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vasion in the interaction of Turing
and Hopf domains in a reactive microemulsion
system

Igal Berenstein† and Jorge Carballido-Landeira†*

Pattern formation is studied numerically for a reactive microemulsion when two parts of the system with

different droplet fractions are initially put into contact. We analyze the resulting dynamics when the

volume droplet fraction readjusts by diffusion. When both parts initially sustain Turing patterns, the

whole system readjusts its wavelength to the one that corresponds to the mean droplet fraction.

Similarly, when both subsystems initially display bulk oscillations, the system readjusts its temporal

frequency to that of the mean droplet fraction. More surprisingly, when one of the subsystems shows

Turing patterns, and the other bulk oscillations, there is a back and forth invasion of domains, the final

pattern corresponding to the one of the mean droplet fraction.
1 Introduction

Pattern formation is essentially the interaction of dynamical
units through space. It is of importance in several different
disciplines such as uid dynamics, biology, and chemistry just
to mention a few.1 Patterns can be broadly classied in three
classes: (i) patterns uniform in space but changing in time, like
periodic oscillations, (ii) patterns uniformly distributed in
space but stationary in time and (iii) patterns that change both
in space and time, like traveling waves. For reaction–diffusion
systems, the simplest cases for these patterns occur through
different bifurcations for each pattern, and for (i) the stability of
the system changes from stable to unstable generating limit
cycle oscillations, in what is known as a Hopf bifurcation.1 For
(ii) the system changes stability due to diffusion. Alan Turing
described the conditions for this bifurcation as activator–
inhibitor dynamics in which the inhibitor diffuses faster than
the activator, leading to patterns with a well-dened wave-
length.2 This type of structure is known as a Turing pattern, and
the bifurcation leading to it as a Turing bifurcation. While
patterns in the categories (i) and (ii) can be obtained in two-
variable systems, for patterns in (iii), at least three variables
are needed as well as differential diffusion, and this instability
is known as wave instability.2

The interaction of different forms of patterns (or their
respective instabilities) extends the wealth of dynamics that can
be observed. For instance the interaction of Turing and Hopf
bifurcations can produce mixed states such as oscillatory
near Physical Chemistry Unit, Service de

P231, Campus Plaine, 1050, Brussels,

is work.

hemistry 2016
Turing patterns or the coexistence of stable local domains
supporting different dynamics but also more complex struc-
tures such as spatiotemporal chaos.1,3–5 Even the transition from
one type of pattern to another due to consumption of reactants
can produce interesting effects such as wavelength halving
between standing and traveling waves6 or Turing patterns
oscillating in space.7 All previous examples consider the inter-
action of spatial and time breaking symmetries occurring
simultaneously through the entire reactor. However, an inter-
esting open question is what kind of dynamics will arise if we
adjoin two spatially extended systems, in such a way that the
interplay between instabilities will be locally dened and ruled
by the Fickian diffusion processes. Experiments putting into
contact active media have been recently reported where the
reagents of the chemical oscillator, the Belousov–Zhabotinsky
reaction, have been initially separated into two adjoined
parts.8,9 Therefore, none of the systems alone are active or can
produce patterns, with the pattern formation initially limited to
the contact line between them, and the evolving spatio-
temporal dynamics dependent on the excitability of the reac-
tion.8 Additionally, in the case where systems are put in contact
in a gravity eld, the emerging dynamics may modulate the
hydrodynamic patterns creating an intriguing pulsatile chemo-
hydrodynamic coupling.9

