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In this paper, we study the emergence of spatiotemporal chaos from mixed-mode oscillations, by using
an extended Oregonator model. We show that bursting dynamics consisting of fast/slow mixed mode
oscillations along a single attractor can lead to spatiotemporal chaotic dynamics, although the spatially
homogeneous solution is itself non-chaotic. This behavior is observed far from the Hopf bifurcation
and takes the form of a spatiotemporal intermittency where the system locally alternates between the
fast and the slow phases of the mixed mode oscillations. We expect this form of spatiotemporal chaos
to be generic for models in which one or several slow variables are coupled to activator-inhibitor type
of oscillators. © 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4927911]

I. INTRODUCTION

Because of the intrinsically nonlinear character of their
kinetics, chemical reactions are often found to be at the heart
of complex spatiotemporal dynamics. These behaviors can
take different forms, including, for example, explosive tran-
sients accompanied by wave propagation or oscillations of the
concentrations. The reaction-induced dynamical complexity
culminates in the form of spatiotemporal chaos, in which the
system is characterized by an apparent randomness of compo-
sition in both space and time. Spatiotemporal chaos has been
observed experimentally and quantified on numerous occa-
sions, including the Belousov-Zhabotinsky reaction in aqueous
phase'-? and redox reactions on surfaces.>™

From a theoretical point of view, spatiotemporal chaos
emerges from the equations that describe the evolution of the
concentrations, which are usually of the reaction-diffusion
type. Different mechanisms leading to such deterministic
chaos have been identified. Generically speaking, chaotic
behavior is observed as the consequence of successive qualita-
tive changes of the dynamics (bifurcations). In homogeneous
systems, the most common routes are period doubling of oscil-
latory processes,’ intermittency in which periodic behavior is
interrupted by bursts of noise,® and quasi-periodicity where
the coexistence of two non-rational frequencies results in
chaos.’ For inhomogeneous systems of large spatial extent, a
comparable succession of transitions has also been observed,'°
leading to a dynamics that is essentially unpredictable both in
space and time. However, the different paths to spatiotemporal
chaos have not been fully characterized yet.

On one hand, it has been observed in different models that
having temporal chaos in the homogeneous limit is generally
not sufficient to obtain spatially chaotic behaviors as well.
There must also be a mechanism that breaks down the spatial
homogeneity. Such mechanisms include point defects, i.e.,
locations in space where the system resides temporarily in
a steady state, as is observed in the Willamowski-Rdossler
model.”!! The breaking of spatial homogeneity can also appear
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through line defects that correspond to lines of period 1 created
by the collision of period 2 waves with shifted phases.'?

On the other hand, it is also possible to generate spatio-
temporal chaos when the homogeneous dynamics is itself
non-chaotic. In such cases, the transport properties (diffusion,
advection, etc.) play a central role. The Benjamin-Feir insta-
bility is a well known path to chaos in systems admitting a
single limit cycle in the homogeneous limit.!? A lack of effi-
cient transport leads to a desynchronization of the oscillating
behavior at different locations, generating phase instability
and defect-mediated turbulence. Such turbulence has been
observed, for example, in the two-variable Oregonator model,
within the oscillatory regime.!® A similar behavior has been
found in excitable systems, including the FitzZHugh-Nagumo
model.'* Spatiotemporal chaos can also be found when coupl-
ing together different non-chaotic spatiotemporal instabilities,
like a Hopf and a Turing bifurcation.'> Another known path is
spatiotemporal intermittency, where one observes an alterna-
tion between different attractors of the dynamical system, like
in the Gray-Scott model.'*'8

In this work, we show that spatiotemporal chaos can also
emerge in the presence of mixed-mode oscillations of the burst-
ing type, the homogeneous dynamics of which is non-chaotic.
Mixed-mode oscillations consist in complex periodic behav-
iors in which fast oscillations are superimposed on slower ones,
which results in multi-peaked variations of the concentrations.
They are very common in chemistry: they have been observed
in electrochemical reactions,'”?® in the peroxidase-oxidase
reaction,?!?> and in the Belousov-Zhabotinsky reaction to
name but a few. Qualitatively speaking, they are known to arise
because of the coexistence of fast and slow processes, which
leads to dynamics with distinctly different time scales. Our
main observation is that such separation of time scales can
generate chaos in space through a mechanism that is different
from the classical phase instability mentioned earlier. It is
instead due to the inability of diffusion to “follow the pace”
of fast oscillations. As a consequence, the system behaves as
if there were two coexisting oscillators (a slow one and a fast

©2015 AIP Publishing LLC
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one), which leads to an effective intermittency where these
behaviors alternate in space and time.

