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Chemical control of dissolution-driven convection in
partially miscible systems: theoretical classification

V. Loodts, L. Rongy and A. De Wit*

Dissolution-driven convection occurs in the host phase of a partially miscible system when a buoyantly

unstable density stratification develops upon dissolution. Reactions can impact such convection by changing

the composition and thus the density of the host phase. Here we study the influence of A + B - C

reactions on such convective dissolution when A is the dissolving species and B a reactant initially in

solution in the host phase. We perform a linear stability analysis of related reaction-diffusion density profiles

to compare the growth rate of the instability in the reactive case to its non reactive counterpart when all

species diffuse at the same rate. We classify the stabilizing or destabilizing influence of reactions on the

buoyancy-driven convection in a parameter space spanned by the solutal Rayleigh numbers RA,B,C of

chemical species A, B, C and by the ratio b of initial concentrations of the reactants. For RA 4 0, the non

reactive dissolution of A in the host phase is buoyantly unstable. In that case, we show that the reaction is

enhancing convection provided C is sufficiently denser than B. Increasing the ratio b of initial reactant

concentrations increases the effect of chemistry but does not significantly impact the stabilizing/destabilizing

classification. When the non reactive case is buoyantly stable (RA r 0), reactions can create in time an

unstable density stratification and trigger convection if RC 4 RB. Our theoretical approach allows classifying

previous results in a unifying picture and developing strategies for the chemical control of convective

dissolution.

1 Introduction
Dissolution-driven convection can occur in partially miscible
systems when a phase dissolves into another one with a finite
solubility. Even if the density stratification is initially buoyantly
stable, a hydrodynamic instability can develop in the gravity
field if the dissolution modifies the density of the host phase.
This situation can happen in solutions separated by a semi-
permeable membrane1,2 or in biphasic systems, with the dissolving
phase being for instance liquid,3,4 solid,5 or gas.6–13 Dissolution-
driven convection has recently gained much interest in the context
of carbon dioxide (CO2) capture or sequestration.14–16 When CO2 is
injected into geological sites, it dissolves into a host liquid phase
(oil or water), increasing thereby its density, which results in a
buoyantly unstable density stratification. The contact zone between
the denser CO2-rich and the less dense bulk solution layers is then
destabilized in the form of buoyancy-driven fingering.10–19 It is of
current interest to characterize this dissolution-driven convective
instability as it contributes to the mechanism of CO2 sequestration
known as ‘‘solubility trapping’’.15

In particular, the early-stage development of this instability
has been characterized both theoretically and experimentally

for porous media or Hele–Shaw cells with a focus on the critical
time and wavenumber for the onset of convection.5,10–12,16,18–30

Studies have reported the impact on these properties of boundary
conditions,21,22,28 anisotropy of the permeability,16,23–25,28 geometry
of the system,26 compressibility and interface movement,27 a
geothermal gradient,28,29 and control parameters in laboratory
experiments.5,10–12,19 However, an important aspect that has been
less investigated is the impact of chemical reactions on such
instabilities. This is important as geochemical reactions may occur
between dissolved CO2 and minerals in geological storage sites.31–35

It is known that chemical reactions can affect the density of the
solution and thus impact the development of buoyancy-driven
instabilities in miscible36–38 and immiscible systems.39 Reactions
can similarly affect the early-stage development of dissolution-
driven convection.3,13,32–35 A reaction between the dissolving species
and a solid delays the onset of convection as the reaction consumes
the dissolving species at the origin of the instability.32–35 How-
ever, as the solid reactant is static, the dissolving species is then
the only one contributing to the dynamics in the fluid phase. By
contrast, it has been shown in miscible systems that when all
species contribute to hydrodynamics, different behaviors can be
observed.36,40,41

Recently, we have shown that chemical reactions with a
dissolved reactant can either stabilize3,13 or destabilize13

dissolution-driven convection compared to the non reactive
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case. In particular, we have shown an experimental example of
a reaction that accelerates the onset of convection after the
dissolution of CO2 in an aqueous host phase. The dissolving
CO2 reacts with a base (sodium hydroxide, NaOH) present in
the host phase, leading to density profiles even more unstable
with regard to convection than the non reactive profile. For the
case of an ester on top of water, its dissolution can on the
contrary be slowed down by a reaction.3 We have shown
theoretically that the relative contributions of the dissolved
reactant and product to the density can control the effects of
reactions on dissolution-driven convection.13 However, the
system is also characterized by other parameters, such as the
contribution of the dissolving species to the density or the ratio
between the initial concentration of the reactants. There is thus
a need to assess the impact of these parameters on the
possibility of a reaction to control convective dissolution.

