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In this paper, we show that the Gray-Scott model is able to produce defect-mediated turbulence.

This regime emerges from the limit cycle, close or far from the Hopf bifurcation, but always right

before the Andronov homoclinic bifurcation of the homogeneous system. After this bifurcation, as

the control parameter is further changed, the system starts visiting more and more frequently the

stable node of the model. Consequently, the defect-mediated turbulence gradually turns into spatio-

temporal intermittency. VC 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4896848]

The Gray-Scott model is known to produce spatiotempo-

ral chaos due to the interplay between a stable state and

a limit cycle. This chaos takes the form of spatiotemporal

intermittency. Here, we show that the limit cycle alone

can produce spatiotemporal chaos of the defect-mediated

type, when having equal diffusivities for both species.

The transition from defect-mediated turbulence to spatio-

temporal intermittency is gradual.

Spatiotemporal chaos is often seen in reaction-diffusion

systems. In many situations, this chaotic state is characterized

by defects, in extenso by breaks in the phase of the system

where the amplitude becomes zero.1 Such defect-mediated tur-

bulence has been observed in the Belousov-Zhabotinsky reac-

tion2 as well as in the Oregonator model for that reaction,3 and

in a surface reaction4 as well as in a model for surface reac-

tions.5 It has also been observed in other theoretical systems

such as the FitzHugh-Nagumo6 and the Brusselator7 models,

and in the complex Ginzburg-Landau equation (CGLE).1,8

These models3,5–8 are all non-chaotic in the homogeneous

limit, but this feature is not mandatory: The Willamosky-

R€ossler system does present chaos for well-mixed systems,

and defect turbulence is seen in this case as well.9

The Gray-Scott model10 represents the set of reaction

Aþ 2B! 3B, B!C, and is one of the most studied systems

in pattern formation. Spatiotemporal chaos has been

observed for this system.11 For equal diffusion coefficients

of A and B, it was shown to be due to the interplay between

a limit cycle and a stable steady state, a mechanism that is

generic for spatiotemporal intermittency.12 Other forms of

spatiotemporal chaos are known for this system when differ-

ential diffusion is considered.13

Here, we show that the Gray-Scott model can show

defect-mediated turbulence when the diffusion coefficients

of both species are equal, and we analyze the properties of

this regime as well as its interplay with the spatiotemporal

intermittency. The rest of the paper is organized as follows:

First, we present the model with the parameters we use, and

we define the measures we take in the system to assess its

dynamics. We then describe the regime of defect-mediated

turbulence and show that in this regime the stable node does

not play a role. We finally show how, by changing one of the

parameters, we change to the regime of spatiotemporal inter-

mittency, where the system actually alternates between

defect-mediated turbulence and the stable steady state. This

change is gradual so that initially the system visits the stable

state very rarely and, as the parameter changes, these visits

become more frequent.

The Gray-Scott model reads10

@a

@t
¼ 1� a� lab2 þ Dar2a;

@b

@t
¼ b0 � /bþ lab2 þ Dbr2b:

It represents the reaction-diffusion kinetics of the above-

mentioned reactions, in the presence of two sources of reac-

tants: a and b stand, respectively, for the concentrations of A
and B. We consider here one-dimensional domains with no-

flux boundary conditions. We use equal diffusivities for a
and b (Da¼Db), no feeding term for the autocatalyst

(b0¼ 0) and a decay rate constant /¼ 5. The control param-

eter is thus l, which tunes the rate of conversion of A into B
by the cubic autocatalytic reaction. Under these conditions,

the system has three steady states: a stable node Sn at (a¼ 1,

b¼ 0), a saddle Ss at (a�, b�), and a focus S f at (aþ, bþ),

with

a6 ¼
17

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4/2=l

q

2
;

b6 ¼
16

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4/2=l

q

2/
:

The focus can give rise to oscillations under the form of a

limit cycle, which is found for lA<l<lH, where lH¼/4/

(/� 1) is a Hopf bifurcation point11 and lA stands for a

homoclinic (Andronov) bifurcation, due to a collision

between the limit cycle and the saddle point.

