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In this work, we reconstruct and analyze the micrometeorological dynamics of the transitional

forest located south of the Amazon basin. For this, we use time series of micrometeorological

variables collected over five years in the transitional forest of Mato Grosso (Brazil). We employ

local feature analysis, a recently proposed extension of principal component analysis, to extract the

most relevant physical variables from this set. We show in this way that temperature records

contain most of the dynamical information in all seasons. Based on this result, the dimensionality

of the space spanned by the system’s dynamics and the properties of the so defined attractors are

obtained. In the dry season, the system presents a robust oscillatory character described by a well-

defined limit cycle. In the wet season, the dynamics becomes more irregular but can still be seen as

a periodic behavior affected by external noise. These results can help to develop accurate models

for the meteorology of the Amazonian transitional forest and can thus lead to a better understanding

of this important ecosystem. VC 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4938188]

The transitional forest located in Mato Grosso (Brazil) con-

nects the Amazon Forest, the “lungs of the Earth,” to the

Brazilian Savannah. It plays a pivotal role in the exchange

of heat and mass between the rainforest and its surround-

ings. Understanding its dynamics is thus essential to predict

the evolution of the Amazon Forest and, in particular, the

potential effects of deforestation. In this work, we analyze

the micrometeorology of this system and show that most of

the variability of the local meteorology can be captured

simply by following the time evolution of the air tempera-

ture. We also show with nonlinear time series analyses that

the micrometeorological dynamics corresponds to a noisy

limit cycle that can be embedded in a three-dimensional

phase space. Such information is important for the future

development of efficient models for this crucial region.

I. INTRODUCTION

Assessing the dynamics of the atmosphere–biosphere

interaction in natural ecosystems is unarguably a very complex

problem. These systems involve a great variety of physico-

chemical and biological phenomena.1,2 It is thus expected that

an appropriate description of their behavior incorporates many

interacting variables, such as the temperature of the atmos-

phere, the type and density of vegetation, and the level of hu-

midity, to cite but a few.3–5 These systems are moreover open

to (possibly fluctuating) energy and matter fluxes maintaining

them far from equilibrium. Despite these inherent difficulties,

the present-day attention paid to global climate change has led

to numerous scientific efforts aimed at analyzing and under-

standing the dynamics of such ecosystems.6

The most traditional way to analyze complex dynamics is

based on the derivation and analysis of evolution laws for a

selected set of variables, which are considered to be represen-

tative of the system’s state. Because of the aforesaid level of

complexity, this approach can capture only a fraction of the

real-world intricate dynamics. In order to reduce the complex-

ity of a model, one could be tempted to overlook phenomena

and/or variables that are actually important, leading to inaccu-

rate interpretations or predictions. Alternative approaches are

thus highly desirable in order to fully characterize the dynami-

cal properties of the class of systems under consideration.

In this context, new analysis techniques were developed

in the 1990s, which rely directly and exclusively on experi-

mental time series.7 They are based on a reconstruction of

the system’s dynamics in the space spanned by its constitu-

tive variables (the phase space). In such space, the time se-

ries define geometrical objects (known as manifolds), the

properties of which can be used to extract important informa-

tion on the system. One can, for example, deduce the number

of variables that are needed to model the observed phenom-

ena, or quantify the degree of complexity of the dynamics.8

In this work, we use such nonlinear time series analyses to

investigate the micrometeorological dynamics of an ecotonal

transitional forest located south of the Amazon basin.

The Amazon rainforest is known to regulate not only the

local but also the global climate: understanding what con-

trols its dynamics is thus of crucial importance. The transi-

tional forest we are studying here connects the Amazon
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Forest to the Brazilian Savannah. It plays an important role

in the exchange of heat and mass between the rainforest and

its surroundings. Furthermore, the region is marked by an in-

tensive anthropogenic influence, since it is located in the so-

called “arc of deforestation,” where changes in land use are

particularly intense.

