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Abstract Classical chemical thermodynamics predicts that the equilibrium composition of
a reactive system is entirely defined by the equilibrium constants of the different reactions
involved. In this paperwe show that for nonlinear reactions taking place on a low-dimensional
support this is not true anymore: the equilibrium state depends on the mechanistic details
of the chemical processes, so that even two reactions having the same mean field kinetics
and equilibrium constants can reach a different equilibrium composition, depending on the
microscopic mechanism. We illustrate this point by simulations and mathematical analyses
of a simple autocatalytic scheme, and we propose a theoretical route to discriminate between
the different cases.

Keywords Low-dimensional systems · Stochastic dynamics · Nonlinear phenomena ·
Reactive systems

1 Introduction

Equilibrium thermodynamics is an extremely powerful and useful theoretical framework,
with applications ranging from chemistry [1,2], to the management of energy resources
[3,4], to astrophysics [5,6], to cite but a few examples. Much of the well-deserved success
of this theory can be attributed to its intrinsically universal character. Macroscopic systems
subject to a given class of time-independent boundary conditions are supposed to reach a state
that coincides with the extremum of the same state function. A major strength of equilibrium
thermodynamics is that this property is supposed to hold, irrespective of the microscopic
details of the components of the system or of the processes taking place.

However, this fundamental feature can sometimes be put into danger. The kinetics and the
equilibrium state of chemical reactions occurring in low-dimensional systems are for example
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known to deviate substantially from the above precepts [7]. Previous studies revealed that
such deviations can be related to the nonlinearity of the reaction and to the dimensionality of
the support [8]. However, despite all the knowledge gathered on this class of systems over
the last decades, there is as of today no simple general criterion upon which one could predict
whether equilibrium thermodynamics will hold or not. In this work, we show that such a rule
could find its roots in the properties of the space of spatial configurations of the system at
hand. Since these critical properties are related directly to the mechanism of the elementary
steps, one can assess a priori the validity of the traditional macroscopic approach.

We will consider as an illustration the case of reactions taking place on one-dimensional
supports. Such situations are encountered for example in the channels of a zeolite [9,10], or
in carbon nanotubes [11,12]. More particularly, our focus will be on a typical example of
nonlinear reaction, the trimolecular autocatalytic scheme

2X + Y � 3X, (1)

which is common tomany chemical schemes giving rise to complex behavior such as temporal
oscillations or pattern formation [13]. Classical thermodynamics tells us that the ratio of the
molar fractions of X and Y is given, at equilibrium, by

(
xX
xY

)
eq

= Keq , (2)

independently of the details of the kinetics behind reaction (1). From a mechanistic point of
view, however, such effectively trimolecular reactions are usually understood as being the
result of a succession of two or more monomolecular or bimolecular steps. In Sect. 2, we
present different reaction mechanisms of this type that can lead to a globally trimolecular
process. We first discuss them in the framework of a mean-field description, and then focus
on their microscopic implementation on a one-dimensional support. Section 3 is devoted to a
presentation of the results of stochastic (Kinetic Monte carlo) simulations of these different
realizations. We show that some of the mechanisms can lead the system to its equilibrium
composition (2), while others cannot. We explain and rationalize these results in Sect. 4 and
5, with an analytical study based on the blending of combinatorial arguments and properties
of the space of microscopic configurations. We finish by summarizing our main results and
by pointing towards future developments (Sect. 6 and 7).

2 Mechanisms for the Trimolecular Reaction

We start by discussing how different mechanisms can lead to an effectively trimolecular
reaction kinetics within the mean-field hypothesis. Under ideal conditions, the dynamical
evolution of the molar fractions xX and xY undergoing reaction (1) is typically given by

d

dt
xY = − d

dt
xY = J, (3)

where J is the rate of reaction (1) given by the mass action law

J = k f x
2
XxY − kbx

3
X, (4)

with k f and kb being the kinetic constants of the forward and backward processes. Equation
(4) strictly implies that reaction (1) is an elementary process, with a molecularity of 3.
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It would be more realistic from a chemical point of view to think of reaction (1) as a
combination of, say, the following three elementary steps:

X + Y � E (5)

E + X � X + F (6)

F � 2X, (7)

involving the intermediate species E and F. If reactions (5) and (7) evolve in both ways on a
faster time scale than reaction (6), the molar fractions xE and xF of the intermediate species
can be respectively replaced by the equilibrium conditions on (5) and (7). If these values are
small, so that the changes over time of xE and xF are negligible, the species E and F can be
considered in a stationary state. Under such pre-equilibrium steady state approximation, the
rate of the global process reads:

JI = kIKEx
2
XxY − k−IK

−1
F x3X, (8)

with kI and k−I being the forward and backward kinetic constants of (6), and KE and KF the
equilibrium constants of (5) and (7).