Our aim in this paper is to understand the resulting
dynamics that arise due to the interaction of two active
compartments. To do so we use a model10–12 that describes
pattern formation in a chemical system able to display the
variety of patterns previously described: the Belousov–Zhabo-
tinsky reaction encapsulated in a water-in-oil microemulsion
(BZ-AOT).13,14 For the BZ-AOT system, the difference in diffusion
coefficients happens as there are intermediates of the reaction
that can diffuse through the oil phase (diffusing as a single
RSC Adv., 2016, 6, 56867–56873 | 56867
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molecule), whereas other intermediates are only soluble in
water, so that diffusion occurs as a whole droplet (hence,
diffusing slowly).13 Once the key processes take place in
connement, the amount of reactive volume entrapped in these
nanocompartments is able to modify the kinetics of the reac-
tions and, therefore, the resulting patterns. We show numeri-
cally that when two extended BZ-AOT systems containing the
same initial chemical conditions are put into contact, the jump
in the concentration of the droplets (where the reagents are
conned) represents an extraordinary tool to provide new
spatio-temporal dynamics. In the next section (Section 2) we
describe the model as well as introduce a further variable cor-
responding to the droplet fraction, in order to couple the two
subsystems. In Section 3 we show and discuss the results of the
coupled systems: interacting Turing (or Hopf) instabilities give
rise to an homogeneous averaged wavelength (or period of
oscillation) while the change from Turing patterns to waves or
vice versa occurs via back and forth ‘invasion’ of the domains
rather than a front that separates the domains moving in one
direction. The last section (Section 4) is devoted to the conclu-
sions, with an emphasis on the relation of our ndings to
possible experiments using the Belousov–Zhabotinsky reaction
immersed in a microemulsion.
Fig. 1 (a) Phase diagram and (b–d) representative 1D patterns ob-
tained with a¼ 4.5; b¼ 3; c¼ 3.5; a¼ 4/3; 31 ¼ 1; 31 ¼ 6; Dd¼ 0.01 and
Di ¼ 2 in an one-dimensional homogeneous system. In (a) S corre-
sponds to a stable steady state, T-W to amixture of Turing patterns and
waves, T corresponds to Turing patterns, W-BO to waves or bulk
oscillations and C to a chaotic intermittent state of Turing patterns and
waves.
2 The model

Alonso and coworkers have developed a numerical model for
chemical reactions in a water-in-oil microemulsion droplets
system that reads:12

vtu ¼ f(au � au3 � bv � cw) + V(De(f)Vu) (1)

vtv ¼ f31(u � v) + V(De(f)Vv) (2)

vtw ¼ f32(u � w) + V(DwVw) (3)

This extension of the FitzHugh–Nagumo model has one
activator (u) and two inhibitors (v and w) where a, b, c, 31, 32 and
a are the reaction terms and f is the volume droplet fraction,
a parameter that accounts for the droplet concentration. Note
that the kinetics depend on f, so when few droplets are
immersed in the oil, the reaction is slow, while it becomes faster
as the droplet fraction increases. Also, the diffusion coefficient
for w (Dw) is constant and relatively fast (in comparison with the
diffusion of u and v) so that w represents an inhibitor that can
diffuse through the oil phase. In contrast, as u and v are
assumed to stay inside the droplets, the effective diffusion
coefficients for u and v depend on the droplet fraction as:10–12

DeðfÞ ¼ 1

2
ðDd �DiÞð1� 2fÞ

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDi þDdÞ2 � 4fð1� fÞðDi �DdÞ2

q
(4)

This equation takes into account the diffusion coefficients of
the droplets (Dd) and the chemicals inside the droplets (Di).
Furthermore, it reproduces the value for the percolation
56868 | RSC Adv., 2016, 6, 56867–56873
threshold, i.e. the value of f above which the droplets aggregate
forming clusters.

