PhysRevA.42.7483
http://dx.doi.org/10.1103/PhysRevLett.104.044501
http://dx.doi.org/10.1103/PhysRevLett.104.044501
http://dx.doi.org/10.1103/PhysRevLett.104.044501
http://dx.doi.org/10.1103/PhysRevLett.104.044501
http://dx.doi.org/10.1063/1.4774321
http://dx.doi.org/10.1063/1.4774321
http://dx.doi.org/10.1063/1.4774321
http://dx.doi.org/10.1063/1.4774321
http://dx.doi.org/10.1103/PhysRevE.79.016308
http://dx.doi.org/10.1103/PhysRevE.79.016308
http://dx.doi.org/10.1103/PhysRevE.79.016308
http://dx.doi.org/10.1103/PhysRevE.79.016308
http://dx.doi.org/10.1103/PhysRevE.85.015304
http://dx.doi.org/10.1103/PhysRevE.85.015304
http://dx.doi.org/10.1103/PhysRevE.85.015304
http://dx.doi.org/10.1103/PhysRevE.85.015304
http://dx.doi.org/10.1021/jz402625z
http://dx.doi.org/10.1021/jz402625z
http://dx.doi.org/10.1021/jz402625z
http://dx.doi.org/10.1021/jz402625z
http://dx.doi.org/10.1038/225535b0
http://dx.doi.org/10.1038/225535b0
http://dx.doi.org/10.1038/225535b0
http://dx.doi.org/10.1038/225535b0
http://dx.doi.org/10.1063/1.1677471
http://dx.doi.org/10.1063/1.1677471
http://dx.doi.org/10.1063/1.1677471
http://dx.doi.org/10.1063/1.1677471
http://dx.doi.org/10.1038/329619a0
http://dx.doi.org/10.1038/329619a0
http://dx.doi.org/10.1038/329619a0
http://dx.doi.org/10.1038/329619a0
http://dx.doi.org/10.1016/0378-4371(92)90259-S
http://dx.doi.org/10.1016/0378-4371(92)90259-S
http://dx.doi.org/10.1016/0378-4371(92)90259-S
http://dx.doi.org/10.1016/0378-4371(92)90259-S
http://dx.doi.org/10.1103/PhysRevLett.64.2953
http://dx.doi.org/10.1103/PhysRevLett.64.2953
http://dx.doi.org/10.1103/PhysRevLett.64.2953
http://dx.doi.org/10.1103/PhysRevLett.64.2953
http://dx.doi.org/10.1023/A:1026462105253
http://dx.doi.org/10.1023/A:1026462105253
http://dx.doi.org/10.1023/A:1026462105253
http://dx.doi.org/10.1023/A:1026462105253
http://dx.doi.org/10.1103/PhysRevLett.69.2729
http://dx.doi.org/10.1103/PhysRevLett.69.2729
http://dx.doi.org/10.1103/PhysRevLett.69.2729
http://dx.doi.org/10.1103/PhysRevLett.69.2729
http://dx.doi.org/10.1016/0378-4371(94)00160-U
http://dx.doi.org/10.1016/0378-4371(94)00160-U
http://dx.doi.org/10.1016/0378-4371(94)00160-U
http://dx.doi.org/10.1016/0378-4371(94)00160-U
http://dx.doi.org/10.1103/PhysRevE.58.4485
http://dx.doi.org/10.1103/PhysRevE.58.4485
http://dx.doi.org/10.1103/PhysRevE.58.4485
http://dx.doi.org/10.1103/PhysRevE.58.4485
http://dx.doi.org/10.1016/0375-9601(89)90025-X
http://dx.doi.org/10.1016/0375-9601(89)90025-X
http://dx.doi.org/10.1016/0375-9601(89)90025-X
http://dx.doi.org/10.1016/0375-9601(89)90025-X
http://dx.doi.org/10.1051/jphys:01988004903054100
http://dx.doi.org/10.1051/jphys:01988004903054100
http://dx.doi.org/10.1051/jphys:01988004903054100
http://dx.doi.org/10.1051/jphys:01988004903054100
http://dx.doi.org/10.1016/0375-9601(88)90369-6
http://dx.doi.org/10.1016/0375-9601(88)90369-6
http://dx.doi.org/10.1016/0375-9601(88)90369-6
http://dx.doi.org/10.1016/0375-9601(88)90369-6
http://dx.doi.org/10.1016/0378-4371(92)90261-N
http://dx.doi.org/10.1016/0378-4371(92)90261-N
http://dx.doi.org/10.1016/0378-4371(92)90261-N
http://dx.doi.org/10.1016/0378-4371(92)90261-N
http://dx.doi.org/10.1103/PhysRevE.50.736