Schemes (5)–(7) is clearly not the only one compatible with (1). For example, another
sequence of acceptable monomolecular and bimolecular steps is:

X + X � D (9)

D + Y � X + F (10)

F � 2X, (11)

where the intermediate species D and F appear. Assuming the pre-equilibrium steady state
approximation for both D and F gives the global rate

JII = kIIKDx
2
XxY − k−IIK

−1
F x3X, (12)

where kII, k−II and KD respectively are the forward and backward kinetic constants of (10)
and the equilibrium constant of (9).

Both JI and JII have the same form as J , which makes both schemes (5)–(7) and (9)–(11)
chemically acceptable schemes for the trimolecular reaction (1). However, the reactive events
involved in these schemes are different, and this fact needs to be taken into account when the
two above mechanisms are translated into a set of microscopic local rules in low-dimensional
systems.

We model such spatially restricted environments as linear sequences of boxes with no-
flux boundary conditions (i.e., as lines). Each box is occupied either by a particle X or by
a particle Y. We also assume that the volume of these species is conserved when they are
chemically bound into the intermediate species D, E and F, so that these latter three particles
each occupy two boxes. Finally we also consider that all the particles are impenetrable, so
that swapping of adjacent species is ruled out.

Since the global mechanism is trimolecular, it is useful to focus on the local behavior
of triplets of adjacent particles. For convenience we will discuss the forward sequence of
reaction: the backward series of events can be easily understood using similar ideas.

Because chemical reactions are short-ranged events, the different elementary steps involve
particles that occupy adjacent positions on the support. Schemes (5)–(7) requires one particle
of X and one of Y to be close to each other in order to form E. Therefore, any reactive triplet
must have at least one XY or, assuming the reaction to be symmetric in space, one YX
sequence. Now, the intermediate species E needs to react with a nearby X. As an example,
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Chemical Equilibrium on Low Dimensional Supports 213

consider that reaction (6) can take place only if X attacks E from the side where the Y
molecular fragment is, changing its local internal structure and then immediately detaching.
In this case the only reactive configuration is XYX, which can react in two different and
symmetric ways, both resulting in the XXX configuration:

(13)

On the contrary, scheme (9)–(11) requires two particles of X to be close to each other
in order to form the dimer D. Assuming that reaction (10) can occur on either side of D,
converting a Y particle into X, both the XXY and YXX triplets can be converted into XXX:

(14)

Under the pre-equilibrium steady state hypothesis, the intermediate reactions in both (13)
and (14) can be assumed to evolve on a very short time scale, so that we can re-write them
directly as

(15)

and

(16)

We will refer to the microscopic schemes (15) and (16) respectively asCase I andCase II.
We notice that in both cases, the equilibrium composition will be given by Eq. (2), in which

Keq ≡ kIKE

k−IK
−1
F

(17)

for Case I and

Keq ≡ kIIKD

k−IIK
−1
F

. (18)

for Case II. As expected, the equilibrium ratio of molar fractions is independent of the initial
condition and of the mechanism of the reaction, as long as the equilibrium constants of the
schemes are the same.

There are of course other possible microscopic implementations of schemes (5)–(7) and
(9)–(11), depending on particular assumptions on the symmetry and chemistry of each ele-
mentary step. However, our aim here is not to present a complete zoology of all the possible
microscopic mechanisms compatible with the autocatalytic reaction (1), but rather to inves-
tigate the differences between two different microscopic implementations of the same global
process. In the next section, we show with stochastic simulations the extent to which the two
chosen schemes can indeed affect the behavior of the reaction under consideration.
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3 Stochastic Simulations

To investigate the properties of Case I and Case II, we performed Kinetic Monte Carlo
simulations of the above two schemes on one-dimensional lattices with no-flux boundary
conditions. For the sake of simplicity we set Keq = 1, so that the equilibrium values for
xX and xY predicted by the mass action law both are 0.5. The initial condition of each
simulation was constructed by independently assigning to each box of the lattice a Y or an X
with probability p and 1− p, respectively. We also investigated the role played by the linear
size L of the system.

