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This paper studies the spatiotemporal dynamics of a reaction-diffusion-advection system

corresponding to an extension of the Oregonator model, which includes two inhibitors instead of

one. We show that when the reaction-diffusion, two-dimensional problem displays stationary pat-

terns the addition of a plug flow can induce the emergence of new types of stationary structures.

These patterns take the form of spots or arcs, the size and the spacing of which can be controlled

by the flow. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4894826]

Turing patterns are known to occur in two-dimensional

domains either as spots, as stripes or a mixture of the

two. Other types of stationary patterns can be obtained

with flow-distributed oscillations, in which an advective

flow translates an oscillation in time into spatial dynam-

ics. These flow-distributed oscillations are known to gen-

erate, in two dimensions, stripes that are parallel to the

feeding boundary. Here, we present a system in which

different stationary patterns, such as spots or arcs, can be

obtained when advection is included. We also assess the

extent to which the spatial frequency of such structures

can be tuned by the advective flow.

I. INTRODUCTION

The last few decades have witnessed an ever-growing

interest for the use of non-equilibrium reactive processes in

the synthesis of materials with well-defined, controllable

spatial structures.1–3 The rationale for this approach is that

some systems involving the reaction and the diffusion of

molecules can sustain stationary patterns, when kept far

away from equilibrium. In principle, the morphological

properties of such structures can be controlled via external

parameters or a clever design of the geometry of the reactor.

In practice, however, such control strategies can sometimes

reveal cumbersome. It is relatively easy to vary some of the

external parameters, like the temperature or chemical feeds,

to induce changes in the observed structures. An actual con-

trol of the spatial properties of the patterns on the other hand

typically requires spatiotemporal variations of the control pa-

rameters, the implementation of which is often complex. In

such cases, alternative control strategies need to be used

such as the illumination of photosensitive systems.

Another route to the synthesis and control of spatial

structures has been proposed recently.4–6 Advective flows

were shown to produce stationary patterns in a theoretical

model for a one-dimensional reactive system, which in the

absence of advection would give birth to propagating

waves.6 Remarkably, the wavelength and the shape of these

steady patterns can be adjusted by the intensity of the flow.

This property makes advection a promising candidate for the

control of spatial structures “on demand.” Its applicability

should however be tested in the more realistic case of two-

dimensional systems, which are known to often present

qualitatively different behaviors as compared to their one-

dimensional counterpart. In particular, there is no report as

of today about the possibility to create and control two-

dimensional stationary structures, such as spots, by adding

advection to a reaction-diffusion system. The purpose of this

paper is to show, thanks to numerical simulations, that such

two-dimensional, advection-controlled pattern formation is

feasible.

In Section II, we discuss the general conditions under

which steady structures are formed for systems described by

reaction-diffusion (RD), and by reaction-diffusion-advection

(RDA) equations. A special emphasis is put on how the addi-

tion of a flow modifies the original RD picture. Section III is

devoted to a presentation of the model we will use, which is

an extension of the two-variable “Oregonator” that was orig-

inally developed for the Belousov-Zhabotinsky reaction.7

The results of numerical investigations presented in Sections

IV and V form the main body of this work. We analyze the

different dynamical regimes of the model and we assess the

efficiency of advection-based structural control. We finally

discuss in Section VI the relevance of these results in the

context of the theory of pattern formation.

II. STATIONARY SPATIAL STRUCTURES IN
REACTION-DIFFUSION-ADVECTION SYSTEMS

In reaction-diffusion systems stationary spatially peri-

odic patterns are obtained with activator-inhibitor dynamics,

when the inhibitor diffuses faster than the activator as

described by Turing.8 These patterns in two-dimensional

domains typically exist as spots or stripes, or as a mixture of

the two.9,10

Advective flows are also known to induce both station-

ary and moving spatially periodic patterns, when the local

dynamics is itself periodic in time. This phenomenon is

known as flow distributed oscillations (FDOs).4,5,11 In two-

dimensional domains, however, these FDOs only appear as
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stripes that are parallel to the boundary where the flow comes

from or, equivalently, to a moving boundary.12–15 One could

think that having a Turing instability in a reaction-diffusion

system helps to obtain stationary spots in the corresponding

RDA case. However, it was shown that this instability is an

obstacle to the formation of stationary structures in RDA

systems: In such cases, one usually observes Turing patterns

drifting with the flow. Temporal oscillations are needed on

top of the Turing instability to obtain stationary patterns.16

The structures obtained in such a way thus have the same

properties as the FDOs, and consequently, a pattern of sta-

tionary spots or arcs cannot be obtained.