The one-dimensional results obtained with this model can be
summarized in a phase diagram spanned by the volume droplet
fraction f and the autocatalytic reaction rate a, two parameters
feasible to tune from an experimental point of view and that
complement the characterization done by Alonso et al.12 A
summary of the patterns obtained by keeping b ¼ 3; c ¼ 3.5; a ¼
4/3; 31¼ 1; 31¼ 6;Dd¼ 0.01 andDi¼ 2 is presented in Fig. 1a. The
choice of these values for the reaction terms was made to allow
the system to display different dynamics by just tuning the
volume droplet fraction. Representative patterns obtained at a ¼
4.5 are presented in Fig. 1b–d along with the corresponding
dispersion curves (top). The blue (continuous) line represents the
real part and the red (dashed) line the imaginary part of the
eigenvalues obtained by means of a linear stability analysis. By
increasing the volume fraction for a ¼ 4.5 the system exhibits
different dynamics, going from Turing patterns (Fig. 1b, f ¼ 0.5)
to chaos (Fig. 1c, f ¼ 0.53) and oscillations (Fig. 1d, f ¼ 0.56).
The type of chaos seen in the Alonso–John–Bär model corre-
sponds to alternation in both space and time of oscillations and
Turing patterns. Hence it is some type of spatiotemporal inter-
mittency, but rather than alternating attractors from different
steady states, which is the most common type of spatiotemporal
intermittency,15 it alternates different attractors from a single
steady state. In reaction–diffusion systems, the Gray–Scott model
is the prototypical example of spatiotemporal intermittency (see
for example ref. 16).
This journal is © The Royal Society of Chemistry 2016
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2.1 Two-compartment model

In the following sections we will study the dynamic behavior of
a system composed of two adjoined subsystems, each one with
a spatially homogenous volume droplet fraction f but with
different values (f(0 : Lx, 0 : Ly) ¼ f1, f(Lx : 2Lx, 0 : Ly) ¼ f2, Lx,y
being the dimensions of each subsystem), as sketched in Fig. 2.
We assume that the droplet fraction jump relaxes as a diffusion
process, in which the diffusion coefficient Df is set equal to Dw.
The complete model thus becomes:

vtu ¼ f(au � au3 � bv � cw) + V(De(f)Vu) (5)

vtv ¼ f31(u � v) + V(De(f)Vv) (6)

vtw ¼ f32(u � w) + V(DwVw) (7)

vtf ¼ V(DfVf) (8)

We integrate the equations using a fully explicit Euler
method with a three point approximation with a spatial step of
0.05 s.u. (spatial units) and a temporal step size of 0.001 t.u.
(time units) for 1D simulations and a three level DuFort–
Frankel method with a spatial step of 0.1 s.u. and temporal step
of 0.001 t.u. for 2D simulations. We employ no-ux boundary
conditions and positive random initial conditions with ampli-
tude of 0.1 over the (u0 ¼ 0, v0 ¼ 0, w0 ¼ 0) state.
3 Results

Our case of study will be the spatio-temporal dynamics arising
from the interaction between two chemical extended subsys-
tems (i ¼ 1, 2) described by the numerical model explained in
Section 2. We consider the particular scenario where the
subsystems are chemically identical (same a, b, c, a, 31 and 32

parameters) but containing different droplet concentration (f1

and f2). The initial conditions are imposed such that both
subsystems are in touch with an initial jump in the volume
droplet fraction (Df ¼ f1 � f2) along the horizontal axis.
Fig. 2 Schematic showing the numerical setup used in the results
section and the spatial distribution of the volume droplet fraction.

This journal is © The Royal Society of Chemistry 2016
We can summarize the different dynamics through the
tunable volume fractions f1 and f2 or by using a phase diagram
in terms of the initial jump Df and the average volume fraction
�f ¼ (f1 + f2)/2 (that corresponds to the homogeneous value
once the volume fraction homogenizes throughout space). In
these parametric phase diagrams (see Fig. 3) we have inserted
a blue region to guide the reader to the location of the chaotic
intermittent state previously described in Fig. 1. Our numerical
results differentiate four different regimes that will be detailed
hereunder. Note that our simulations were carried out by
considering f2 $ f1 and that the four different domains can be
symmetrically found above the f1 ¼ f2 curve (red line in
Fig. 3b).
3.1 Interaction between subsystems supporting Turing
instability (case I)