Figure 1 compares the ensemble-averaged equilibrium values 〈xY〉 of xY for the two
mechanisms. The plots show the dependence of 〈xY〉 on the lattice size, for different choices
of the initial condition parameter p. We observe that despite the fact that Case I and Case
II are very similar and derive from the same global reaction, they present quite different
behaviors when simulated on a one-dimensional lattice. On one hand, the thermodynamic
prediction is reached byCase II for a large range of initial conditions in themacroscopic limit.
Substantial deviations are observed only when the initial condition is rich in Y. On the other
hand, the equilibrium reached in Case I never follows the mass action law. The final state
displays a strong, non-trivial dependence on the initial condition. A closer look reveals that
the equilibrium composition tends to remain stuck at its initial value, as the latter becomes
more concentrated in Y. It is worth noticing that in both cases, the final value also depends
on the system size (see Fig. 1). As the linear size L of the lattice increases the final state
asymptotically approaches a value, which coincides with the macroscopic limit discussed
above. The rate of convergence to this limiting value depends on the initial condition: as the
initial concentration in Y increases, so does the value of L above which the macroscopic
limit can be obtained. Figure 2 summarizes the differences between the two schemes in such
a macroscopic limit.

The very fact that such systems sometimes do not follow the mass action law should not
come as a surprise. It is indeed well known that when nonlinear processes take place on low-
dimensional supports, the mean field hypothesis is put in danger and so are the predictions
of traditional (non)equilibrium thermodynamics [8]. Systematic analyses of different simple
schemes revealed that the extent of the deviations depends on the dimensionality of the
underlying network and on themolecularity of the processes involved [14]. Such explanations
are here inadequate, since both mechanisms are trimolecular and are simulated on the same
support. If it is not the dimensionality or the molecularity, then what makes Case I and Case
II behave so differently?

4 Combinatorial Approach

To unveil the reasons behind the observed differences, we will use a combined statistical
and combinatorial approach inspired by a previous study devoted to the strong dependence
on initial conditions of Case I [15]. In this work, the authors used the properties of the
transition matrix appearing in the master equation, which rules the stochastic evolution of
the simulations. Let us first illustrate these ideas qualitatively on a simple case.

The central point is to analyze the space of all the possible spatial configurations of
particles. The total number of configurations for the problem hereby studied in a system of
size L is given by the combinatorial factor:
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Chemical Equilibrium on Low Dimensional Supports 215

Fig. 1 Average simulated and theoretical values of 〈xY〉 at equilibrium as a function of different lattice
sizes L , for Case I (purple diamonds) and Case II (green circles). Full-small marks refer to computational
values, calculated by averaging the outcome of 5000 independent Kinetic Monte Carlo simulations, with equal
probabilities for the forward and backward reactions and with no flux boundary conditions. Each simulation
runs for 5000 time units and the equilibrium value is averaged over the last 50 points of each simulation. Each
of the six plots correspond to a different value of p. a p = 0; b p = 0.1; c p = 0.3; d p = 0.5; e p = 0.7;
f p = 0.9. Empty-big marks refer to the theoretical estimations calculated with Eq. (39). The gray-dashed
line marks the ideal value predicted by the mass action law (2), with a kinetic ratio Keq = 1 (see also Eqs.
(17)–(18)) (Color figure online)

CL =
L∑

n=0

(
L

n

)
. (19)

We will also refer to CL as the size of the configurational space. As an example, for L = 5
there are 32 configurations that read:
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Fig. 2 Steady state molar
fraction of Y as a function of the
initial condition, as obtained from
5000 realizations of the kinetic
Monte Carlo simulations. The
initial condition corresponds to
andomly placed particles of Y
and X with probabilities p and
(1 − p), respectively. The size of
the system is in each case
L = 1000. Colors and symbol
legends are the same as in Fig. 1
(Color figure online)
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Y X X X X
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Y X X Y Y
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Y X Y X Y
Y X Y Y X
Y X Y Y Y