In this context, the objective of this study is to propose a
general framework to classify the effects of A + B - C chemical
reactions between the dissolving species A and a dissolved
reactant B on the early-stage development of dissolution-driven
convection. To do so, we consider both cases where the dissolving
species increases or decreases the density in the host phase. We
also analyze the impact on convection of the ratio of initial reactant
concentrations. This generalized classification highlights the link
between previous disparate studies and paves the way for predic-
tions in new experimental systems. More specifically, we couple the
incompressible Darcy’s equations for the velocity of the fluid in a
porous medium to two-dimensional reaction-diffusion-convection
(RDC) equations for the concentration fields through a linear state
equation for the density of the fluid. We suppose that all the
diffusion coefficients are equal to avoid any double diffusive
instabilities. We first classify the generic reaction-diffusion (RD)
density profiles as a function of their monotonic or non-monotonic
properties, which impacts the development of dissolution-driven
convection. To quantify the effect of the reaction on the instability,
we then perform a linear stability analysis.

This article is structured as follows: in Section 2 we describe the
physical system and the model. We classify the RD density profiles in
Section 3. In Section 4, we describe the method of linear stability
analysis and use it to characterize the early-stage development of the
instability for different areas of the parameter space. Finally, in
Section 5, we show how our classification encompasses previous
studies and we discuss the implications of our results for possible
applications, in particular CO2 sequestration.

2 Description of the physical model
Let us consider a pure phase A, called here the dissolving phase
or species, which dissolves into a host solution containing a
reactant B at an initial concentration B0.3,13 The two phases are
in contact along a horizontal interface and the initial condition
is buoyantly stable with the less dense phase lying on the top.
Fig. 1a illustrates the case where the denser host phase is
located below the less dense dissolving phase while the opposite
case (less dense host phase on the top) is shown in Fig. 1b.

We assume a local equilibrium at the interface located at
z = 0 so that the concentration of A at the interface is always equal
to its solubility A0 in the host phase, which may depend on the
experimental parameters (temperature, salinity, pressure,. . .)19 and
is not limited by diffusion. We assume that the volume of the host
phase does not change significantly upon dissolution of A and do
not consider any thermal29,42 or dispersion effects.43

We further assume that the interface is only permeable to A
but impermeable to B and C, i.e. B and C cannot dissolve into
phase A. In this situation, we can focus on the dynamics in the
host phase only, which is considered infinite in the horizontal
direction y and semi-infinite in the vertical direction z from the
interface located at z = 0 to the bulk of the reactive host phase at
z - N. A and B react in the host phase according to the
reaction A + B - C with a kinetic constant q.

To describe the dynamics in the host phase, we choose Darcy’s
equations as flow equations for the incompressible velocity field
u = (u,v) because they describe flow dynamics in porous media like
geological sites for CO2 storage14 and thin Hele–Shaw cells44 used in
laboratory experiments. The incompressible Darcy’s equations read:

=p ¼ "m
k
uþ rg; (1a)

=$u = 0, (1b)

where p is the pressure and r is the density of the host solution.
The dynamic viscosity m, permeability k and the norm of the
gravity field g = ||g|| are assumed to be constant.

The RDC equations governing the evolution of the concen-
tration fields A, B and C read:

@A

@t
þ ðu $ =ÞA ¼ DAr2A" qAB; (2a)

@B

@t
þ ðu $ =ÞB ¼ DBr2B" qAB; (2b)

@C

@t
þ ðu $ =ÞC ¼ DCr2C þ qAB: (2c)

To avoid any double diffusive instabilities, we assume that
the molecular diffusion coefficients are constant and equal

Fig. 1 Two-dimensional model system. The dashed line represents the bound-
ary layer of A dissolving into the host phase. Case (a): the host phase is below the
dissolving phase; case (b): the host phase is above the dissolving phase.
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(DA = DB = DC = D). The following linear state equation for r25

couples eqn (1) and (2):

r = r0(1 + aAA + aBB + aCC), (3)

where r0 is the density of the solvent of the lower phase, aj ¼
1

r0

@r
@j

is the solutal expansion coefficient of species j of concen-

tration j.
To obtain dimensionless equations, we use the character-

istic RD scales:13,40,41 length lc ¼
ffiffiffiffiffiffiffiffi
Dtc
p

, velocity uc ¼
ffiffiffiffiffiffiffiffiffiffi
D=tc

p

with the reactive time scale tc defined as

tc ¼
1

qA0
: (4)

For the case illustrated in Fig. 1a, where the gravity field and
the z axis have the same direction (g = g1z with 1z the unit vector
along z), we define

Ã = A/A0, B̃ = B/A0, C̃ = C/A0, (5a)

z̃ = z/lc, t̃ = t/tc, ũ = u/uc, (5b)

~p ¼ p" pa " r0gz
pc

; ~r ¼ r" r0ð Þgklc
mD

: (5c)

The ambient pressure pa, the hydrostatic pressure r0gz and the
pressure scale pc = mD/k have been used to define a dimension-
less dynamic pressure.