A detailed knowledge of the dynamical features of the

transitional forest is thus mandatory for understanding the me-

teorology of this important region, as well as for predicting

the potential effects of deforestation. As of today, the micro-

meteorology and the dynamics of the surface-atmosphere

exchanges of water and energy in such forests are however

only poorly understood.9 We employ in this context time se-

ries analysis techniques and study the dynamical properties of

various physicochemical variables collected during more than

5 years in Mato Grosso. We extract, from these measurements,

the variables that contribute the most to the observed meteoro-

logical variability. We moreover reconstruct the underlying

meteorological attractor, which corresponds to a well-defined

and robust class of dynamics. These results can lead to a sub-

stantial improvement of the level of knowledge of this system,

in particular, in terms of modelling and sensitivity analysis.

In Sec. II, we first detail the methods used to measure

the meteorological variables of interest. Section III is

devoted to a description of the local ecosystem and a presen-

tation of the most salient features of the time series. In

Section IV, we describe and use Local Feature Analysis

(LFA), which is an extension of principal component analy-

sis (PCA), in order to extract the most relevant measure-

ments from the whole database. Section V details the

reconstruction of the phase space trajectories based on the

selected variable (namely, temperature). A special emphasis

is put on the changes of the properties of the attractor

between the dry and wet seasons. In Section VI, we assess

how such information is important for the modelling and

understanding of the micrometeorology of such ecosystems.

We point, in particular, to potential future studies that could

build on the acquired knowledge.

II. METHODS

The micrometeorological variables we present below

were obtained through a set of equipment mounted on top of a

42 m tower, located 50 km NE of Sinop, Mato Grosso, Brazil

(11� 240 7500 S, 55� 190 5000 W), 423 m above sea level. The

equipment consists of a three-dimensional sonic anemometer

(CSAT-3, Campbell Scientific, Inc., Logan, UT, USA) that

measures the three orthogonal components of wind velocity; a

psychrometer (HMP45C, Campbell Scientific, Inc.) with a

digital converter measuring both temperature and humidity; a

pyranometer (LI-200SA Sensor, LI-COR, Inc., Lincoln, NE,

USA), which measures the solar radiation over the canopy; a

quantum sensor (LI-190SZ, LI-COR, Inc.), to obtain the pho-

tosynthetically active radiation; and an open-path infrared gas

analyzer (LI-7500, LI-COR, Inc.), used to measure the con-

centration of CO2 and H2O vapor. The net solar radiation was

also measured using a ventilated radiometer (NR-LITE,

Kipp&Zonen, Bohemia, NY, USA). The equipment was

calibrated every month. Note that the recalibration procedures

did not induce substantial breaks in the time series.

The data collection was carried out by a data logger (CR

10X, Campbell Scientific, Inc., Ogden, Utah) and a laptop,

both powered by batteries fueled by solar energy. The raw

data were collected at a frequency of 10 Hz. The tempera-

ture, water vapor, and carbon dioxide concentrations corre-

spond to 30 min means. Note that the time series taken at

Sinop sometimes show interruptions that can be due to light-

ning, rain, battery failure, animal action, etc. We thus

selected, for the analyses, the longest available uninterrupted

periods for each representative season (see the description of

the local ecosystem). These data sets extend from one month

up to two months.

III. DESCRIPTION OF THE LOCAL ECOSYSTEM

The region where the measurements were made corre-

sponds to the transitional forest located between the

Amazonian Forest and Brazilian Savannah (Cerrado). This

forest is semi-deciduous, i.e., the leaves fall only partially dur-

ing the year. The soil has a sandy texture, is poor in nutrients,

and is highly porous so that water is drained rapidly (within

4–7 days9). The vegetation typically consists of 25–28 m tall

Amazonian evergreen trees, with a mean trunk diameter of

10 cm. This vegetation comprises approximately 80 different

species and 35 families. However, Priante Filho et al.10

showed that about 50% of the trees are either Tovomita cf.
schomburgkii, Protiumsagotianum, Brosimumlactescens, or

Dialiumguianense. The local climate has been characterized

as being of the Am-equatorial monsoon type, following the

K€oppen-Geiger classification.11 The air is hot and humid, with

a mean annual temperature of 24 �C.