More recently, it was found that a RDA system with

wave instability produces stationary patterns in one dimen-

sion, at low velocities of the flow.6,17 In order to test if such

a mechanism can sustain a pattern of stationary spots, we

study here the same three-variable system as in Ref. 6, but in

two dimensions.

III. THE MODEL

The model we use consists in the following set of partial

differential equations:

@x

@t
þ v � rx ¼ 1

e
x 1� xð Þ � fy

x� qy

xþ qy

� �
� fz

x� qz

xþ qz

� �" #

þ Dxr2x; (1)

@y

@t
þ v � ry ¼ a x� yð Þ þ Dyr2y; (2)

@z

@t
þ v � rz ¼ j x� 1� að Þ zþ Dzr2z: (3)

This system is a modification of the two-variable Oregonator

model for the Belousov-Zhabotinsky reaction. It involves the

two-dimensional concentration field of one activator (x) and

of two inhibitors (y and z). The vector velocity field is set to

be constant, with all the field arrows being parallel to one of

the axes, in extenso v ¼ ðv1; v2Þ ¼ ð0;�vÞ. This situation

would correspond to a reactor operating in the plug flow

mode, with the flow going downwards. The diffusion coeffi-

cients are chosen so that one of the inhibitors and the activa-

tor are diffusing slowly (Dx ¼ Dz ¼ 0:1), while the other

inhibitor diffuses fast (Dy ¼ 2). The parameters qy and qz are

(as for the Oregonator model) ratios of kinetic constants. In

the present study, we will always consider cases for which

qy ¼ qz ¼ q. e and j are time separation parameters, while fy
and fz control the extent of the inhibitory effects of y and z,

respectively. The parameter a is always greater than 0 and

smaller than 1. It tunes which reaction pathway is preferred:

For a¼ 1, the inhibitor z would tend to accumulate. A more

detailed description of this model can be found elsewhere.6

In the homogeneous limit, the model admits two physi-

cally relevant steady states. One of them is trivial, as it corre-

sponds to an empty system (xs ¼ ys ¼ zs ¼ 0). A linear

stability analysis of this state reveals that it is unstable (it is a

saddle point) for all values of the parameters. The other

steady state is given by

x0 ¼ y0 ¼
1� a

j

� �
z0 ¼

1� q� A

2

þ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q� Að Þ2 þ 4 q 1þ Að Þ

q
(4)

with A ¼ fy þ fz j=ð1� aÞ. This state can be stable or unsta-

ble with respect to homogeneous perturbations, depending

on the conditions. Consider, for example, the ensemble of

steady states corresponding to a¼ 3/4, j ¼ 0:16, e ¼ 0:04,

and q¼ 0.01 (we will keep the same values in our investiga-

tion of pattern formation). The corresponding state diagram,

in the fy–fz parametric plane, is depicted in Figure 1.

For very large and very low values of both these control

parameters, the state is a stable node or focus (grey zones in

the diagram). For intermediate values, three types of instabil-

ities can be observed, in zones marked as I, II, and III,

respectively. Note that the boundaries between the zones of

stability and both zones I and III correspond to a Hopf bifur-

cation. Starting at large values of fz, and decreasing this pa-

rameter at constant fy, the stable node thus first becomes a

stable focus and under a given critical point f H
z , it turns to a

repellor because of the Hopf bifurcation. Numerical simula-

tions confirm this analysis and show the existence of a limit

cycle. However, they also reveal that the system undergoes a

series of complex transitions, shortly after the Hopf bifurca-

tion has been crossed. Mixed mode oscillations can be found

(zone II in Figure 1), the amplitude and period of which

change in a stepwise fashion as fz is lowered. The properties

of these complex, nonlinear behaviors cannot be assessed

any more with linear stability analysis. For low enough val-

ues of fz, one observes simple period-1 oscillations again

(zone III in the diagram). All the behaviors of interest that

we report in the remainder of this work were obtained for

such values of the parameters. It should finally be noted that

for low values of fy, the oscillations eventually disappear

through a Hopf bifurcation, and one has a single stable state

again (grey zone on the bottom left in Figure 1).