The rst case of study is when both subsystems display Turing
structures although with distinct characteristic wavelength (see
Fig. 4 with the corresponding f spatial distribution at the
bottom). This discrepancy is due to the different volume frac-
tion f initially imposed in each subsystem, a parameter that
rules the reaction terms of the model as explained in the
previous section. The larger the volume fraction in the
subsystem the greater the wavelength of the patterns.12

Fig. 4a shows the developed Turing structures aer imposing
an initial jump in the volume fraction (red dashed line in Fig. 4a
bottom). Note that the system requires time to develop the
patterns, so when the patterns appear the diffusion processes
have already smoothed the curve of f (blue line in Fig. 4a
bottom). As time evolves, Turing wavelengths rearrange due to
the changes in the spatial prole of the volume fraction, the
subsystem with higher f being the one starting sooner to
readjust the Turing patterns. This faster readjustment may be
explained by the fact that within the model, the kinetics are
controlled by f, so with the higher f, the higher the velocities of
the reaction.

The nal stage is reached once the volume fraction is
constant along the entire system, exhibiting an homogeneous
Fig. 3 Parametric phase diagrams in terms of: (a) the initial volume
fraction droplet jump (Df) and the average (�f) between two spatially
adjoined systems and (b) the initial volume droplet fractions f1 and f2

summarizing the different spatio-temporal dynamics: Turing–Turing
interaction (I), Turing invading Hopf back-and-forth (II), Hopf invading
Turing back-and-forth (III) and Hopf–Hopf interaction (IV). The blue
domain indicates the chaotic intermittent state obtained for a homo-
geneous single system.

RSC Adv., 2016, 6, 56867–56873 | 56869



Fig. 4 Two snapshots of interacting subsystems developing 2D Turing
patterns at different initial volume fraction (top) alongside the corre-
sponding spatial distribution of volume fractions (bottom); f1 ¼ 0.4
and f2 ¼ 0.5 (a) at 51 time units and (b) at 20 000 time units.
Computational domain size: 200 � 200 space units. Bottom: volume
fraction profiles at the initial time (red dashed line) and at the snapshot
given time (blue line).

Fig. 5 Space–time plots demonstrating the back and forth invasion
between Turing and Hopf modes for different initial volume fractions.
(a) f1 ¼ 0.4 and f2 ¼ 0.6, (b) f1 ¼ 0.45 and f2 ¼ 0.65, (c) f1 ¼ 0.5 and
f2¼ 0.6. Dimensions of space–time plots: 400 space units (horizontal)
and 375 time units (downwards). Highlighted in clear color is the region
where 0.55 $ �f $ 0.51.
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Turing wavelength (Fig. 4b). This nal wavelength corresponds
to the expected value for a system with �f as observed in the
volume fraction prole in Fig. 4b bottom (blue line). The
competition of Turing instabilities has been observed even
when the subsystem with the larger volume fraction value
supports Hopf instability (see Fig. 3 where the region I exceeds
the blue domain). This can be explained by the fact that once
diffusion takes place, the value of f falls into the regime where
both Turing and Hopf modes are supported (Fig. 1).

The relaxation of Turing patterns aer imposing an initial
condition has been studied in different congurations. For
example, spots can be arranged as rhombic patterns instead of
hexagonal patterns,17 as long as an allowed wavelength is
selected. In striped systems, the imposed stripes will remain if
they match an allowed wavelength, otherwise they will rear-
range through transverse instabilities such as Eckhaus and
zigzag instabilities18,19 or even by splitting of stripes.18 In our
case, the relaxation of the patterns is smooth as it is the relax-
ation of the droplet fraction, so no splitting of stripes or zig-
zagging is observed.
3.2 Back and forth Turing–Hopf invasion (cases II and III)

We now analyze the case when one subsystem supports Turing
patterns while the other one features temporal oscillations.
When these two zones come in contact, the transient pattern
shows a back and forth invasion of domains. This effect can be
clearly observed by performing a space–time plot along both
subsystems as shown in Fig. 5. The resulting pattern will differ
depending on the nal value of the volume fraction once it
becomes homogenous through space (i.e. �f). Thus, if �f < 0.52
Turing structures will gradually invade the other subsystem
until nally occupying the entire reactor (Fig. 5a) or, by contrast,
if �f > 0.55 the whole system will end up displaying oscillations
(Fig. 5b and c). The back and forth movement is seen in all cases
56870 | RSC Adv., 2016, 6, 56867–56873
within the range of 0.55$ f$ 0.51 (as highlighted in clear color
in Fig. 5) which is slightly larger than the range in which
spatiotemporal intermittency between Turing and Hopf modes
(chaos) is observed in homogenous systems (Fig. 1).