Substituting the nondimensional quantities (5) in eqn (1)–(3) and
dropping tildes for convenience leads to the dimensionless model

=p = "u + (RAA + RBB + RCC)1z, (6a)

=$u = 0, (6b)

@A

@t
þ ðu $ =ÞA ¼ r2A" AB; (6c)

@B

@t
þ ðu $ =ÞB ¼ r2B" AB; (6d)

@C

@t
þ ðu $ =ÞC ¼ r2C þ AB; (6e)

where Rj is the solutal Rayleigh number of species j expressed
for the case illustrated in Fig. 1a as

Rj ¼
ajA0klcg
nD

(7)

with n = m/r0 the kinematic viscosity of the solvent. In the rest of
this study, we will focus on the description of the case shown in
Fig. 1a. It is, however, straightforward to extend the conclusions
of our study to the case shown in Fig. 1b (g = "g1z) by replacing
g by "g in eqn (7). Note that the Rayleigh number RA is positive
in case (1a) if aA 4 0, i.e. A dissolves from the top of the host
phase and increases the density of the solution. In case (1b)
where A dissolves from the bottom of the host phase, RA 4 0 if
aA o 0, i.e. A decreases the density of the solution. In both cases
without reaction, RA 4 0 corresponds then to the development
of a buoyantly unstable density stratification upon dissolution of
A in the host phase while RA r 0 corresponds to the stable case.

The dimensionless density of the solution can be recon-
structed from the concentration fields as

r = RAA + RBB + RCC. (8)

We note that in eqn (8), Rj quantifies the contribution of species
j to the density of the solution. Introducing in eqn (6) the

notation @x f ¼
@f

@x
for the derivative of a function f relative to a

variable x and using the stream function C such that u = "@zC
and v = @yC (which statisfies 6b) yields:

r2C = RAqyA + RBqyB + RCqyC, (9a)

qtA " qzCqyB + qyCqzA = r2A " AB, (9b)

qtB " qzCqyB + qyCqzB = r2B " AB, (9c)

qtC " qzCqyC + qyCqzC = r2C + AB. (9d)

with r2 ¼ @2

@y2
þ @2

@z2
. The initial conditions at t = 0 and 8y are

C(z) = 0 8z, (10a)

A(z = 0) = 1; A(z 4 0) = 0, (10b)

B(z) = b = B0/A0 8z, (10c)

C(z) = 0 8z. (10d)

The boundary conditions 8y, t are

C(z = 0) = 0; C(z - N) = 0, (11a)

A(z = 0) = 1; A(z - N) = 0, (11b)

qzB(z = 0) = 0; B(z - N) = b, (11c)

qzC(z = 0) = 0; C(z - N) = 0. (11d)

The addition of eqn (9c) and (9d) with the initial conditions
(10c) and (10d) and boundary conditions (11c) and (11d) shows
that (B + C) remains constant over time and equal to its initial
value b. Therefore, the concentration field C can be recon-
structed from B as

C = b " B, 8y,z,t. (12)

By inserting eqn (12) in eqn (9a), our final model is function of
A and B only and reads:

r2C = RAqyA " (RC " RB)qyB, (13a)

qtA " qzCqyA + qyCqzA = r2A " AB, (13b)

qtB " qzCqyB + qyCqzB = r2B " AB. (13c)

Further, we also simplify the expression for the density profile
in the host phase by inserting eqn (12) in eqn (8):

r = RAA " (RC " RB)B + RCb. (14)

The parameters of the model are the Rayleigh number RA, the
difference RC " RB between the Rayleigh numbers of C and B,
and the initial concentration b of the reactant. Let us classify
the RD density profiles reconstructed from the RD concen-
tration profiles with eqn (14).
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3 Classification of reaction-diffusion
density profiles
It is crucial to analyze the RD density profiles to qualitatively
understand the development of the buoyancy-driven instability.
In the non reactive case, the only species contributing to the
density profile is A. Its concentration profile is solution of

Fick’s law 2ZdZA + dZZA = 0 with the notations dZ f ¼
df

dZ
, dZZ f ¼

d2f

dZ2
with Z the self-similar variable Z ¼ z

2
ffiffi
t
p , the initial condi-

tions (10b) and the boundary conditions (11b), i.e. A = 1 "
erf(Z). The related non reactive density profile is thus

r(Z) = RAA(Z) = RA[1 " erf(Z)]. (15)

Fig. 2a shows that the non reactive concentration profile is
monotonically decreasing as A enters into the solution from the
interface and then diffuses to the bulk of the host phase. When
RA 4 0, in case (1a), A increases the density of the solution
upon dissolution, which leads to a denser zone rich in A above
the less dense host bulk solvent.16–19 In case (1b), A decreases
the density of the solution upon dissolution so that a less dense
zone rich in A forms below the denser host bulk solvent. The
density stratification that develops over time is then buoyantly
unstable in both non reactive cases. On the contrary, if RA o 0,
A decreases in case (1a) and increases in case (1b) the density of
the solution upon dissolution. If RA = 0, the dissolution of A
does not change the density. In both non reactive cases, the
density stratification that develops over time is then buoyantly
stable.