Y Y X X X
Y Y X X Y
Y Y X Y X
Y Y X Y Y
Y Y Y X X
Y Y Y X Y
Y Y Y Y X
Y Y Y Y Y

. (20)

The next step is the analysis of the transitions between these states. Although the possible
configurations (20) are the same for both Case I and Case II, the transitions between them
are very different because the microscopic mechanism is not the same.To show this, one
can construct a graph involving the configurations in the following way. We consider each
configuration to be the node of a network and link two nodes if it is possible to transform one
configuration into the other by a single reactive event. In such a graph, a given node will have
L different links to other nodes if any of the L lattice sites can undergo a reaction. Otherwise
it will have a self loop and a number of links equal to the number of reactive particles. Given
the specificities of the reaction schemes and the no-flux boundary conditions, It should be
clear at this point that:

1. Any two linked configurations only differ by one single particle;
2. If a link exists from the configuration i to the configuration j , an equivalent link also

exists from j to i (we will denote this situation by drawing a single non-directed link
between i and j);

3. Every configuration will have a self loop;
4. Frozen (time-invariant) configurations will appear as isolated nodes linked only to them-

selves.

Figure 3 shows how such a graph looks like when L = 5 for Case I and Case II. It appears
that the two cases lead to substantially different pictures. Case I segregates the configurational
space into several intraconnected networks of different length on one hand, and isolated nodes
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Fig. 3 Configurational spaces of
Case I (top) and Case II (bottom)
for L = 5

on the other hand. Case II produces a single, large connected network and several isolated
nodes. The qualitative structure obtained for L = 5 remains the same also for larger values
of L .

This grouping together of configurations is extremely important for understanding the
differences between the two cases. Indeed, each simulation starts with an initial condition that
corresponds to one of the nodes of the global graph. Because of the connectivity properties,
the system will afterwards

1. Stay within the intraconnected network the initial condition belongs to;
2. And have visited all the nodes of this network for an arbitrarily large time. Note that

since all the rate constants are equal, the system will visit the different nodes with equal
probability, in this limit.

As a consequence, the long term molar fraction xY that will be observed for any given initial
condition is simply the mean of the molar fractions of Y in all the configurations of the
selected network. The isolated configurations play a special role in this context: in such
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cases, the final molar fraction is equal to the initial one, since the system remains frozen in
its initial state.

With these properties in mind, one can reproduce the behavior of the equilibrium state
for the two cases. Indeed, for many different realizations of the simulation algorithm, the
ensemble average of xY will be given by

〈
xY

〉 =
N∑
i=1

Pi x
(i)
Y +

(
1 −

N∑
i=1

Pi

)
x (0)Y , (21)

where Pi is the probability to start in an intraconnected network i , for which the mean

molar fraction of Y is x (i)Y . Note that
(
1 − ∑N

i=1 Pi
)
is the probability to start in an isolated

configuration, for which xY is thus equal to the initial condition: x (0)Y is therefore the average
molar fraction calculated among all the isolated states.

All these quantities could in principle be accessed analytically or numerically, although
their calculation is not always simple or straightforward. In the next section we will analyti-
cally derive some of them, which we will then use to find approximate laws for the behavior
observed in the simulations.

5 Analytical Results

Our goal is to obtain analytical explicit expressions of (21) that will help us to understand
the differences between the two reactive schemes. To this end, we will focus on the behavior
of the systems starting in a configuration belonging to the largest intraconnected network of
the graph representation introduced previously.

5.1 Mean Molar Fraction of the Largest Network

In this subsection we will explicitly calculate the equilibrium molar fraction reached by the
largest graph in both Case I and II. This corresponds to starting the system in a globally
reactive configuration, i.e., a configuration in which there is no frozen “islands” of particles.
We start by calculating the transition matrix TL within the subregion of the configurational
space corresponding to the largest connected network. In this case TL is non-negative and
irreducible by definition. Since it will prove to be also stochastic, we can use the ergodicity
ensured by the Frobenius theorem to calculate the first moment of any equilibrium quantity
by averaging over the total number of globally active configurations.