When both the Turing and the Hopf instabilities are present
in a system, what is most common is that the most stable
pattern will invade the whole system, and the front separating
the different regimes will move with a constant velocity, or by
removing or adding one Turing wavelength. This phenomenon
has been observed in experiments with chlorine dioxide–
iodine–malonic acid reactions, where Turing patterns invade
a steady state domain as either dividing blobs (for spot patterns)
or a growing labyrinth,20 the domain of the Turing pattern being
circular. This linear growth of one domain invading the other is
seen for Turing patterns emerging from bulk oscillations and
a pacemaker,21,22 as well as traveling waves developing from
a pacemaker and bulk oscillations.22 A forced linear growth of
a domain with imposed temporal frequency can be used to
control the morphology of the patterns.23

Another possibility when both the Turing and Hopf insta-
bilities are present is that a system may display both patterns in
different sub-regions of the system (i.e. localized structures),
and that the fronts separating these regions stay stationary.5,24,25

These results are obtained near the codimension two point,
where both the Turing and the Hopf instabilities occur at the
same point. The stability of the front separating the Turing and
Hopf domains is explained by a periodic potential generated by
the interaction with a spatially periodic structure and by the
difference in free energy gained by invasion of the most stable
domain not being able to compensate for the energy required to
move the front by one wavelength.5 Stationary or pinned fronts
have been studied as well for localized Turing patterns over
a homogeneous steady state.26,27
This journal is © The Royal Society of Chemistry 2016



Fig. 7 Profiles of three variables u (blue), v (red) and w (green) at
different time intervals showing the transformation of stationary Turing
patterns into waves (encircled). They collide with the waves coming
from the opposite direction (see arrows). This mechanism gives way to
a reduction of Turing domain. Numeric parameters: a ¼ 5.3; b ¼ 3; c ¼
3.5; a ¼ 4/3; 31 ¼ 1; 31 ¼ 6; Dd ¼ 0.01; Di ¼ 2; f1 ¼ 0.5; f2 ¼ 0.6.
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In our case we have intricate spatio-temporal dynamics
different to those previously described. To help the reader
understand the processes seen in Fig. 5, we show in Fig. 6 and 7
the one-dimensional spatial proles of the three species (u, v, w)
at different times.

On the one hand, each bulk oscillation slows down around the
contact line producing a stationary structure (Fig. 6) a certain
distance ahead of the Turing patterns. This process, repeated for
several cycles, leads to a bigger domain supporting Turing
structures. Subsequently, on the other hand, the last stationary
structure created turns into a wave once a bulk oscillation is
approaching and they annihilate each other (Fig. 7). In contrast
with the Turing structures where the maximum of all species (u,
v, w) are perfectly aligned, the process of giving motion to the
stationary structures is associated with a spatial translocation of
the activator (u, blue line in Fig. 7) over the inhibitors (v, w, red
and green lines respectively in Fig. 7). As can be observed in the
encircled case, the activator goes a short distance ahead in the
direction of motion exactly as in the wave propagating in the
opposite direction. Contrary to the previous scenario, the reiter-
ation of this process leads to a greater region sustaining oscilla-
tions. Both different cases alternate in time, giving rise to a back
and forth invasion between Turing and Hopf modes. We want to
remark that localized moving patterns with similar asymmetry in
the proles of activator and inhibitors have been previously re-
ported in reaction–diffusion systems with long range inhibition
and global coupling.28
Fig. 6 Profiles of three variables u (blue), v (red) and w (green) at
different time intervals showing the creation of Turing patterns from
oscillations. We have encircled (in dashed red) the birth of a stationary
structure coming from the wave labelled with a black arrow; the gray
arrows in the top and bottom figures indicate the same wave while the
black arrow indicates the upcoming one. This step creates a bigger
Turing domain. Numerical parameters: a ¼ 5.3; b¼ 3; c ¼ 3.5; a ¼ 4/3;
31 ¼ 1; 31 ¼ 6; Dd ¼ 0.01; Di ¼ 2; f1 ¼ 0.5; f1 ¼ 0.6.