This idea is exemplified on an extension of a simple
reaction-diffusion system known as the Oregonator model. We
present this extended Oregonator in Section II, where we also
detail the dynamical behavior of the system in the homoge-
neous limit. The spatiotemporal dynamics is presented and
analyzed in Section III, in which a special emphasis is put on
the properties of the observed spatiotemporal chaos and on the
mechanism by which it emerges. In Section IV, we discuss the
origin of the chaotic dynamics and the similarities between the
mechanism by which it emerges and those put forth earlier in
the literature, with a special emphasis on the generic bi-rythmic
model studied by Casagrande and Mikhailov.>* Section V is
devoted to the conclusions and to possible extensions of this
work.

Il. AN EXTENDED OREGONATOR MODEL

Our objective here is to devise a simple chemical model
which is able to present mixed mode oscillations with two
distinctly different time scales. Fast/slow oscillators can be
constructed in a generic fashion by adding a slow variable to
activator-inhibitor types of oscillating models.? In this work,
we will consider the following extension of the two-variable
Oregonator:

1 —
i=-|x(-x0)-fy "2y p 2y, (1)

& xX+q
y=x-y-kiy+kaz+D,V'y, )
t=kiy—kiz+DV’z, 3

where we do not note explicitly the time and space depen-
dences, for clarity of presentation. The original model,
comprising only the variables x and y, describes the spatiotem-
poral evolution of concentrations for the oscillating Belousov-
Zhabotinsky chemical reaction.’® Here, x represents the
dimensionless concentration of an activator species X (stand-
ing for HBrO;) and y that of an inhibitor Y (the oxidized
version of the catalyst, ferriin). In the extension we proposed,
Y is able to transform reversibly and slowly into an inactive
form Z, whose dimensionless concentration is given by z. As
mentioned above and showed in more detail below, this change
will give rise to fast/slow oscillations. Similar features can be
obtained by adding the same type of process to other activator-
inhibitor schemes, like the Brusselator model. We decided to
work here with the Oregonator because it opens the way to
future experimental verification. We will discuss this point
further in Sec. V.

The system of equations (1)-(3) admits up to three homo-
geneous steady states. One of them is trivial (x = y = z = 0)
and linear stability analysis (see the Appendix for details)
shows that it is always a saddle. There is in addition a pair of
states characterized by x. = y. = (k_1/k;) z+, with

= 2(-g-Nzs I+ +2g-27+6a @

In the limit of small ¢, the state (x_, y_,z_) is always a saddle,
while the (x,, y4,z+) solution can undergo two Hopf bifur-
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FIG. 1. Time series of concentrations (blue for x, green for y, and red for z),
for a simulation of the homogeneous limit of models (1)-(3), using £ = 0.04,
q=0.01, f=0.6,k;=0.3,and k_; =0.01.

cations. For example, using k; as the control parameter, the
stability analysis predicts two imaginary eigenvalues with a
positive real part and one real negative eigenvalue for 0 < k;
< kil) and k| > kﬁz), where kﬁl) and kgz) are intricate functions
of the other parameters, the exact form of which is not relevant
for our purpose. Consequently, temporal oscillations are to be
expected in these regions of parameter space, as confirmed by
numerical integration of the homogeneous system. The inte-
grations additionally reveal that for k; < kil) , the oscillations
can take the form of mixed-mode oscillations.

A typical example of such dynamical behavior is pictured
in Fig. 1. After a relatively long induction period, the system
displays series of fast oscillations (here, 8), followed by periods
of latency during which x and y remain so to say constant,
while z changes slowly. This type of mixed-mode oscillation
is known as bursting dynamics. There exists a whole region
in parameter space where such fast/slow mixed-mode oscil-
lations can be observed. The number of fast oscillations per
slow period changes in a stepwise fashion when varying the
parameters, forming a “devil’s staircase” (see Fig. 2). Note that
there are no windows of temporal chaos between the different
steps.

This behavior differs remarkably from the dynamics dis-
played by the original two-variable Oregonator model, which
for the same choice of parameters would generate simple
(fast) oscillations. From a phase space perspective, the oscil-
lations observed in the two-variable Oregonator correspond to
a single-looped limit cycle emerging from a Hopf bifurcation.
Our addition of a third dynamical variable results in a much
more complex attractor in the three-dimensional phase space
(see Fig. 3). It consists of a combination of a slow and a fast
dynamics, with the latter having a number of windings that
depends on the choice of parameters.