We here focus on two seasons: the wet season, which

extends from December to February, and the dry season that

takes place from June to August. The characteristics of the

ecosystem change significantly from one season to the other.

The so-called dry season is characterized by relatively fre-

quent long rainless periods (several days), with a mean rain-

fall of 8 mm/month (see Ref. 12). A fraction of the leaves

fall during this season due to hydric stress reducing the leaf

area index from 5 m2 m�2 to 4 m2 m�2. This leads to an av-

erage reduction of 20% in the canopy density. During the

wet season, rain is much more frequent (and sometimes

heavy). In this season the mean rainfall is approximately

350 mm/month.12

IV. CHOOSING THE MOST RELEVANT VARIABLES

The different physical variables measured in Sinop rep-

resent a huge amount of data. Our objective here is not to

analyze in detail the behavior of each of these variables as a

function of time, but rather to identify the class of dynamical

systems to which the meteorology of this transitional forest

belongs. We need to this end to extract the most salient fea-

tures from the whole set of measurements. Moreover, we

want to be able to relate such a reduced description to physi-

cally meaningful quantities.

In this section we use an extension of PCA in order

to do so. In classical PCA, one considers an ensemble
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X 2 RM�N , consisting of a set of M different centered and

normalized measurements (vectors x 2 RM), each containing

N data points. This set of vectors is used to construct an

M �M covariance matrix

C ¼ 1

N � 1
XXT : (1)

Such a matrix admits eigenvalues of decreasing order:

x1 � x2 �… xM. The corresponding eigenvectors Wi are

called the principal components. Consider now the matrix

P 2 RM�r whose columns are the r first principal compo-

nents. This matrix can be used to obtain a lower-dimensional

representation Y 2 Rr�N of the original data, consisting of

vectors y 2 Rr, through a projection on the selected princi-

pal components

Y ¼ PTX: (2)

However, these features are “global,” since they are linear

combinations of the originally measured variables, and can-

not be easily related to physically meaningful quantities.

LFA is a recently introduced extension of PCA, whose

objective is to extract the most relevant physical features

from the original data set. It was originally designed for

image analysis by Penev and Atick,13 and later extended to

the analysis of time series coming from physicochemical

processes (see, for example, Ref. 14). The basic idea con-

sists in identifying which of the physical modes contribute

the most to the principal components. Indeed, each row Wr;i

of these components corresponds to one of the M original

measurements. The first step in LFA is to define a pool of

candidate features, Sr, based on the values taken by the

rows Pi of P

Sr ¼ i :
kPik2

max
i
kPik2

> r

( )
; (3)

where r represents a lower bound. This operation selects the

physical measurements that contribute the most to the norm

of the different principal components (r being a tuning pa-

rameter). The first local feature is the one that contributes the

most to the variability of the components, i.e., it is the fea-

ture with coordinate

argmax
i

Pi K PT
i

kPik2
2

 !
; (4)

in which K is a diagonal matrix containing the r first eigen-

values. The subsequent feature is chosen as that which is the

least correlated to the first physical mode. We refer again the

reader to Xue et al.14 for further details.

We performed PCA on the original database, which con-

sisted of 8 different measurements: The air temperature (�C),

the total incoming solar radiation (W�m�2), the net radiation

(W�m�2), the photosynthetically active radiation

(lmol�m�2�s�1), the CO2 concentration (mg�m�3), the H2O

concentration (mg�m�3), the wind velocity (m�s�1), and the

wind direction (�). We found that 5 principal components are

in each case enough to capture most of the variability of the

signal (more than 95% of the cumulative normalized

energy). A representative example of the contribution of the

modes to the total variability is given, for each season, in

Table I. We note that the 90% threshold is crossed in each

case for a critical number of 3 modes. This suggests that the

dynamics of the system at hand can be embedded in a three-

dimensional space spanned by the corresponding principal

components. This point will be discussed further in Sec. V.

We also applied LFA, using the aforementioned proce-

dure. The first 5 principal components were kept, and a value

of r ¼ 0:8 was used to select a pool of candidates from the

measured physical variables. This value was chosen so as to

extract at least 5 dominant physical modes from the principal

components for all the time series we had at our disposal.