http://dx.doi.org/10.1103/PhysRevE.50.736
http://dx.doi.org/10.1103/PhysRevE.50.736
http://dx.doi.org/10.1103/PhysRevE.50.736
http://dx.doi.org/10.1063/1.1507110
http://dx.doi.org/10.1063/1.1507110
http://dx.doi.org/10.1063/1.1507110
http://dx.doi.org/10.1063/1.1507110
http://dx.doi.org/10.1103/PhysRevLett.90.098301
http://dx.doi.org/10.1103/PhysRevLett.90.098301
http://dx.doi.org/10.1103/PhysRevLett.90.098301
http://dx.doi.org/10.1103/PhysRevLett.90.098301
http://dx.doi.org/10.1103/PhysRevLett.92.128301
http://dx.doi.org/10.1103/PhysRevLett.92.128301
http://dx.doi.org/10.1103/PhysRevLett.92.128301
http://dx.doi.org/10.1103/PhysRevLett.92.128301
http://dx.doi.org/10.1063/1.1668896
http://dx.doi.org/10.1063/1.1668896
http://dx.doi.org/10.1063/1.1668896
http://dx.doi.org/10.1063/1.1668896
http://dx.doi.org/10.1039/f19888401013
http://dx.doi.org/10.1039/f19888401013
http://dx.doi.org/10.1039/f19888401013
http://dx.doi.org/10.1039/f19888401013
http://dx.doi.org/10.1103/PhysRevLett.71.1272
http://dx.doi.org/10.1103/PhysRevLett.71.1272
http://dx.doi.org/10.1103/PhysRevLett.71.1272
http://dx.doi.org/10.1103/PhysRevLett.71.1272
http://dx.doi.org/10.1103/PhysRevE.54.261
http://dx.doi.org/10.1103/PhysRevE.54.261
http://dx.doi.org/10.1103/PhysRevE.54.261
http://dx.doi.org/10.1103/PhysRevE.54.261
http://dx.doi.org/10.1103/PhysRevE.55.6690
http://dx.doi.org/10.1103/PhysRevE.55.6690
http://dx.doi.org/10.1103/PhysRevE.55.6690
http://dx.doi.org/10.1103/PhysRevE.55.6690
http://dx.doi.org/10.1103/PhysRevE.64.026219
http://dx.doi.org/10.1103/PhysRevE.64.026219
http://dx.doi.org/10.1103/PhysRevE.64.026219
http://dx.doi.org/10.1103/PhysRevE.64.026219
http://dx.doi.org/10.1103/PhysRevLett.97.178301
http://dx.doi.org/10.1103/PhysRevLett.97.178301
http://dx.doi.org/10.1103/PhysRevLett.97.178301
http://dx.doi.org/10.1103/PhysRevLett.97.178301
http://dx.doi.org/10.1088/0305-4470/39/26/020
http://dx.doi.org/10.1088/0305-4470/39/26/020
http://dx.doi.org/10.1088/0305-4470/39/26/020
http://dx.doi.org/10.1088/0305-4470/39/26/020
http://dx.doi.org/10.1051/mmnp/20116105
http://dx.doi.org/10.1051/mmnp/20116105
http://dx.doi.org/10.1051/mmnp/20116105
http://dx.doi.org/10.1051/mmnp/20116105
http://dx.doi.org/10.1103/PhysRevE.87.022908
http://dx.doi.org/10.1103/PhysRevE.87.022908
http://dx.doi.org/10.1103/PhysRevE.87.022908
http://dx.doi.org/10.1103/PhysRevE.87.022908
http://dx.doi.org/10.1103/PhysRevE.48.R4191
http://dx.doi.org/10.1103/PhysRevE.48.R4191
http://dx.doi.org/10.1103/PhysRevE.48.R4191
http://dx.doi.org/10.1103/PhysRevE.48.R4191


LOCALIZED STATIONARY AND TRAVELING REACTION- . . . PHYSICAL REVIEW E 93, 062207 (2016)

[41] S. Bouzat and H. S. Wio, Phys. Lett. A 268, 323 (2000).
[42] G. Gambino, M. Lombardo, and M. Sammartino, Math. Comput.

Simul. 82, 1112 (2012).
[43] V. K. Vanag and I. R. Epstein, Phys. Chem. Chem. Phys. 11,

897 (2009).
[44] M. A. Budroni and F. Rossi, J. Phys. Chem. C 119, 9411

(2015).
[45] M. A. Budroni, L. Lemaigre, A. De Wit, and F. Rossi, Phys.

Chem. Chem. Phys. 17, 1593 (2015).
[46] M. A. Budroni, Phys. Rev. E 92, 063007 (2015).
[47] M. A. Budroni, L. Lemaigre, D. M. Escala, A. P. Muñuzuri, and
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