The original derivation for Case I has been performed by Provata et al. [15]. We will
shortly repeat it hereafter for the sake of completeness and for a better comparison with the
rest of our presentation.

5.1.1 Case I

The microscopic rules of Case I forbid many of the configurations, because they require two
Xs to surround a third particle for it to be reactive. This excludes the possibility for any
configuration with one or more blocks of adjacent Ys to be either obtained or removed by
the chemical reactions.

Because of this limitation and the no-flux boundary conditions, the maximum number
of Ys allowed in a globally reactive configuration of size L is (L − 1) /2, corresponding
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to an alternating sequence of X and Y. Note that the largest graphs always correspond to
configurations where the two boundaries are X species. If the number n of Ys is less or equal
to this upper limit, it will be possible to create reactive configurations by placing the n Ys
in L − n − 1 different positions (see [15]), so that the above constraints are satisfied.The
number of reactive configurations for each value of n is therefore given by

C I
L ,n =

(
L − n − 1

n

)
, (22)

with the total number of reactive configurations being

C I
L =

L−1
2∑

n=0

C I
L ,n . (23)

For example, the only 5 allowed configurations for L = 5 are:

X X X X X
X X X Y X
X X Y X X
X Y X X X
X Y X Y X

. (24)

The transition matrix for this 5-boxes example reads:

T I
5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

2
5

1
5

1
5

1
5 0

1
5

3
5 0 0 1

5

1
5 0 4

5 0 0

1
5 0 0 3

5
1
5

0 1
5 0 1

5
3
5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (25)

Because of the above mentioned restrictions, the mean molar fraction of the largest network
in Case I is given by

x (1),IY = 1

L

∑ L−1
2

n=0 C
I
L ,nn

C I
L

. (26)

5.1.2 Case II

The microscopic rules of Case II allow a particle to react only if it is adjacent to a block
of two Xs. Since the reaction is reversible and can proceed either to the left or to the right,
any configuration containing at least one XX block can eventually be converted into any
other configuration, with the only limitation that at least one XX block must remain. Hence,
the only frozen configurations are those where all the Xs are separated by one or more Y
particles.

Consequently, the maximum number of Ys allowed in a globally reactive configuration
of size L is L − 2, which is far greater than for Case I. Again, reactive configurations are
possible if the number n of Y particles is less or equal to the upper limit. To find the total
number of such configurations, it is easier to calculate the number of frozen configurations
for each n and then subtract it from the total number of configurations. According to the
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pigeonhole principle [16], if the number of Xs is greater than n+1 there must be at least two
X particles close to each other, resulting in a globally reactive configuration. If the number
of Xs is less or equal to n + 1, then it is possible to create frozen configurations where each
X is placed between two Y particles. For each given n and with no-flux boundary conditions,
there are n + 1 such positions to place each X (before the first Y, and after each Y present in
the system) so that the number of reactive configurations for each value of n is

C II
L ,n =

[(
L

n

)
−

(
n + 1

L − n

)]
. (27)

The total number of reactive configurations in a lattice of size L is therefore given by:

C II
L =

L−2∑
n=0

C II
L ,n . (28)

Consider again the simple case where L = 5. The above equation predicts the presence of
19 configurations, which read explicitly:

X X X X X
X X X X Y
X X X Y X
X X X Y Y
X X Y X X

X X Y X Y
X X Y Y X
X X Y Y Y
X Y X X X
X Y X X Y

X Y Y X X
Y X X X X
Y X X X Y
Y X X Y X
Y X X Y Y

Y X Y X X
Y Y X X X
Y Y X X Y
Y Y Y X X

. (29)

The transition matrix among these configurations is:

T II
5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1
5

1
5 0 1

5 0 0 0 1
5 0 0 1

5 0 0 0 0 0 0 0
1
5 0 0 1

5 0 1
5 0 0 0 1

5 0 0 1
5 0 0 0 0 0 0

1
5 0 2

5 0 0 0 1
5 0 0 0 0 0 0 1

5 0 0 0 0 0
0 1

5 0 2
5 0 0 0 1

5 0 0 0 0 0 0 1
5 0 0 0 0

1
5 0 0 0 4

5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1

5 0 0 0 4
5 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1
5 0 0 0 4

5 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1

5 0 0 0 4
5 0 0 0 0 0 0 0 0 0 0 0

1
5 0 0 0 0 0 0 0 2

5
1
5

1
5 0 0 0 0 0 0 0 0

0 1
5 0 0 0 0 0 0 1

5
3
5 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1
5 0 4

5 0 0 0 0 0 0 0 0
1
5 0 0 0 0 0 0 0 0 0 0 0 1

5
1
5 0 1

5
1
5 0 0

0 1
5 0 0 0 0 0 0 0 0 0 1

5
1
5 0 1

5 0 0 1
5 0

0 0 1
5 0 0 0 0 0 0 0 0 1

5 0 3
5 0 0 0 0 0

0 0 0 1
5 0 0 0 0 0 0 0 0 1

5 0 3
5 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1
5 0 0 0 4

5 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1

5 0 0 0 0 2
5

1
5

1
5

0 0 0 0 0 0 0 0 0 0 0 0 1
5 0 0 0 1

5
3
5 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
5 0 4

5

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(30)

As a consequence of the above, the mean molar fraction of the largest connected network in
Case II is given by

x (1),IIY = 1

L

∑L−2
n=0 C

II
L ,nn

C II
L

. (31)
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5.2 Probability to Select the Largest Network

We will here derive the probabilities P1 that the system starts in the largest network, for both
Case I and Case II.

The initial condition in the simulations is built by assigning to each box in the lattice a Y or
anX,with probability p and (1 − p), respectively.Given that every box is filled independently
from the others, we can estimate the probability to choose any initial configuration containing
n particles Y as pn (1 − p)L−n . The probability to select the largest subgraph with such an
initial condition is calculated by multiplying the number of configurations with n Ys in the
largest network by the probability to obtain one such configuration, and then summing over
all the possible values of n allowed in the network. For Case I and Case II we obtain

P I
1 =

L−1
2∑

n=0

C I
L ,n pn (1 − p)L−n , (32)

P II
1 =

L−2∑
n=0

C II
L ,n pn (1 − p)L−n . (33)

Figure 4 shows the trend of P I
1 and P II

1 for the six p values of Fig. 1. It can be seen that
while the probability to initiate the system in the largest network approaches 1 in Case II as
L increases, it vanishes as L increases for Case I.

5.3 Average Equilibrium Composition

The equilibrium molar fraction is given by Eq. (21), which for Case I and Case II reads:

〈xY〉I = P I
1 x

(1),I
Y + (

1 − P I
1

)
x (0),IY +

N∑
i=2

P I
i

(
x (i),IY − x (0),IY

)
, (34)

〈xY〉II = P II
1 x (1),IIY + (

1 − P II
1

)
x (0),IIY . (35)

Let us start with Case II for simplicity. In view of the results of the previous subsections,
the only term left to be known in Eq. (35) is the average composition of all the isolated
configurations x (0),IIY . One could be tempted to calculate this average simply as the mean
value among the isolated states, but this would give a bad estimate of the simulated value.
The problem is that not all the isolated configurations are selected with the same probability:
for example if p is large, the isolated configurations which are more populated in p will be
selectedmore often. A good approximation of x (0),IIY should take into account this probability,
and would therefore read:

x (0),IIY =

L−2∑
n=0

[(L
n

) − C II
L ,n

]
n pn (1 − p)L−n +

L∑
n=L−2

(L
n

)
n pn (1 − p)L−n

L
(
CL − C II

L

) . (36)

where
∑L−2

n=0

[(L
n

) − C II
L ,n

]
n pn (1 − p)L−n is the probability to select a frozen configura-

tion for initial compositions for which both reactive and frozen configurations are possible
(i.e., for 0 ≤ n ≤ L−2), and

(
CL − C II

L

)
is the number of frozen configurations.The rationale

behind this formula is the following. The first term in the numerator of Eq. (36) represents
the probability to select a frozen configuration with a number n of Y particles, for which both
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Fig. 4 PI
1 (black diamonds) and PII

1 (gray circles) as a function of L . The light gray dashed line marks the
unitary probability. Each of the six plots correspond to a different value of p. a p = 0; b p = 0.1; c p = 0.3;
d p = 0.5; e p = 0.7; f p = 0.9. The other parameters are the same as in Fig. 1

active and frozen configuration are possible. The second term accounts for values of n for
which only frozen configurations are possible. The sum of these configurational estimates is
then simply divided by the total number of frozen configurations,

(
CL − C II

L

)
.