The top 3 dominant measurements are the same for the dry

and the wet seasons: The air temperature, the CO2 concentra-

tion, and the water vapor concentration.

This result is interesting in the sense that it allows one

to list the physical variables that seem to be important for

the considered local meteorology, at least in terms of vari-

ability of the observations. Remember that our objective

here is not to build a model based on such variables, but

rather to define the class of the dynamical system at hand.

For this, it is sufficient to identify a single variable carry-

ing enough information to characterize the system in the

different seasons. Interestingly, not only is the pool of the

most powerful local features identical in the dry and the

wet seasons, but the air temperature is also in each case

the first local feature, as given by the criterion (4).

Moreover, it is seen to contribute by itself to more than

80% of the norm of the first principal component. To some

extent, one could say that temperature is the variable that

best “records” the variability of the local meteorology. It is

interesting to note that this result represents, in some way,

a data-based confirmation that temperature is the most rele-

vant quantity to be studied when understanding or model-

ling a local meteorology.

We will thus use this variable in the remainder of this

work to quantify the dynamical dimensionality, and recon-

struct, from there, trajectories in phase space. An example of

the time evolution of air temperature is given in Figure 1, for

the sake of illustration. As is well known, temperature

presents a clearly cyclic character in both seasons, with the

wet season being more irregular than the dry one.

TABLE I. Eigenvalue number and total energy of the first principal compo-

nents for, respectively, the micrometeorological data of June 2002 (1032 unin-

terrupted measurements) and February 2001 (890 interrupted measurements).

Mode

number

Cumulative normalized

energy (June 2002)

Cumulative normalized

energy (February 2001)

1 72.0 64.1

2 83.0 81.4

3 90.9 91.7

4 94.3 96.2

5 97.6 98.4

6 99.6 99.9
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V. PHASE SPACE AND DIMENSIONALITY OF THE
ATTRACTOR

The phase space dimensionality is an important property

that helps to select models with appropriate dimensionality

and complexity. The possibility to retrace the phase space

trajectories is important to assess the nature of the dynamical

attractor involved (limit cycle, strange attractor, etc.) and

compare it with the attractor generated by models.

In order to determine these quantities, we employed the

time-delay embedding technique. In such an approach, one

creates lagged time series from the original one (here, the

temperature) by introducing a time delay s, as discussed

amongst others in Ref. 7. As shown by Takens15 and

Sauer,16,17 this reconstruction preserves many of the proper-

ties of the unknown original dynamical system. For example,

if the unknown dynamics has an attractor A with box count-

ing dimension dA, this attractor can be embedded in a dE-

dimensional reconstructed phase space, where the embed-

ding dimension dE � 2 dA þ 1. It should also be noted that,

although the reconstruction does not preserve the geometric

shape of the original phase space structures, the figures

resulting from plotting the time lagged series as a function of

each other are similar to the ones that would be obtained by

plotting the most relevant variables of the original dynam-

ics.7,18 Other important properties such as the Lyapunov

exponents of trajectories in phase space are conserved as

well. In this way, the analysis of the lagged time series can

offer important information on the system dynamics, even if

the original time series corresponds to a single variable.

We will here focus on two dynamical invariants that

could be important for future modelling: the minimal number

of independent dynamical variables dM needed to describe

the system’s dynamics, and the dimension of the underlying

attractor dA. The aforementioned embedding dimension dE

represents a sufficient condition under which the attractor

can be reconstructed unambiguously, but very often the nec-
essary number of dynamical variables will be less than dE.

There are many ways of estimating this minimal embedding

dimension dM. We used the saturation of correlation integrals

and confirmed the dimension obtained in this way with the

False Nearest Neighbors method, as explained later. The

dimension of the attractor can also be estimated in several

ways. We here choose to focus on the correlation dimension

D2, but other choices of generalized dimensions are possible

(see Ref. 19 for a definition and a discussion of the dimen-

sion spectrum Dq). Note that from a numerical point of view,

the values taken by the most common choices (D0, D1, and

D2) are typically very close to each other.