This journal is © The Royal Society of Chemistry 2016
For the occurrence of spatiotemporal intermittency, the
existence of two different attractors is a necessary but not
sufficient condition. There must be a way in which these
different states are connected. In the Gray–Scott model, if two
neighboring sites are in different attractors, the one corre-
sponding to the limit cycle will induce the one in the steady
state to jump out of its attractor. The connection from the
remains of the limit cycle to the stable steady state occurs when
the unstable state separating the two different attractors
becomes part of the limit cycle (what is known as the Andronov
homoclinic bifurcation15). What controls whether the Turing
domain grows or shrinks is the wavelength of the pattern and f.
If the wavelength is stable for the corresponding local f, the
incoming wave will create a new Turing spot. However, as the
local f changes (increases), the existing Turing wavelength is
too short, and in order to readjust, the spot at the edges has to
move towards the right. To do so the spot behaves, as we have
seen, as a wave so that it annihilates with the incoming wave. In
conclusion, what is important for the back and forth invasion is
the dependence of the Turing wavelength with f, so for a system
with a small dependence of the wavelength on f, we would not
expect this back and forth invasion.

The use of random initial conditions does not have
a noticeable effect on patterns when the starting conditions are
Turing–Turing interactions or Hopf–Hopf interactions.
However, for the Turing–Hopf interaction, the movement of the
front separating the domains changes from simulations to
simulation but always remaining within the range of 0.55$ f$
RSC Adv., 2016, 6, 56867–56873 | 56871
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0.51. This sensitivity towards initial conditions comes from the
chaotic nature of the intermittent state.12
3.3 Interaction between subsystems supporting Hopf
instability (case IV)

For large volume fraction values (f $ 0.55) both subsystems
exhibit temporal oscillations. Fig. 8c shows, for early times, the
Fourier transforms associated to three different locations in the
system shown in Fig. 8a: in the domain with initial lower
volume fraction (f ¼ 0.55, blue curve), higher (f ¼ 0.75, green
curve) and in the contact line between both (red line). During
this initial stage we observe that the oscillations are made
quicker by increasing the volume fraction. This trend can be
conrmed by performing a linear stability of the model and
analyzing the dependence of the imaginary part of the eigen-
value on the volume fraction (see ref. 12 for details).

When two subsystems displaying oscillations with different
periodicity interact, the overall system tries to readjust the
frequency of oscillations as diffusion takes over. To do so, the
faster oscillations slow down around the contact region, prop-
agating as a traveling wave through the other domain (see
Fig. 8a). Once the volume fraction becomes spatially homoge-
neous, the entire system exhibits an unique periodicity as
conrmed by the Fourier analysis at different spatial locations
(Fig. 8d). The nal frequency is the average of the values initially
obtained for f1 and f2 (blue and red line in Fig. 8a, respectively)
and corresponds to the expected value for a system with
a volume fraction �f.

It is known that when oscillators of different frequencies are
coupled, the source of highest frequency dominates the whole
system.29 In our system, the dominating frequency also changes
Fig. 8 Space–time plots at the beginning (a) and at the end (b) of
a 5000 t. u. simulations. The size of the space–time plots is 100 s. u.
(horizontal) � 100 t. u. (downwards). (c) and (d) are the corresponding
Fourier transforms, the color corresponding to the lines marked in (a)
and (b).