The trajectories in phase space and the corresponding
oscillations can be understood qualitatively as follows. We note
that the variable z oscillates slowly between two values all
along the dynamics. It is thus relevant to consider an alterna-
tive dynamical system consisting of the homogeneous limit of
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FIG. 2. Example of the “staircase” evolution of the number of fast oscil-
lations per period in the asymptotic regime, obtained from the numerical
integration of (1)-(3) with different values of k (the other parameters being
identical to those of Figure 1).

equations (1)-(3), but in which z = z* would be an externally
controlled parameter,

1 X —
i==lx(-x)-fy—2f, ©)

£ X+gq
J=x—y—kiy+k, 2 ©)

This reduced system presents a supercritical Hopf bifurca-
tion corresponding to a given value of k_; z*. An example of
the corresponding bifurcation diagram is given in Fig. 4. We
consider now a situation for which z* would be controlled so
to start from a rather low value and would then be increased
and subsequently decreased, in order to mimic the large oscil-
lations observed in the original system. At low values of k_; z*,
the system is in a stable state, and as z* increases, it crosses a
saddle-node bifurcation bringing the system to a low value of x
(and y). On the way back to low values of z*, the system slowly
crosses a Hopf bifurcation and reaches a limit cycle in the x, y
plane corresponding to relatively large oscillations of these
variables (see, again, Figure 4). The oscillations persist until
k_1 z* reaches the lower bound of the domain of oscillations,
at which point the trajectories become attracted to the original
stable state and x and y do not oscillate anymore.
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FIG. 4. Bifurcation diagram showing the extrema for the x variable, as ob-
tained with numerical integration of the reduced system discussed in the text.
The black line corresponds to the steady state obtained by increasing k_j z*,
starting from low values, while the blue curves represent the asymptotic
behavior on the way back from large to low values of this parameter. The
values of the parameters are as in Figs. 1 and 2. The vertical red lines stand
for the maximal and minimal values that k_; z* takes during the oscillations,
and the arrows indicate the increase and subsequent decrease of that variable.

The complex oscillations that we observe in the original
model can be seen as a succession of such stages, as z slowly
increases and decreases as a function of time. The exact time
at which oscillations appear and the number of periods that is
generated in the original model (1)-(3) depend on the ratio of
time scales between the kinetics of z and that of the reduced
system. In any case, and as long as the analogy with the simple
2-variable model holds, the behavior of the original 3-variable
system can be understood as an effective “bistability” between
a limit cycle and a stable point. This analogy, albeit qualitative
by essence, will reveal important in understanding the origin
of the spatiotemporal chaos that we describe in Sec. III.

lll. SPATIOTEMPORAL DYNAMICS

We investigated the spatiotemporal dynamics of equations
(1)-(3) numerically, with a finite-difference integration scheme
for which the space and time steps were kept at d/ = 0.1 and
dt = 1.0 x 107*. We first present the results obtained in a one
dimensional system with no-flux boundary conditions and for

FIG. 3. Attractor in the x-y-z phase
space, reconstructed from the time se-
ries in Fig. 1.
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identical mobilities of the three variables. Similar results were
observed for other choices of the boundaries and diffusion
coefficients (as long as they do not lead to a Turing instability).
Ascanbe seen in Fig. 5, the concentrations behave in a way that
is very similar to the homogeneous limit for short times. We
indeed recover the induction period, followed by the bursting
dynamics. The number of bursts and the frequency of the
oscillations are the same as those of the well-mixed case up
to this stage. For long enough times, though, there is a marked
transition to a much more turbulent regime, in which regions
of fast and slow oscillations coexist in space.

i'
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FIG. 5. Space-time plots for x (a) and
z (b), with white (black) representing
high (low) concentration. (c) plots the
distance to the steady state, where black
corresponds to a distance of 0. The size
of the space-time plots is 100 space
units (horizontal) by 1000 time units
(vertical, increasing downwards), while
the insets are 100 100. Parameters are
as in the previous figures, with Dy
=D, =D_;=0.1. Random initial con-
dition is used, with x and y ranging
from 0 to 0.1 and z from 5 to 5.1.