In the reactive case, all three contributions of A, B and C
have to be taken into account to reconstruct the density profile.
The RD concentration profiles of A and B are obtained by
solving eqn (9b) and (9c) without flow, i.e. solving:

qtA = r2A " AB, (16a)

qtB = r2B " AB. (16b)

with the initial conditions (10b) and (10c) and the boundary
conditions (11b) and (11c). Let us recall that the concentration
profile of C can be reconstructed from B with eqn (12). Note that

the solution of eqn (16) depends on b only, which appears in the
initial condition (10c) and boundary conditions (11c).

3.1 A + B - C reaction fronts in partially miscible systems

Because eqn (16) are non linear, they do not admit general
analytical solutions. Following the reasoning of previous stu-
dies,40,45,46 we can, however, compute analytical asymptotic
solutions. At large times, the consumption of the reactants is
no more limited by the reaction but rather limited by the rate at
which the species diffuse to the reaction zone. In this limit, the
reaction is localized at a reaction front where A and B are
immediately and entirely consumed, while there is no reaction
anywhere else (Fig. 2b). This reaction front moves on a diffusive
time scale and is located at zf ¼ 2Zf

ffiffi
t
p

with Zf 4 0. Outside the
reaction front, the concentration fields j are solutions of diffusive
equations 2ZdZ j + dZZ j = 0 with the boundary conditions

Z = 0: A = 1, B = 0, (17a)

Z = Zf: A = 0, B = 0, (17b)

Z - N: A = 0, B = b. (17c)

The asymptotic concentration fields between the interface and
the reaction front (0 r Z r Zf) denoted by ‘‘U’’ as ‘‘Upper’’ and
those between the reaction front and the bulk of the solution
(Zf o Z o N) denoted by ‘‘L’’ as ‘‘Lower’’ are:

AU ¼ 1" erfðZÞ
erf Zfð Þ

; AL ¼ 0; (18a)

BU ¼ 0; BL ¼ b 1" erfcðZÞ
erfc Zfð Þ

" #
: (18b)

To compute these concentration profiles (18), we need to
calculate Zf by equalizing the fluxes of A and B at the reaction
front, i.e. "qZAU(Zf) = qZBL(Zf), which yields

erf Zfð Þ ¼
1

1þ b
: (19)

Zf is computed from eqn (19) with a Newton–Raphson itera-
tion.47 In particular, for b = 1, Zf is equal to erfinv(0.5) E 0.48.
Fig. 3 shows that, when b increases, the reaction front Zf

becomes closer to the interface in self-similar coordinates, i.e.
moves slower towards the bulk of the solution.

Fig. 2b shows the asymptotic RD concentration profiles (18).
The dissolving species A enters the solution from the interface
where its concentration is maximum and is then consumed by
the reaction. The reaction front advances in time away from the
interface towards the bulk of the solution (zf ¼ 2Zf

ffiffi
t
p

with
Zf 4 0). Between the interface and the reaction front, B has
been totally consumed to produce C in concentration b. The
concentration of B increases from 0 at Z = Zf to its initial value b in
the bulk of the solution. C is present mainly between the interface
and the reaction front but also extends to the bulk of the solution
by diffusion. We note that, in the limit of instantaneous reactions
and short times, the length scale lc ¼

ffiffiffiffiffiffiffiffiffiffi
DAtc
p

becomes small
(see eqn (4)), so that the zone between the interface and the
reaction front can be neglected and only the region between the

Fig. 2 (a) Non reactive concentration profile of A; (b) asymptotic RD
concentration profiles (18) for b = 1.
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reaction front and the bulk solution be considered.9 In summary,
the system is divided into three zones: between the interface and
the reaction front (0 r Z o Zf) where only A and C are present,
between the reaction front and the bulk solution (Zf o Z o N)
where B and C are the only chemical species present, and the bulk
solution (Z - N) where only B remains.

3.2 Asymptotic density profiles

We obtain the asymptotic RD density profiles by inserting
eqn (18) in eqn (14):

rU ¼ RA 1" erfðZÞ
erf Zfð Þ

" #
þ RCb; (20a)

rL ¼ RC " RBð Þb erfcðZÞ
erfc Zfð Þ

" 1

" #
þ RCb: (20b)

Extrema in the density profile have been shown to affect the
behavior of chemically-driven buoyancy convection, depending on
the relative contribution of each species to the density.13,40,41,46 We
thus look for the presence of extrema created by the reaction in the
density profile r (20), by analyzing for what value of parameters its
derivative rZ changes sign at a given location. The derivatives of rU

and rL related to Z are

rUZ ¼ "
2ffiffiffi
p
p RA

erf Zfð Þ
e"Z

2
; (21a)

rLZ ¼ "
2ffiffiffi
p
p RC " RBð Þb

erfc Zfð Þ
e"Z

2
: (21b)

The sign of rU
Z depends on RA only and the sign of rL

Z depends on
RC " RB only. If RA and RC " RB have the same sign, rU

Z and rL
Z are

both increasing or both decreasing, so that the global density
profile is monotonic. Therefore, an extremum can appear at the
reaction front only if RA and RC " RB have opposite signs.