FIG. 1. State diagram of the homogeneous system for a¼ 3/4, j ¼ 0:16,

e ¼ 0:04, and q¼ 0.01. They grey regions correspond to the zones of stabil-

ity of the state of reference. In zones I and III, one has simple oscillations

resulting from a Hopf bifurcation, while in zone II mixed-mode oscillations

are observed (see text for more details). The vertical line represents the case

fy ¼ 0:85.
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Before turning to the spatiotemporal dynamics of the

full model, we will first discuss the reaction-diffusion

(advection free) problem.

IV. PATTERN FORMATION IN THE ABSENCE OF
ADVECTION

Previous numerical investigations showed that the above

model leads to complex spatiotemporal behaviors, in the

case of a reaction-diffusion, one-dimensional system.6 We

observe similar behaviors in the two-dimensional case. We

perform numerical integrations of the reaction-diffusion sys-

tem, using both finite differences and finite element methods,

with the set of parameters given above. The initial conditions

always correspond to the non-trivial steady state, to which

low amplitude random perturbations are added. We use as

boundary conditions Dirichlet on top (with x ¼ y ¼ z ¼ 0:1),

and no flux at the bottom and on the sides of the two-

dimensional systems, which corresponds to what is usually

used for numerical studies for plug flow reactors.5,6,11,17 The

different dynamical behaviors are summarized in Figure

2(a). To illustrate the complexity of the model, we consider

the case fy ¼ 0:85 and vary fz, starting from large values at

which the steady state is spatially stable (as can be easily

shown with spatially dependent linear stability analysis).

As predicted by the linear stability analysis, the system

undergoes a homogeneous Hopf bifurcation at fz � 2:223

and one observes an oscillatory dynamics. Because of our

choice of boundary conditions, the oscillations start from the

lower side of the system, and subsequently move up towards

the boundary where Dirichlet conditions are maintained.

After this transient, a spatially homogeneous periodic behav-

ior is observed. The mixed mode oscillations observed for

lower values of fz in the well-mixed case appear as standing

waves, whose period is twice that of the original uniform

oscillations. The same behavior was observed in one dimen-

sion as well.6 As fz is decreased, travelling spots and then

travelling waves are also seen (after the above mentioned

transient). For lower values of this parameter, the observed

dynamics changes qualitatively and seems to result from a

competition between travelling patterns and a stationary per-

iodic organization. The origin of the spatially periodic pat-

tern is clear: The system undergoes a Turing bifurcation at

fz � 1:847, and the wavelength observed in numerical inte-

grations is always close to the wavelength at which the

eigenvalue of the linear problem presents a maximum. The

complex dynamics that we observe thus bears similarities

with the classical Turing-Hopf interaction, including spatio-

temporal chaos.18

A detailed bifurcation analysis of the system is beyond

the scope of the present work, in which we focus on behav-

iors observed only at low enough values of fz. The well-

mixed system then admits simple period-1 oscillations of

large amplitude. When diffusion is included, we observe that

the homogeneous oscillations are lost. One has instead either

regular Turing patterns or spatiotemporal chaos (see Figures

2(b) and 3). The Turing structures usually consist in a mix-

ture of spots and stripes, with the latter tending to align par-

allel to the upper side of the system (Figure 3(a)). The

spatiotemporal chaotic behavior appears as breathing wave

segments (see Figure 3(b)). This behavior is also seen in the

presence of advection, and will be described in more detail

in Section V.

It has been often reported in the literature that the addi-

tion of a flow typically results in an advection of the

FIG. 2. (a) Phase diagram of patterns

in the one-dimensional case, in the fz-fy
plane. The red line highlights the

region in which we performed the two-

dimensional simulations. (b) Overview

of two-dimensional patterns in the fz-v
domain, for fy ¼ 0:85. The values of

the parameters and the boundary con-

ditions are as mentioned in the text.

FIG. 3. Patterns at v¼ 0 (a) stationary

pattern obtained with fz ¼ 0:4 at 100

time units after starting the simulation

and (b) spatiotemporal chaos with fz ¼
0:6 at 50 and 100 time units, respec-

tively. The values of the other parame-

ters are given in the text.
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corresponding reaction-diffusion patterns (see, for example,

Ref. 16). We also observed such a trend, for most values of

fz. However, for low values of this parameter, we observe

qualitatively new behaviors. We report and analyze them in

Sec. V.