The transition to the resulting spatiotemporal chaos occurs
because, by the end of the induction periods, fast oscillations
emerge from the quasi-stationary state preferentially at some
locations in space and then propagate in a wave-like form. This
propagation is characterized by an almost constant velocity,
resulting in the v-shaped lines appearing in the space-time
plots such as in Fig. 5(a). The collisions between waves seem
to play an important role in the emergence of the turbulent
behavior, as illustrated in Fig. 6 in which spatiotemporal maps
are shown for different values of k;. We observe that spatio-
temporal chaos does not develop when only fast oscillations

FIG. 6. Spatiotemporal maps showing
the evolution of the variable x. The sys-
tem is 100 space units wide (horizontal)
and 1000 time units long (vertical) for
(a) and (b) and 2000 time units long for
(c) and (d). The parameters are the same
as in Fig. 5, except for k1 which is equal
to 0.24 (a), 0.27 (b), 0.45 (c), and 0.8
(d), respectively.
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FIG. 7. Temporal evolution of the x (blue) and y (green) variables for k| =0.45 (the other parameters remaining the same as before). The insets (b) and (c)
show the rapid transient oscillations found during the early stage and the final stage of each cycle, respectively.

are present, i.e., for low values of k; (see Fig. 6(a)). Chaos
appears as this parameter is increased and the system enters
the regime of mixed-mode oscillations (Fig. 6(b)). It is also
found for values of k; that correspond to single-mode slow
oscillations (Fig. 6(c)), as long as these slow oscillations are
accompanied by fast “internal” relaxations such as those de-
picted in Fig. 7. Spatiotemporal chaos disappears again (see
Fig. 6(d)) for larger values of k|, for which the system presents
simple slow oscillations without a fast relaxation stage. The
coexistence of slow and fast dynamics thus seems to be a
prerequisite for observing the kind of turbulence we report
here.

We also investigated the development of spatiotemporal
chaos in two dimensions. After a couple of bursting bulk
oscillations, the system forms spiral waves at the tip of which
there is a peak of concentration of Z (as seen in the central
panels of Fig. 8). These peaks form over a period of time, which
indicates that the tips do not move and therefore are not causing
chaos by Doppler instability.?” These spirals loose stability,
and the alternation between a wave regime and a regime of
quasi-stationary concentrations of X and Y begins. As can be
seen in Fig. 8, a one-dimensional cut of the system presents
features that are close to those of the one-dimensional simula-
tions, with the propagation of waves of the rapidly oscillating
transients.

IV. DISCUSSION

To what kind of spatiotemporal chaos do the above obser-
vations belong? In chaos due to phase instability, the lines of
equal phase show no break.?® For the system presented here, we
observe islands of the phase of quasi-stationary concentrations
of X and Y inside an oscillatory background, or the other way

around. This indicates a breakup of the phase, and therefore,
what we observe is not such type of chaos. Defect-mediated
turbulence is characterized by breaks in the phase, in which
defects appear that correspond to a zero amplitude of the limit
cycle. The local amplitude can be computed straightforwardly
from simulations, since the coordinates of the unstable state in-
side the limit cycle are known analytically. We observe that the
amplitude (in this case, the distance to the steady state) never
reaches zero in the chaotic regime, as illustrated in Fig. 5(c).
As a consequence, it cannot be said to be of the defect type
either.

The fully developed spatiotemporal chaos we observe
has instead characteristics that would correspond to an effec-
tive intermittency, by analogy with the behavior observed
in several different reaction-diffusion systems.'®!8:242% In the
systems,'®!82% the dynamics in the homogeneous limit shows
three steady states, one that is stable, a saddle, and an unstable
focus. This property reflects itself in the spatially extended case
as chaotic transitions between a laminar phase, during which
the system resides close to the stable steady state, and a turbu-
lent phase, during which the system is in an oscillatory state.
In the same spirit, Casagrande and Mikhailov?* studied the
dynamics generated by a Ginzburg-Landau equation coupled
with a slow variable. They deduced that the homogeneous
system is bi-rythmic, i.e., that it admits two different oscillatory
uniform states (one being slow and the second one being
fast). They also observed through numerical simulations that
bursts of the rapidly oscillating state in the slowly oscillating
one can lead to a form of intermittent spatiotemporal chaos
sharing strong similitudes with our own observations (such
as the wave-like propagation of the rapid oscillations). They
attributed the origin of this behavior to a desynchronization of
the two oscillators involved.
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The system we study only admits a single attractor in the
homogeneous limit and a straightforward comparison with the
above studies is not possible. However, its dynamics can qual-
itatively be seen as an alternation between a limit cycle and a
stable state for the x and y variables, with the alternation being
made possible because z itself oscillates slowly between two
extremal values, as discussed in Section II. In this sense, we
could say that the spatiotemporal chaos that we observe finds
its origins in an “effective bi-rythmicity.” One oscillatory state
would correspond to slow and ample variations of z during
which x and y would remain almost constant, which would be
similar to the laminar phases of the studies mentioned above.
The other oscillation would correspond to rapid oscillations of
all the variables, with a large amplitude for X and Y and a small
one for Z. The complex dynamics that we are facing could
thus be seen as effective intermittency involving two “pseudo-
attractors,” the coexistence of which resides in the separation
of time scales that is characteristic of mixed mode oscillations.
This intermittent-like behavior is further confirmed by the fact
that the probability P(T') for the system to reside for a time 7 in
the fast stage of the oscillations follows like most intermittent
systems a power law distribution of the form P(T') o« T77, with