Fig. 4 shows the reactive density profiles (20) plotted for
different RA and RC " RB. The non reactive density profile (15) is
also plotted as a dashed black curve for comparison. The upper
Fig. 4a and b illustrate a case RA 4 0 when the non reactive
density profile is already unstable. If RC " RB Z 0 as in Fig. 4a,
the density profile is monotonically decreasing along Z like its
non reactive counterpart. By contrast, if RC " RB o 0, the
density profile has a minimum created by the reaction (see
Fig. 4b). Indeed, the upper part of the density profile (above the

reaction front) is decreasing due to the contribution of A to
density. At the reaction front, only C contributes to the density
with a contribution equal to RCb. Far into the bulk solution,
only B contributes to the density, and the density of the
solution comes back to its initial value RBb. As RC is smaller
than RB, a minimum appears at the reaction front. That
minimum affects the stability of the density profile because
locally less dense fluid lies on top of the denser fluid.3,13

The lower Fig. 4c and d illustrate a case RA r 0 when the non
reactive density profile is monotonically increasing along Z and
stable. If RC " RB r 0 like RA, the density profile remains stable
(see Fig. 4d). In the opposite case, if RC " RB 4 0, a maximum is
created by the reaction (see Fig. 4c). Similar to the cases RA 4 0 and
RC" RB o 0, this can be explained by the different contributions of
the species to density. This maximum can destabilize the system as
locally denser fluid lies on top of the less dense fluid.

3.3 Numerical density profiles

As the analytical asymptotic density profiles are only valid for
fast reactions or long times, we check that the classification
discussed in Section 3.2 is also valid for density profiles
computed numerically at different times. Eqn (16) are solved
numerically using a Crank–Nicolson method.47 We approxi-
mate a semi-infinite system by taking a system long enough
such that the RD concentration profiles are not affected by the
lower boundary.

Fig. 5 shows that the numerical concentration profiles
converge over time to the analytically predicted ones. We will
nevertheless use the numerical concentration profiles, valid for
all times, to perform the linear stability analysis used to assess the

Fig. 3 Position of the reaction front Zf as a function of the initial concen-
tration b of the reactant.

Fig. 4 Asymptotic RD density profiles (20) with b = 1, RB = 0 and values of
RC indicated on the graphs. The non reactive (NR) density profile is plotted
as a dashed curve. (a) RA = 1 and RC " RB Z 0; (b) RA = 1 and RC " RB r 0;
(c) RA = "1 and RC " RB Z 0; (d) RA = "1 and RC " RB r 0.
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stability of the RD profiles (see Section 4). However, we have checked
that the properties of the density profiles discussed in Section 3.2
still hold at short times as the profiles are qualitatively similar.

4 Characterization of the instability
In this section, a linear stability analysis (LSA) is used to compare
the stability of the density profiles to their non reactive counter-
part. We recall that the parameters defining the problem are b,
RA and RC " RB.

4.1 Method of linear stability analysis

There exist several methods of LSA with different constraints or
drawbacks linked to the starting assumptions and that give
different results depending on how the perturbation growth is
defined and measured.20,48,49 We note, however, that all these
methods give a time for the linear onset of convection on the
same order of magnitude than experimental results.5 Here we
make the quasi-steady state approximation (QSSA) that the
perturbations vary at a much faster pace than the base state
solutions so that these solutions can be considered frozen at a
given time tf.

13,50 We add normal form perturbations to the
base state profiles (As,Bs,Cs,cs = 0) as

(A,B,C,C)( y,z,t) = (As,Bs,Cs,0)(z,tf) + es(t"tf)+iky(a,b,c,ikc)(z) (22)

with i2 = "1, k the wavenumber and s the growth rate of the
perturbation.

We substitute (22) in eqn (13), and neglect non linear
perturbative terms, which gives

qzzc " k2c = k2(RAa " (RC " RB)b), (23a)

sa " qzAsc = qzza " k2a " Bsa " Asb, (23b)

sb " qzB
sc = qzzb " k2b " Bsa " Asb, (23c)

with the notation @xxf ¼
@2f

@x2
. Eqn (23) are solved numerically

on a discrete set of points with the derivatives approximated
using finite differences to allow the system to be expressed in
matrix form and yield the eigenvalue problem

J $ s ¼ ss: (24)

A dispersion curve representing the growth rate of the
perturbation s as a function of its wavenumber k is obtained

by plotting the largest real part of eigenvalue s for a given k.
We have performed convergence tests to find the optimal
discretization for space and time. Typical values for the length
of the numerical domain and the mesh size to achieve an
accuracy of 1.0% in the computation of the maximum growth
rates are 400 and 0.25, respectively. For this domain length of
400 or larger, the assumption of the semi-infinite domain is
thus valid as the profile is not affected by the lower boundary.