V. ADVECTION-INDUCED PATTERNS

In the remainder of this work, we focus on the paramet-

ric region depicted in red in Figure 2(a) (and thus again for

fy ¼ 0:85), where we observe new types of spatiotemporal

structures. An overview of these results is depicted in Figure

2(b), where in the absence of advection, the system presents

either stationary patterns or spatiotemporal chaos.

As v is increased, we observe (as expected) that the

reaction-diffusion patterns simply tend to get advected. The

breathing wave segments travel downwards, and the Turing

structures tend to align along the direction of the flow, in

other words, perpendicular to the upper boundary where the

Dirichlet condition holds. Also, the value of fz marking the

transition between these two regimes is shifted towards

lower values. For more rapid flows, however, the situation

changes dramatically.

At sufficiently rapid flows and for low values of fz, we

see two regimes involving moving patterns. One of them cor-

responds to the coexistence of stationary and moving stripes

aligning with the flow (in the “aligned stripes” region) (see

Figure 4). Note that this behavior is strikingly different from

the one-dimensional situation, for which it was observed that

the system adopts a stationary structure for the same choice

of parameters.6

The other regime consists in what we call “dripping

patterns,” and is observed at large values of v only. An exam-

ple of such phenomenon is given in Figure 5. As before, the

dynamics starts with an oscillation located on the lower side

of the system, which subsequently travels upwards as a band.

The first oscillation creates in such a way a line that sticks to

the top. The following ones move up but, instead of aligning

with the flow like they do for small v, they break down into

several arc-shaped fragments of similar size. These arcs

FIG. 4. Aligning stripes, obtained for

fz ¼ 0:4 and v¼ 0.1. Pictures of the

variable x (20 space units� 20 space

units) are taken at 50 (left) and 100

(left) time units, respectively. The

color scale is presented on the right

side of the picture.

FIG. 5. Dripping patterns, obtained for fz ¼ 0:4 and v¼ 0.4. (a) Pictures of the variable x taken every 2 time units, starting at t¼ 80. (b) Space-time plot taken

at the level of the line depicted in the first picture.
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accumulate at a well defined distance from the first band.

From the tips of these arcs, which are stationary in space, a

drop may develop and separate from the originating struc-

ture. As it separates it moves downwards with the flow form-

ing a new stationary arc and displacing the structure that was

there before. These drops thus generate a cascade of displac-

ing patterns, as the structures that are displaced by a drop in

turn displace the structures that are below them. As v is

increased, the wavelength of the pattern in the direction of

the flow increases. Similarly, the wavelength of the pattern

perpendicular to the flow increases as well. The arcs become

bigger and more bent for larger v, which leads to a decrease

of the spatial frequency of that pattern.

For large values of fz, breathing wave segments are

again observed at moderate flows (see Figure 6). These pat-

terns have two distinct phases. The breathing behavior is

seen as the periodic rounding of the structures and seems

somewhat reminiscent of breathing waves observed as inter-

action of traveling waves and oscillations inside a feeding

chamber.19 The tips of the segments propagate rather than

curl up, as seen in regular reaction-diffusion waves. The

propagation of the tips is important as it leads to the break-

up of the structures.

More interestingly for our main purpose, new stationary
structures can also be found for non-zero velocities of the

flow. For large values of fz and v, stationary arcs are

observed. They correspond to the bent structures seen in the

dripping case (see Figure 7), except that the dripping phe-

nomenon is now only temporary. For long enough times, well

defined arrays of immobile arcs are thus formed. The perio-

dicity of the pattern can be tuned, to some extent, by changing

the velocity of the flow. We indeed observe that it influences

the periodicity of the pattern in the same way it does for the

dripping arcs. Namely, the wavelength of the pattern in the

vertical and the horizontal directions become larger when v
increases. The period of the pattern along the flow generally

increases faster than the one perpendicular to it.

For intermediate values of fz and v, stationary spots are

observed, as shown in Figure 8. It is worth noting that the

stationary pattern with the same conditions but with no flow

FIG. 6. Breathing wave segments, for fz ¼ 0:6 and v¼ 0.1. (a) Pictures of the variable x are taken every 1 time unit starting at t¼ 95. (b) Space-time plot taken

at the line in the first picture.

FIG. 7. Stationary arcs, obtained at

fz ¼ 0:6 and v¼ 0.5. The pictures rep-

resent again the variable x and are

taken t¼ 200 (left) and t¼ 500 (right).