J. Chem. Phys. 143, 064105 (2015)

FIG. 8. Snapshots of patterns in x (left column) and
z (center column). Each of these pictures corresponds
to a size of 50x50. The different snapshots were taken
at times 60, 70, 80, 100, and 150, respectively. The
rightmost column is a 1-dimensional space-time map
corresponding to the red line in the first snapshot (total
time = 150). The parameter values are identical to those
of Fig. 5, except for Dx =D, =D, =0.05. Initial con-
ditions are as in Fig. 5.

v =1.0+0.3 (see Fig. 9). We insist however on the fact that
the system we study is only qualitatively amenable to the
above mentioned works, since it involves a single limit cycle
and since the chaotic behavior is observed only far from the
Hopf bifurcation point in the region of bursting oscillations.
When £ is close to the Hopf line, only slow and regular bulk
oscillations comparable to those shown in Fig. 6(d) are found.
When varying other parameters, complex oscillations can be
found even close to the Hopf bifurcation, but chaos was never
observed.

The mechanism leading to such fully developed spatio-
temporal chaos in our case seems to stem from a combination
of sensitivity to initial conditions and lack of synchroniza-
tion. We see indeed in Figs. 5 and 8 that the number of fast
oscillations between slow oscillations actually varies from
one point to another. These differences can be qualitatively
explained by the intricate shape of the underlying local at-
tractor and by the complex trajectories leading to it. Consider
again the case of a homogeneous system, whose phase space
is three dimensional. For our choice of parameters, any initial
condition will, for long enough times, lead to trajectories in
that space as pictured in Fig. 3. Our numerical investigations
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FIG. 9. Log-log plot of the probability P(T") for the system to reside for a
time 7 in the fast stage of the oscillations. The straight line represents the best
linear fit, whose slope is equal to —(1.0+0.3). The statistics were obtained
from numerical simulations of a one-dimensional system with parameter
values identical to those of Fig. 5, except for k1 =0.26. The size of the system
was 100 space units and the statistics were performed over 1000 time units in
the asymptotic regime.

however revealed that the properties of the transients towards
such attractor are extremely sensitive to the choice of initial
conditions. Two nearby points lead to transients having a
different number of windings in phase space. The number of
fast oscillations included in the transient dynamics changes
consequently. Because of this, regions of almost constant x and
y concentrations will coexist with regions of rapid oscillations
in the case of spatially extended systems.

The initial conditions used in numerical integrations are
such that the different points in space start from different
locations in phase space, which explains why the fast oscil-
lations start at different times and present a different number
of windings. Transport by diffusion plays a central role in this
regard. If the points in space were uncoupled, the different loca-
tions would give rise to unsynchronized dynamics evolving
in parallel. Transport by diffusion should in principle smooth
out these differences, but in the case hereby considered, it
cannot ensure homogenization because, again, of the separa-
tion of time scales. For our choice of parameters, transport
by diffusion is so much slower than the fast oscillations that
it will “feel” only the average concentrations of the different
species during these rapid transients. As these averages are
extremely close to the almost stationary values of the slow
part of the dynamics, the effective gradients of concentration
are weak and the diffusion flux is very low. Diffusion is in
some way blind to the different stages of the complex oscilla-
tions and hence unable to ensure synchronization. Local initial
conditions and diffusion thus make for effective “fluctuations”
that are not washed out, which results in unsynchronized local
behaviors and, ultimately, in spatiotemporal chaos in the form
of an effective intermittency.