56872 | RSC Adv., 2016, 6, 56867–56873
with time as the volume fraction changes. At the beginning of
the simulations, we observe that, sometimes, the wave from the
right part of the system is unable to propagate into the le part
of the system creating a defect. This kind of defect, generated by
a steep gradient in the volume fraction, leads to the formation
of spiral waves as demonstrated by the Belousov–Zhabotinsky
reaction with the addition of a zwitterionic surfactant.30

4 Conclusion

We have observed three different spatio-temporal dynamics
depending on the initial values of volume fractions, the tunable
parameter in this work. Thus, a system initially exhibiting two
arrangements of Turing patterns with different wavelengths will
readjust their spatial gaps until becoming homogeneous at an
intermediate value. In the same way, when the system supports
two different Hopf modes, the resulting periodicity becomes the
mean value of the initial ones. More intriguing and unexpected
dynamics arise when the initial jump in volume fraction allows
the interaction between Turing and Hopf modes. In this case
the transient dynamics gives rise to a back and forth invasion
between both instabilities, mainly due to two opposed mecha-
nisms: the formation of Turing structures by “frozen” bulk
oscillations and the posterior acceleration of the stationary
structures resembling traveling waves. The competition of these
two processes lasts for a long time but one of the mechanisms,
on average, gains in space until it becomes predominant and
homogeneous over the entire system. The value of the average
volume fraction is the key factor to determine the resulting
dynamics.

Since the Alonso–John–Bär model is developed to simulate
patterns for a reaction in a reverse microemulsion, can we think
of an experimental conrmation of the phenomena that we
observe? The key issue for the back and forth invasion of
domains is the existence of the chaotic regime between Turing
patterns and oscillations or waves. The existence of localized
structures has been used to create a memory device using the
Belousov–Zhabotinsky reaction in a reverse microemulsion.31

However, under different conditions this system may show
spatiotemporal intermittency. For instance, in the chlorine
dioxide–iodine–malonic acid reaction, the transition from
waves to Turing patterns occurs through the formation of
dashed waves, which themselves have a chaotic behavior.32

Dashed waves were rst observed in the Belousov–Zhabotinsky
reaction in a reverse microemulsion,33 so this regime may be
a good starting point. The possibility to tune one physical
parameter (such as the volume fraction) that follows the Fickian
laws of diffusion, without changing the chemical concentration
of the reagents, represents an unusual way to achieve novel
dynamics. We believe that the use of this methodology in
experimental set-ups will constitute a good tool to provide more
light into the eld of self-organizing structures.

Our system eventually equilibrates, but while it is out of
equilibrium the medium can inuence the dynamical behavior
occurring within itself. We can speculate that if a micro-
emulsion is used in chemical synthesis, and that the properties
of the media are changing, these changing properties can be
This journal is © The Royal Society of Chemistry 2016



Paper RSC Advances
used to control the outcome of the reaction. One example is
again the dashed waves in the Belousov–Zhabotinsky reaction
in a reverse microemulsion: These dashed waves were observed
when the distribution of the droplet size is bimodal.33 This
bimodal distribution is a transient process, however when such
distribution is stabilized, the lifetime of the dashed waves is
greatly increased.34
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Chem. Chem. Phys., 2011, 13, 4596–4599.
This journal is © The Royal Society of Chemistry 2016
15 M. Argentina and P. Coullet, Phys. A, 1998, 257, 45–60.
16 R. Wackerbauer and K. Showalter, Phys. Rev. Lett., 2003, 91,

174103.
17 G. H. Gunaratne, Q. Ouyang and H. L. Swinney, Phys. Rev. E:

Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 1994, 50,
2802–2820.

18 I. Berenstein, M. Dolnik, A. M. Zhabotinsky and I. R. Epstein,
J. Phys. Chem. A, 2003, 107, 4428–4435.

19 B. Peña, C. Pérez-Garćıa, A. Sanz-Anchelergues, D. G. Mı́guez
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