From the dispersion curves obtained at different frozen
times, we extract the maximum growth rate sm corresponding
to the most unstable wavenumber km. Fig. 6a illustrates the
typical variation of sm and km with time for RA 4 0. The system
is initially stable with regard to buoyancy-driven convection as
sm is negative. Some time is indeed needed to build a denser
fluid layer that is sufficiently extended to trigger the instability.
sm increases over time, so that after some time, it changes sign
and becomes positive. This means that the system becomes
unstable with regard to convection. sm continues to increase
with time up to a maximum value and then decreases. This
decrease is related to a weakening of the unstable density
gradient by diffusion as time goes by. The wavenumber km

associated with the maximum growth rate can also vary non
monotonically as a function of time as shown in Fig. 6b.

4.2 Definition of the characteristics of the instability

Most previous papers devoted to the LSA of a transient growing
boundary layer have characterized the instability by the onset
time t0 at which sm = 0, beyond which the system thus becomes
unstable, and by the related onset wavenumber k0

m.20,48 At this
time, however, as the growth rate is by definition equal to zero,
we have no information on the growth of the perturbation.
Instead, we compute a characteristic growth rate s* of the
instability quantifying the rate at which perturbations grow
once the system is unstable and still in the linear regime.
Following Trevelyan et al.,51 the characteristic growth rate
sm* is defined as the maximum growth rate at t* for which
sm*t* = 1, such that the amplification factor exp(sm*t*) of
the perturbation at t* is of order unity. We also compute the
characteristic wavelength lm* = 2p/km*, where km* is the
wavenumber corresponding to sm* at t* and is thus the fastest
developing mode at t*. We aim to compare these characteristic

Fig. 5 Asymptotic concentration profiles (18) (plain line) and numerical
concentration profiles (dashed line) for b = 1, at times (a) 10 and (b) 1000.

Fig. 6 (a) Maximum growth rate sm and (b) most unstable wavenumber
km of the dispersion curves as a function of time with b = 1, RA = 1 and
RC " RB = 1.
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values in the reactive case to those in the non reactive (NR)
case. Adapting the parameterless characteristic values for the
NR case19 in our scalings gives for RA 4 0, tNR* = 252RA

"2,
sNR* = 1/tNR* = 3.96 ' 10"3RA

2, kNR* = 6.19 ' 10"2RA, lNR* =
2p/kNR* = 101.5/RA. sNR* is in agreement with experimental5

and numerical30,52 values reported in the literature for the growth
of the dissolution-driven perturbation in the linear regime.
For RA r 0, the non reactive density profile is stable as sm is
always negative.

4.3 Effects of reactions on the characteristics of the instability
in the case RA 4 0

Using the linear stability analysis described above, we compare
the characteristics of the instability – growth rate sm* and
wavelength lm* – in the reactive case to their counterparts in
the non reactive case. We first analyse the case RA 4 0 when a
buoyantly unstable density stratification develops upon disso-
lution of A. Fig. 7a shows that when RA 4 0, sm* increases with
RC " RB, corresponding to replacing reactant B with an increas-
ingly denser product C. For RC " RB o DR, sm* is smaller than
the non reactive growth rate sNR*. DR is defined as the critical
value of RC " RB needed for sm* to be larger than sNR*. As a
consequence of this definition, if RC " RB o DR (regions I–II),
sm* o sNR*: the perturbation grows more slowly in the reactive
system than in the absence of reaction, and the reaction
stabilizes the system with regard to convection. On the con-
trary, if RC " RB 4 DR (region III), sm* 4 sNR*: the reaction
accelerates the development of the perturbation. We find that
DR slightly changes with b (Fig. 7).

In zone I (RC " RB o 0), the RD density profiles have a
minimum located at the reaction front Zf where locally less
dense fluid lies on top of denser fluid (stable situation). When
RC " RB increases, the weight of the fluid layer above the
reaction front remains the same compared to the minimum
of density RCb, but the density difference between this mini-
mum and the density of the bulk solution RBb decreases (see
Fig. 4b). The decrease of this stabilizing barrier with RC " RB

explains the increase of the characteristic growth rate.
In zone II (0 r RC " RB o DR), by contrast, the RD density

profiles are monotonic (see Fig. 4a). We can easily understand
the stabilizing effect of reactions in zone II when RB = RC: the

consumption of B is exactly compensated by the production of
C in terms of density, but the species A, which increases the
density, is consumed by the chemical reaction. Hence, the
global effect of reaction is to weaken the density stratification
at the origin of the instability. DR can thus be seen as the
additional contribution to density that C must have with
respect to B to compensate for the consumption of A.

In zone III (RC " RB 4 DR), C is dense enough to more than
compensate for the loss of A and B by reaction. The perturba-
tion grows faster than in the non reactive case (sm* 4 sNR*),
and the reactive system is more unstable with regard to
buoyancy-driven convection than its non reactive counterpart.