The region marked by the red circle

shows some localized, temporary drip-

ping as described in the text.
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(v¼ 0) corresponds to a mixture of spots and stripes. These

spots appear, just like the arcs, because of the breaking down

of bands emanating from the lower side of the system. In this

case, though, the flow velocity is usually lower, and the frag-

ments created in such a way are smaller and rounder. For

long times, these spots arrange themselves according to a

regular hexagonal pattern, the wavelength of which seems to

be fixed by the choice of parameters, in the sense that it is

barely affected by changes in the flow intensity. Finally, the

“mixed pattern” region comprises systems in which aligned

stripes, stationary spots, and dripping patterns coexist.

VI. CONCLUSIONS AND OUTLOOK

We have shown that it is possible to form a pattern of

stationary spots or stationary arcs, in a particular case of

reaction-diffusion-advection. The shape and periodicity of

these patterns can be controlled, to some extent, by adjusting

the intensity of the flow. In contrast to one-dimensional sys-

tems, at very low flow speeds, two-dimensional systems do

not show a stationary pattern but a drifting one. The stripes

that are generated by the system align with the flow, and

defects in this pattern move accordingly. Stationary patterns

at low flows are therefore more restricted in two-dimensional

systems than in one dimension.

The question of the general conditions under which such

patterns could appear naturally arises. First, it would seem

that three variables are necessary for the sort of structures we

observe here. The case of two-variable systems with differ-

ential diffusion has been treated earlier16 and no stationary

spots could be observed in that case. Second, the ratio of dif-

fusivities plays an important role. With equal diffusivities,

the present model behaves in a way that is similar to what is

seen for two-variable models.17 If both inhibitors diffuse

fast, slow advection produces drifting patterns, while large

advection can produce flow-distributed oscillation,17 but

again no stationary spots or arcs are observed. The results we

report here are thus only observed when one of the inhibi-

tors, y, diffuses faster than the two other species. Finally, the

intensity of the advective flow is an important parameter as

well. For low values of v, the spatiotemporal dynamics is

more or less that of the reaction-diffusion system, while for

large vs the concentrations are simply advected away by the

flow. The transversal symmetry breaking leading to spots is

observed for intermediate flow velocities, where transport by

diffusion and advection become comparable.

One could thus expect spots or arcs to form in other sim-

ilar three-variable models respecting the above constraints

on the diffusivities and flow velocity. However, these

conclusions are based at this stage solely on a comparison of

different numerical investigations of specific systems. The

model we have used is tunable, in the sense that one of the

parameters (a) permits to choose the pathway through the

fast or slowly diffusing inhibitors. We have chosen a value

of this parameter such that the area of stationary patterns in

the parametric domain is large.6 The parameter range where

stationary structures appear may be reduced or absent alto-

gether in other cases, because of the specificities of the

model at hand. It would be highly desirable to study the

appearance of spots and arcs in a more generic fashion, pref-

erentially on a simpler model so as to be able to extract ana-

lytical conditions for their emergence. A connection could

be established in this way between the patterns we observe

and dividing blobs and splitting spots or jumping waves

observed in some reaction-diffusion systems.20,21

The results presented here also lead to the question of

the role played by advection in the emergence of stationary

patterns in biological systems. The Turing instability is

rather general and it has proven to be of importance in biol-

ogy where, alongside a growing domain, it can predict the

patterning of fish skin.22 Also, stationary patterns arising

from an oscillatory behavior in a growing system forms a

general mechanism that has a biological counterpart, like,

for instance, the expression of genes during somitogenesis.14

The mechanism we presented here involves specific kinetics

(simple and mixed mode oscillations, together with a Turing

bifurcation) and takes place in a restricted interval of flow

velocities and parameters. We therefore think that it is not a

very likely candidate for pattern formation in biology.

However, the ability to produce systems with varying

chemical concentrations (spatial control) is of great interest

in chemistry, developmental biology, and for the design of

emergent structures and phenomena, to cite but a few.23

Microfluidic devices have become a common tool for these

fields. Since the flow in such systems is laminar, the flow-

induced path to producing stationary patterns could be

observed and reveal useful, in particular for systems involv-

ing activator-inhibitor dynamics.
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FIG. 8. Stationary spots, obtained at

fz ¼ 0:5 and v¼ 0.2. The variable x is

depicted at t¼ 200 (left) and t¼ 500

(center). A space-time plot is also

depicted (right), and was taken at the

line in first picture.
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