A. Choosing the time delay

A first step towards the identification of the aforemen-

tioned dimensions consists in choosing an appropriate time

delay s for the construction of the set of delayed time series.

A good choice for s is the time for which the interval-

dependent average mutual information of the time series

undergoes a minimum. Fraser and Swinney20 suggested that

this choice is appropriate in the sense that the delayed time se-

ries defined in this way are as independent from each other as

they can be, and hence that they contribute to the information

contained in the signal whilst minimizing redundancy. We

computed the average mutual information, using the TISEAN

3.0.1 package21 for different seasons and years. The minimum

time was always seen to be comprised between 4.5 h and

5.5 h, which is in line with previous results.22 For the sake of

simplicity and comparison between time series, we thus

decided to choose s ¼ 5 h for all data treatments.

B. Embedding and attractor dimensions

If the original attractor has been reconstructed correctly

from the time series, the phase space properties depending

on the distance between points should be independent of the

particular choice of dE � dM. This is the case for the correla-

tion integral

C rð Þ ¼ 1

L L� 1ð Þ
XN

i; j ¼ 1

i 6¼ j

h r � j~Zi � ~Zjj
� �

; (5)

which measures the average number of pairs of data points

in the reconstructed phase space whose distance does not

exceed r. In this equation, hðuÞ is the Heaviside function
FIG. 1. Temperature for the first ten days of (a) June 2002 (dry season) and

(b) February 2001 (wet season).
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hðuÞ ¼
0; u � 0

1; u > 0

�

and ~Zi is a vector in the reconstructed phase space corre-

sponding to the set of values of the variable (temperature) at

times ti; ti þ s;… ti þ ðdE � 1Þs, i.e.,

~Zi ¼ fTðtiÞ; Tðti þ sÞ; Tðti þ 2sÞ; :::; Tðti þ ðdE � 1ÞsÞg:
(6)

The correlation integral is calculated for increasing values of

dE, until the slope of the log(C)/log(r) curve becomes inde-

pendent of dE, which gives an estimate for dM.

The dimension of the attractor can also be estimated in

this way. Indeed, C(r) is expected to be proportional to rD2 ,8

so that the slope of the log(C) vs log(r) curve itself is an esti-

mate for D2. The procedure consists in estimating the afore-

said slope for different values of dE. It is typically observed

that D2 increases with dE, until it reaches a plateau for a large

FIG. 2. Estimated correlation dimension D2 as a function of the embedding dimension dE for temperatures collected in: (a) February, 2001. (b) June and July,

2002. (c) February, 2003. (d) July, 2005. (e) January and February, 2006. (f) August, 2006.

123123-5 de Paulo, de Paulo, and De Decker Chaos 25, 123123 (2015)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

164.15.136.50 On: Wed, 20 Jan 2016 09:36:00



enough embedding dimension. Both the minimal phase space

dimension and the attractor dimension can thus be estimated

by identifying the values of dE and dA for which the D2 vs dE

curve reaches a constant value. The results, obtained with the

traditional Grassberger–Procaccia algorithm first described in

Ref. 23, are depicted in Figure 1. These results were almost

identical to those obtained with more advanced algorithms,

such as the one proposed by Takens24 or Theiler.25

In most cases, the graphs exhibit a plateau indicating

that the underlying dynamical system can be characterized

by a finite-dimensional attractor in a finite-dimensional

phase space. There are however differences between the dry

and the wet seasons. In the dry season (Figures 2(b), 2(d),

and 2(f)), a distinct plateau is reached for which D2 � 1.5

and dM � 5–6. It thus appears that this season can be charac-

terized by a relatively low-dimensional attractor embedded

in a 5–6 dimensional phase space. In fact, a two-dimensional

phase space could even be sufficient to enclose such an

attractor, since its dimension is lower than 2.