In addition, Fig. 7a shows that increasing the initial concen-
tration b of reactant amplifies the effect of the reaction (stabi-
lizing or destabilizing). If the reaction slows down the growth of
the perturbation (zones I–II), the growth rate decreases with b.
In zone I, the density difference between the minimum of
density and the bulk solution, (RC " RB)b, indeed increases
with b. We can explain the stabilizing effect observed in zone II
by the increase with b of the consumption of A, which decreases
the weight of the denser fluid layer. If the reactive system is
more unstable than the non reactive one (zone III), the growth
rate increases with b because the production of C, which
increases the weight of the denser fluid layer, increases with b.

Fig. 7b shows that, for all values of RC " RB, the wavelength
lm* is smaller in the reactive system than in the non reactive
one. In zone I, the wavelength does not vary significantly with
RC " RB, while it decreases in zone III. lm* decreases with b
everywhere except in zone II. The reason why in this zone II,
lm* has a maximum and the effect of b is reversed remains
unclear.

As DR plays a major role in the classification of the effects of
reactions, we detail below its variation with RA and b. Fig. 8a shows
that DR linearly increases with RA 4 0 as DR = 0.32RA + 0.00. We
recall that DR represents the excess contribution to density that C
must have with respect to B to compensate for the consumption of
A. Since RA represents the contribution of A to the density of the
solution, DR increases when A contributes more to the density, i.e.,
the product C must be denser to compensate for the consumption
of the increasingly denser species A.

Fig. 8b shows that the variation of DR with b is much smaller
than its variation with RA. We have represented the error on DR

Fig. 7 Characteristic (a) growth rate and (b) wavelength of the instability
as a function of RC " RB with RA = 1, and various b. The non reactive values
are given by the dashed black line (b = 0.0). The critical value DR varies
slightly as a function of b (see Fig. 8b) and is shown in the graph for b = 1.

Fig. 8 (a) Critical value DR as a function of RA for b = 1; (b) critical value DR

as a function of b for RA = 1.
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computed from the propagation of error on sm in Fig. 8b to
show that the non monotonic variation of DR with b is within
the error and thus possibly non significant for the concen-
tration range tested here. However, from b = 1.5 to b = 2.0, the
decrease of DR is slightly larger than the error. When b
increases, the reaction becomes stronger: the consumption of
A increases, which tends to decrease the extent of the denser
fluid layer at the origin of the instability (see Fig. 3). In addition
to the weight of the denser layer, the local gradient probably
influences the stability of the density profile, which renders the
physical interpretation intricate.

4.4 Effects of reactions on the characteristics of the instability
in the case RA r 0

The non reactive case for RA r 0 is stable for all times, which
means that all modes have a negative growth rate. We recall
that this corresponds here to the buoyantly stable dissolution
downwards (Fig. 1a) of a solute A decreasing density (aA r 0) or
upwards (Fig. 1b) of a solute increasing density (aA Z 0). We
will thus not compare the reactive case to the non reactive case
but rather discuss when the reaction creates buoyancy-driven
convection, and in that case which parameters increase the
growth rate of the perturbation.

Fig. 9a shows that when RA r 0, the perturbation is
characterized by a positive growth rate only when RC " RB 4 0
(zone V in Fig. 11), i.e. when a maximum appears in the density
profile thanks to the reaction (see Fig. 4c). Note that we have not
represented characteristic values corresponding to small RC" RB in
Fig. 9 because the numerical system is finite and the diffusive
profile reaches the boundary of the system before the characteristic
time. A semi-infinite system, however, should be unstable even for
small RC " RB 4 0 at arbitrarily large times. The initially stable
system is destabilized with regard to convection because the
reaction creates a non monotonic density profile with a maximum
where locally denser fluid lies on top of a less dense one. sm*
increases with RC " RB because the amplitude of the maximum
compared to the bulk solution increases with RC " RB (see Fig. 4c).
Fig. 10 shows that for RA = 0, the denser area extends from the
interface down to the reaction front while it becomes more
localized near the reaction front when RA decreases. In addition,
C must be denser to compensate for the larger decrease in density
when RA decreases. This explains that sm* decreases when RA

decreases. The characteristic wavelength lm* decreases with
RC " RB, and decreases with RA, which is illustrated in Fig. 9b.

5 Discussion
Fig. 11 summarizes the classification of the effects of reactions
in the parameter plane (RC " RB, RA) by taking into account the
analysis of the RD density profiles and the results of the LSA.
When RC " RB 4 0, the reactive density profile is more unstable
than its non reactive counterpart if 0 o RA o DR (zone III). If
RA r 0 (zone V), the reaction creates in the density profile a
maximum at the origin of the buoyancy-driven instability. If

RA 4DR ¼
RC " RB

0:32
(zone II), the RD density profile is less

unstable than its non reactive counterpart. Note that the numerical
value of DR might depend on the LSA technique used and on
the criterion used for the classification (for example s* or t0)
but the overall structure of profile classification is robust.

Fig. 9 Characteristic (a) growth rate and (b) wavelength of the instability
as a function of RC " RB with b = 1, and different RA r 0.

Fig. 10 Numerical density profiles for t = tNR*, b = 1, RB = 0.0 and RC = 0.5
and different RA r 0.