For Case I the situation is more complicated, because in principle we also need to calculate
the probabilities P I

i and the mean compositions x (i),IY for every network in the configurational
space. This calculation is rather complicated and we did not find a simple, yet analytical and
general way to perform it for every lattice size L . However our scope here is to use the qual-
itative structure of the configurational space to keep our analysis simple by finding suitable
approximations. Since Case I produces a very fragmented graph with many disconnected
small networks, we can push this concept to its limit and consider that any network except
the largest one is a disconnected point. We expect this approximation to hold if the term∑N

i=2 P
I
i

(
x (i),IY − x (0),IY

)
in Eq. (34) vanishes, which is true if all the probabilities P I

i tend to
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zero, or if the mean molar fraction within each smaller network is close to the average molar
fraction of the ensemble of isolated nodes. Under this approximation we calculate x (0),IY as

x (0),IY �

L−1
2∑

n=0

[(L
n

) − C I
L ,n

]
n pn (1 − p)L−n +

L∑
n= L−1

2

(L
n

)
n pn (1 − p)L−n

L
(
CL − C I

L

) , (37)

using the same reasoning as for Case II.
Notice that if the configurational space consisted solely of isolated nodes (i.e., if it were

a fully disconnected graph), the estimated value of 〈xY〉 would take the remarkably simple
form

〈xY〉FD = 1

L

L∑
n=0

(L
n

)
pn (1 − p)L−n n

L∑
n=0

(L
n

)
pn (1 − p)L−n

= p. (38)

Figure 1 clearly shows that Case I fulfills this prediction for large values of p, which indicates
that even the brutal approximation of a fully disconnected configurational space is not a bad
one in such cases. In fact we can speculate more about this result and propose a further
simplification of Eqs. (34) and (35). From a careful analysis of Case I and Case II, we can
individuate two limiting behaviors

(a) All the networks in the configurational space have vanishing probability to be selected
as an initial condition (with the sum of these probabilities nevertheless being equal to
1), which makes the system behave as a collection of isolated nodes (see Case I). In this
case 〈xY〉 ≈ 〈xY〉FD = p;

(b) The biggest network has P1 ≈ 1, meaning 〈xY〉 � x (1)Y .

We can therefore try to approximate the behavior of the system in the intermediate cases
as a linear function of P1, which amounts to substituting the terms x (0),IY and x (0),IIY in Eqs.
(34) and (35) with 〈xY〉FD and neglecting the contributions of the smaller networks in Eq.
(34):

〈xY〉 ≈ P1 x
(1)
Y + (1 − P1) 〈xY〉FD. (39)

Equation (39) has been used to derive the theoretical curves in Figs. 1 and 2 and is observed
to give reasonable estimates for sufficiently large values of p, and in the macroscopic limit.

6 Discussion

We now want to discuss further the meaning of the results we obtained in the previous
sections. For the sake of illustration, we will here focus on the macroscopic limit L → ∞.

Remember that, forCase II, the space of configurations consists in one large intraconnected
network (so that N = 1) and several isolated nodes. More precisely, it has been shown (see
Fig. 4) that in the macroscopic limit, P1 converges to 1, with a convergence rate inversely
proportional to the initial molar fraction of Y. Moreover, it also appears that x (1)Y tends to 0.5
in the same limit. Since the probability to start in a configuration out of the biggest network
vanishes, one finds that 〈xY〉 ≈ 0.5 independently of the initial condition for Case II (See,
again, Fig. 2). The fact that we re-obtain the mass action prediction in such limit is thus the
consequence of having an almost perfectly connected configurational space.
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For Case I, there can be many intraconnected networks of non-negligible size. It is not
always easy to estimate Pi for each connected network. In principle, should one of these
probabilities converge to 1, we would have again a situation similar to Case II, with the whole
configurational space being spanned by this network. However this is not the case, and it is
fairly easy to show that even the probability to start in the largest network rapidly vanishes as
the lattice size increases, especially for those initial conditions which are more concentrated
in Y. if Pi tends to zero for all i , the configurational space can be seen as a collection of
isolated points. One then finds that 〈xY〉 ≈ 〈xY〉FD so that the equilibriumcomposition is the
same as the initial one, as observed in the simulations (Fig. 2). In other words, Case I deviates
from the mass action law because the rules are such that most of the configurations of the
system are disconnected from each other.