In the wet season (Figures 2(a), 2(c), and 2(e)), the plateau

is less pronounced and is reached at D2 � 2. On one hand, the

value we obtain for D2 suggests that a three-dimensional space

could be used, since it is enough to embed a two-dimensional

attractor. On the other hand, the plateau is reached in the analy-

ses for much larger values, dE� 8. It is important to point out

here that these values exceed Ruelle’s criterion26 following

which one should not exceed a value of dE � 6. Consequently,

we cannot draw any firm conclusion about the embedding

dimension based only on the present technique. Because of

this, and since the convergence to a plateau is not always

obvious in the wet season, we additionally performed a False

Nearest Neighbors analysis as initially proposed by Kennel

et al.27 to confirm the best value of the embedding dimension.

These calculations, performed with the TISEAN package for

time series analyses, lead to dM¼ 2 or 3, depending on the

time series. This result suggests a conservative choice of

dM¼ 3, i.e., the dynamics of the wet season needs to be embed-

ded in a higher dimensional space than that of the dry season.

The lower dimensionality of the dynamical attractor

observed during the dry season is a robust trend. The attrac-

tor’s correlation dimension is seen to “oscillate,” for all

years, between a value of approximately 2 for the wet season

and 1.5 for the dry one. As said before, this difference is in-

dicative of the fact that the temperature pattern is more com-

plex during the wet season. This difference is somewhat

apparent in the original time series (Figure 1), but this analy-

sis confirms that there is a reproducible qualitative difference

between the seasons. This observation is interesting not only

in the context of the characterization of the local climate but

also for the future development of model-based forecasts.

The attractors for the wet and dry seasons can be con-

structed from the temperature time series by simply plotting

the delayed data as functions of each other. For example,

Figure 3 plots three-dimensional projections of the attractors,

respectively, for July 2002 and February 2003. At first sight,

the two attractors look very similar in the sense that they

both define a cyclic shape. The main difference between the

two is that the data seem to be more concentrated along the

cycle in the dry season as compared with the wet one.

This observation raises the important question of defining

the class of dynamical behaviors to which the observed mete-

orology belongs. Indeed, the different seasons are character-

ized by low-dimensional attractors whose dimension seems to

exceed 1. Such values suggest that the attractor could be a

torus or a strange (fractal) object. However, the phase space

reconstruction indicates that well-defined, single-looped

cycles are produced, at least for the case of the dry season.

The time series moreover present a clear periodic character.

As periodic behaviors correspond to limit cycles, one could

have expected to find one-dimensional objects in phase space.

The fact that we find higher dimensional attractors can

be explained in mostly two ways. First, one could be con-

fronted to a signal that actually is chaotic, quasi-periodic, or

multi-periodic but the resolution of the trajectories in phase

space would not be enough to see such behaviors. The other

possibility is that noise is superimposed on a periodic signal:

FIG. 3. Reconstructed attractors from the temperature time series of July

2002 (left) and February 2003 (right). An optimal time delay of 5 h has been

used.
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It is known that random perturbations tend to increase artifi-

cially the dimension of the attractors extracted from time

series (see, for example, Ref. 28). We thus computed the

Fourier power spectra of the signals in order to discriminate

between these two possibilities (see Figure 4, for two exam-

ples). Both the dry and the wet seasons are characterized

by a well-defined, single periodic mode (together with the

harmonic due to finite time series).

To make sure that what we observe is indeed oscillations

and not narrow-banded chaos, we additionally performed a

few recurrence analyses. We extracted next-maximum maps

and next-period maps from our time series, which are quali-

tatively equivalent to Poincar�e sections of the attractor. They

both show (not displayed here) that the dynamics is charac-

terized by a collection of points close to the diagonal, and

that most of the points are centered on the main amplitude

(or period, respectively). A chaotic time series would have

generated continuous lines or collections of aligned dots

extending far away from the diagonal line. We thus conclude

from these different analyses that the micrometeorological

dynamics correspond to noisy periodic behaviors: both sea-

sons present a robust underlying limit cycle, but the pertur-

bations are substantially stronger in the wet season.