Fig. 11 Classification of the density profiles as a function of RC " RB and
RA. Zone I: non monotonic stabilizing, zone II: monotonic stabilizing, zone
III: monotonic destabilizing, zone IV: monotonic stable, zone V: non
monotonic destabilizing. The dashed diagonal is the line RA = (RC " RB)/
0.32 which separates zones II and III (see Fig. 8a).
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When RC " RB r 0, the RD density profile remains stable like
its non reactive counterpart if RA r 0 (zone IV), and is less
unstable than its non reactive counterpart if RA 4 0 (zone I).

The classification proposed in Section 4 encompasses previous
experimental or theoretical studies on reactive dissolution-driven
instabilities (see Table 1). We first discuss the stabilizing cases
observed in zones I and II. Budroni et al.3 have shown that a
reaction of an ester dissolving downwards into an aqueous solution
of NaOH produced a density profile with a minimum (RC" RB o 0,
zone I), so that the instability grows slower than in the non reactive
case. We note that a similar stabilization by a minimum in the
density profile has also been observed in an electrochemical
system.53 Other studies have shown that the reaction of the
dissolving species CO2 with a solid in excess, producing another
solid, is expected to slow down the development of the dissolution-
driven instability.32–35 This type of reaction corresponds to the
stabilizing case RA 4 0, RC = RB = 0 (zone II).

Destabilizing cases also exist in the literature. We have
recently illustrated zone III (RA 4 0, RC " RB 4 DR) in an
experimental study of gaseous CO2 dissolving into a reactive
aqueous solution of NaOH.13 We have shown that the reaction
between the dissolving CO2 and the dissolved NaOH produces a
chemical species sufficiently denser than the dissolved reac-
tant, so that dissolution-driven convection develops faster than
in the non reactive case.13 The blue bottle reaction studied e.g.
by Bees et al.54 is an example of zone V (RA r 0, RC 4 RB) where
the chemical reaction is at the origin of the buoyancy-driven
instability. In their model, the reaction produces gluconic acid
which increases the density of the solution, while the dissolving
species and the dissolved reactants do not increase the density of
the solution.

Although our study could be extended to take into account
differences in diffusion coefficients2,9 and/or to include differ-
ent stoichiometries and reaction schemes,7,13,55 it can be used
to predict behaviors in laboratory experiments. The values of
the solutal Rayleigh number RA, RB and RC tested here are
relevant to laboratory experiments, for example in the case of
CO2 dissolving into an aqueous solution of NaOH, RA = 0.102,
RC " RB = 0.760.13

A realistic effect of reactions on dissolution-driven convec-
tion in underground storage sites for CO2 sequestration is
difficult to estimate because of the number of possible different
reactions, feedback between chemistry and permeability/por-
osity, etc. We note that Ennis-King and Paterson32 showed that
the effect of dissolved ions on the density of the solution
affected the development of the dissolution-driven instability
in a simulation of a realistic storage site. The fingers of denser
fluid advanced faster in the system with ions effect than

without it, which indicated that the instability grew faster. With
typical values in geological sites for CO2 sequestration shown in
Table 2, RA can be of the order of 10"2–102 considering that the
reaction rate can vary between 10"5 and 10"10 mol m"3 s"1

depending on the reaction.57 Reactions in storage sites are often
approximated as reactions between CO2 and a solid to produce
another solid. However, these reactions can also produce or
consume dissolved salts. For example, the reaction of albite
with CO2 produces Na-smectite, silicon dioxide and sodium
bicarbonate.34 This reaction could possibly accelerate the
dissolution-driven instability that develops upon dissolution of
CO2 in the saline aquifer (RA 4 0, RC 4 RB).

6 Conclusion
We have proposed a general classification of the effects of
reactions on the early-stage development of dissolution-driven
convection, including cases where the non reactive counterpart
is stable. This classification unifies previous disparate experi-
mental and theoretical studies. It also sets the framework to
predict the effects of reactions on dissolution-driven convection
in natural and laboratory systems and to develop laboratory
experiments to test our predictions. Further analysis of the
impact of reactions on the late-stage nonlinear development of
convection and on the evolution of the dissolution rate has
been undertaken. We intend also to extend this classification to
cases including differential diffusion and different stoichiometries.55

Differential diffusion phenomena are indeed known to be able to
impact the properties of convection or even be at the origin of
double diffusive or diffusive layer convection instabilities in miscible
systems.38,46 It is expected that, similarly, the inclusion of differential
diffusion in the present classification will enlarge the number of
possible different instability scenarios.

In the context of CO2 sequestration, such classifications
allow us to compare different geological storage sites according
to their dominant mineralogy and select those where reactions
are optimal in enhancing convective dissolution. For other
applications where convection enhances mass transfer, con-
trolling the properties of the dissolution-driven convection
should become possible by selecting the appropriate reactant
to be dissolved in the host solution.
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Diffusion coefficient of CO2 DA 5 ' 10"9 m2 s"1

Density difference between CO2 saturated
brine and fresh brine

Dr 5 kg m"3
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