In the end, the different equilibrium properties of Case I and Case II can all be traced
back to differences in the structure of the configurational space. It is now interesting to try
and shed some light on the physicochemical reasons behind these differences and why some
schemes may produce a very fragmented structure like in Case I, while others give rise to a
much more connected network as in Case II.

A good starting point is to have a look again at the configurational space of Case I for
L = 5 in Fig. 3. The five configurations in the largest network all have two particles in
common: the first and the last ones are an X in each case. This reflects the fact that these
particles cannot react according to scheme (15) because of the no-flux boundary conditions.
The links among those configurations are therefore due to the remaining particles, which are
in a reactive configuration and allow for transitions from one node to another. Similarly, all
the configurations in each network with three nodes share three inactive particles, and the
links are due to the two remaining (active) ones.

The isolated nodes represent from this point of view a limiting case, where none of
the lattice sites can undergo a reaction. The possibility to create such a globally frozen
configuration does not however automatically imply a strong divergence from the mean
field prediction: this can be a rare occurrence and the total number of frozen states can be
vanishingly small as the configurational space increases (see Case II). The very reason for
the fragmentation of the configurational space is rather the presence of local clusters of non-
reactive of particles, which prevent any network to grow large enough so as to invade the
majority of the configurational space.

The above conclusion means that, generally speaking, one might expect that the reac-
tions allowing for frozen local structures will not follow the mass action law. Consequently,
the validity of the traditional thermodynamic approach can often be guessed a priori from
the microscopic mechanism, without entering into a detailed analysis such as the one we
presented here. For example, consider the following cluster:

. . . X X Y Y Y X X . . . (40)

submitted to the dynamics of either Case I or Case II. The central box (the YYY cluster)
cannot produce any reaction in any case. However, in order for this cluster to qualify as a
frozen island the Ys at the borders must also be inactive. This is true for Case I, for which an
XYX configuration is needed, but not for Case II, since the XXY configurations are reactive.
Playingwith the different local configurations, one arrives to the conclusion that Case I allows
for the existence of inactive clusters, so that its configurational space is clustered and is hence
expected to deviate from the mass action law. Case II on the contrary is able to produce a
cascading process that “attacks” the initially frozen blocks from the borders and activate
them. Local frozen islands are thus not permitted and the only inactive configurations are
the globally frozen ones, which cannot be obtained by reaction. In consequence, Case II is
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expected to follow the traditional law, as long as the initial condition is itself not a globally
frozen state.

7 Conclusions

To conclude, we show here that for low-dimensional systems, the deviation from classical
equilibrium thermodynamics can be traced back to the existence of local non-reactive islands
in a system. A connection between the spatial features of such problems and their chemical
composition can be obtained by analyzing the properties of the space of configurations.
Simple but effective corrections to the mass action law can be derived just by looking at the
structure of that space.

Although the present results are still far from forming a general theory, they suggest that
the network properties of the configurational space play a pivotal role in quantifying the dis-
tance from idealmean field predictions,more than dimensionality or coordinancy.We already
highlighted how the relative size of the largest network can provide useful information to
obtain accurate predictions of the non mean field behavior, even in extreme situations such as
the one-dimensional lattices considered here. It would be herefore interesting to investigate
the possibility of usingmore advanced tools from graph and network theory to derive thermo-
dynamically relevant quantities directly from the reaction mechanism itself. This knowledge
could be used not only to predict the equilibrium state reached by a system, but also to predict
the non-equilibrium behavior of more complex schemes where multimolecular steps appear.
Additionally, it would also be nteresting to further explore the connections between the ideas
we put forward here and the nonextensive statistical thermodynamics theory proposed by C.
Tsallis [17], which naturally takes into account the non-ergodicity of reactive systems.
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