VI. CONCLUSIONS AND OUTLOOK

Using nonlinear time series analyses, we have shown

that the micrometeorological dynamics of the Amazonian

transitional forest can be qualitatively assessed on the basis

of temperature measurements only. Thanks to phase space

reconstruction techniques, we have also determined that the

observed dynamics can be seen as a periodic behavior per-

turbed by fluctuations both in the wet and dry seasons, de-

spite the apparently chaotic character of the time series

recorded in the wet season.

An interesting observation is that the dynamics of the

system is almost perfectly stationary (in the weak sense).

The correlation dimension, time lag, and shape of the attrac-

tor were indeed practically indistinguishable from one year

to the other. Moreover, the attractor also seems to remain

qualitatively the same for the dry and wet seasons. It is only

during the transition seasons that drifts and non-stationarity

could be observed (not reported in this work). This is

reflected also in the Fourier analyses, which present no sign

of non-stationarity during a given season: the spatiotemporal

Fourier maps show almost no drift in the main frequencies.

This feature is in fact quite unexpected. Indeed, the intense

local deforestation and other changes in land use could be

expected to produce visible trends in at least some of the

measured data. The local meteorology is thus unexpectedly

robust, and the reasons behind such robustness should be

investigated in the future.

How can such information be used for building efficient

models for this ecosystem? One important piece of information

is that the low dimensionality of the attractors suggests that a

relatively low-dimensional model could be constructed for this

system. The analysis of the correlation dimension, together

with principal component and False Nearest Neighbours analy-

ses point to the idea that already a 3-variable description could

correctly model the dynamics of both seasons. Although noise

is known to affect the results of time series analyses, our results

strongly suggest that a low-dimensional dynamical modeling

of the region of interest is feasible. An important aspect that

any further modelling should be able to reproduce is that

although the two seasons define a limit cycle with well-defined

periodicity, the dynamics of the wet season is subject to impor-

tant noise. This suggests that a stochastic approach would be

mandatory. Since we observe that the correlation dimension

and the width of the peaks in the Fourier power spectra slightly

increase when fluctuations are stronger, this stochastic model

should be such that the processes inducing the fluctuations

(like rain, cloud cover, etc.) act as disorganizing variables.

The fact that there exists a low dimensional representa-

tion of the micrometeorology forms, by itself, an interesting

conclusion for future modelling efforts. But the results pre-

sented here can also help in choosing the “best” physicochem-

ical variables to include in such a model. The oscillatory

character of the temperature profiles can be mostly attributed

to the periodic income of energy related to the day/night

cycles. Virtually all the existing models for energy balance

show that the rate of change of temperature is proportional to

the incoming solar radiation (see for example, Ref. 29). A first

natural choice for physical quantities to include in modelling

would thus be the solar radiation. Moreover, we showed,

thanks to local feature analysis, that among all the measured

micrometeorological variables, the three most “powerful”

physical modes are the air temperature, the CO2 concentra-

tion, and the water vapor concentration. These quantities

FIG. 4. Fourier power spectra, obtained from the autocorrelation function of

the temperature time series of (a) June 2002 and (b) February 2003.
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represent the best candidates to be put into a three-

dimensional model together with the incoming solar radiation.

Finally, an important problem that needs to be addressed

is the origin of the noise that perturbs the oscillations. A cen-

tral question that should be answered is whether the noise is

additive or system specific. The fact that fluctuations are more

intense in the wet season suggests that the disturbing agents

could be found in clouds, rain, and vegetation. Clouds reduce

the incoming solar radiation by blocking sunlight, which

would affect the heating of the atmosphere after sunrise. Rains

tend to cool down the atmosphere and to affect its heat

capacity because of changes in the humidity levels.

Atmospheric turbulence is thus expected to be a key compo-

nent of the perturbations we observed. The role played by the

changes in the vegetation, from one season to the other, should

also be important. We thus expect noise to be system specific,

and consequently season-dependent. A delicate problem is to

understand how all these phenomena can be introduced as

noise or time-dependent parameters in a model for the local

meteorology of the transitional forest we are studying here.

This question will be addressed in a subsequent work, which

is focused on the development of such a model.30
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