V. CONCLUSIONS

To summarize, we have shown a new way for generat-
ing spatiotemporal chaos in systems whose homogeneous dy-

J. Chem. Phys. 143, 064105 (2015)

namics is non-chaotic, but consists instead in fast/slow mixed-
mode oscillations characterized by a unique limit cycle. We
exemplified this path to chaos on a simple extension of the
Oregonator model, but we expect this mechanism to be generic,
as we have tested a similar extension in other simple oscil-
lating models (such as the Brusselator) and obtained again
spatiotemporal chaos with similar characteristics. The origin
of the spatiotemporal chaotic behavior resides in a desyn-
chronization between regions that are in the rapidly oscillat-
ing phase of the mixed-mode oscillation and regions that are
in its slow part. The resulting fully developed chaos conse-
quently consists in a form of intermittency where the sys-
tem locally alternates between the fast and slow phases in an
irregular fashion. This behavior takes place far from the Hopf
bifurcation, contrary to other known forms of spatiotemporal
chaos. 13:14.18,24

It would be highly desirable to rationalize the genericity of
this path to chaos in terms of the properties of the underlying
phase space dynamics. The role played by the separation of
time scales can indeed be formalized, in principle, by decom-
posing the dynamics more rigorously into a reduced and a layer
problem, so that a critical manifold be defined. For the example
we consider here, this manifold depends in a rather complex
way on the coordinates (x, y,z) and this approach does not
really help to rationalize our observations. It would be relevant
to perform such a detailed, analytical study on simpler models,
like an extended Brusselator.

Our choice of model was motivated by the potentiality
of an experimental verification. The experimental study of
spatiotemporal dynamics with mixed-mode oscillation is quite
recent. The Belousov-Zhabotinsky reaction shows the forma-
tion of period 2 and period 3 spiral waves, together with line
defects.'%3° The oscillations are not of the bursting type, so we
do not expect the type of spatiotemporal chaos we identified
here to show up in such experiments. However, it could be
obtained in a version of the Belousov-Zhabotinsky reaction,
in which a metal catalyst in its oxidized form would bind
reversibly to a gel matrix, as has been done for oscillations in
viscosity coupled to chemical oscillations.?!*
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APPENDIX: LINEAR STABILITY ANALYSIS

In this section, we provide details on the linear stability
analysis of the homogeneous steady states corresponding to the
set of equations (1)-(3). The Jacobian matrix for this system
reads

- 2fXq _
1=2x-507 flg-7
g = & e(g+x) (A1)
1 “1-k k|
0 ky —k_y

in which x stands for the steady state value of that variable.
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The eigenvalues of the linear stability analysis are found
by solving the following cubic equation:

W -A*+Bw-C, (A2)

where A is the trace of 7, B the sum of its principal minors,
and C its determinant. One can thus have either three real
eigenvalues or one real eigenvalue and two complex conju-
gates.

For state (0,0,0), the determinant C = k_; (f + 1)/e is al-
ways positive and so is thus the product of the eigenvalues. This
state is consequently always unstable. The other coefficients
read

A= l - (k] + k_1 + 1), (A3)
E

fH+1+ki+ky
- .

B=k_— (A4)

By Descartes’ rule of signs, for polynomial (A2) to have up to
3 real positive roots, one needs to have at the same time A > 0
and B > 0. The first condition implies that (k; + k.1 + 1)/e
> (k; + k41 + 1)* and one reaches the conclusion that under
this condition, 8 < 0 so that at least one of the eigenvalues
is negative. Since moreover the two conditions for a Hopf
bifurcation A B — C = 0 and B > 0 cannot be satisfied simul-
taneously, one concludes that this steady state is characterized
by one real positive and 2 real negative eigenvalues and is thus
a saddle.

The case of the states (x_, y_,z_) and (x4, y4,z,) is much
less straightforward as the signs of the different coefficients
depend on the nature of the steady state as well as on the values
of the different parameters involved. One can show however
numerically that for e < 1, the state (x_, y_, z—) admits two real
negative and one real positive eigenvalues. The other steady
state always has one real negative eigenvalue but the two other
ones can be imaginary for an appropriate choice of parameters.
As mentioned in the text, keeping all the other parameters
constant, the real part of these eigenvalues crosses zero for
two distinct values of kj, k", and k'? with k" < k%, which
thus correspond to Hopf bifurcations. As an example, for the
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set of parameters used in the manuscript, one has k(ll) ~ 1.969

and kgz) ~ 3.811. The steady state (x,, y,z+) corresponds to
a stable focus-node for values of k| comprised between these
two limits and is a saddle-focus otherwise.
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