We will use several relevant measures to assess the dy-

namical behavior of this system. Since the spatiotemporal
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intermittency implies that some regions of the system fall

into Sn, we measure the distance between the local composi-

tion of the system and the point (1, 0), which we define as

ln¼ ((a� 1)2þ b2)
1=2. Defect-mediated turbulence is charac-

terized by a zero amplitude of the oscillation around the

unstable focus,14 so we also measure the distance

lf¼ ((a� aþ)2þ (b� bþ)2)
1=2. We also measure the distance

to the saddle point, ls¼ ((a� a�)2þ (b� b�)2)
1=2.

As we are interested in intermittency, it is convenient to

know in which basin of attraction of the homogeneous system

(either that of the limit cycle or that of Sn) each point of the

spatially extended system is. To do so, we introduce a Boolean

variable X, such that X¼ 0 when the local composition is above

the separatrix of the homogeneous dynamics, and is 1 other-

wise (see Figure 1). This measure can be used even after the

Andronov bifurcation, as long as the saddle point exists.

With these tools in hand, we first consider a situation for

which the limit cycle and the stable node coexist.15 For

l¼ 155, we observe a form of spatiotemporal chaos for

which the distance lf to the focus sometimes reaches zero,

whereas the distance towards Sn is always large (Figure 2(a)).

FIG. 1. Basins of attraction in the Gray-Scott model for l¼ 155 and /¼ 5.

Below the red line, the system goes towards the node Sn. The saddle is

marked as Ss.

FIG. 2. Space-time plots for l¼ 155

(a), 151 (b), and 149 (c), showing the

concentration of a (first column), am-
plitude (second column), distance to

(1, 0) (third column), and the basins of

attraction (fourth column). The size of

the space-time plots is 100 space units

� 200 time units. For the first three

columns, black corresponds to a low

value. For the fourth column, black

represents the system being in the ba-

sin of attraction of the limit cycle,

while white stands for the system

being in the one of Sn.
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Moreover, we see that here the system remains entirely

within the neighborhood of the limit cycle. The chaotic dy-

namics that we observe is thus not spatiotemporal intermit-

tency, as usually observed in the Gray-Scott model, but

defect-mediated turbulence. In a sense, one could say that the

system behaves “as if” the limit cycle were the only low-

dimensional attractor in the system and from which chaos can

emerge.

This raises the question of the transition from such

defect-mediated mechanism to the traditional spatiotemporal

FIG. 3. Space-time plots for l¼ 149,

showing the distance to (1, 0) (a) and

to the saddle point (b). Size of space-

time plots is 100 space units � 200

time units, with black corresponds to a

low value. (c) Time traces for the lines

in blue and light green in (a) and (b),

respectively. (d) and (e) Enlargement

of the boxes marked in (c).

FIG. 4. Phase diagrams for /¼ 5 (a),

/¼ 6 (b), /¼ 8 (c) and /¼ 10 (d).
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intermittency. To assess this problem, we decrease gradually

the control parameter l. For l¼ 153, we reach the Andronov

homoclinic bifurcation, which means that the limit cycle

should, in principle, disappear. We still observe however the

same type of defect-mediated turbulence, but on very rare

occasions, the system now reaches Sn. This observation cor-

responds to an intermittent behavior, as the system alternates

between the two basins of attraction. For l¼ 151, the

FIG. 5. Statistics for the time spent in a defect (T) over 1000 time units for /¼ 5 (a) and /¼ 6 (b) at different values of l, and the red line shows where the

Andronov homoclinic bifurcation occurs. Insets show the logarithm of the time spent at the defect vs l (top) and vs log l (bottom). For /¼ 5, the fits are

logT¼ 0.071(l)� 9.253 (with R2¼ 0.758) and logT¼ 24.79log(l)� 52.48 (with R2¼ 0.753). For /¼ 6, the fits correspond to to logT¼ 0.043(l)� 9.350

(with R2¼ 0.962) and logT¼ 24.96log(l)� 58.33 (with R2¼ 0.961).

FIG. 6. Limit cycles for /¼ 10 and (a) l¼ 1020 (red) and 1030 (thin blue) and (b) l¼ 1020 (red) and 1010 (thin blue).
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frequency of visits to Sn increases (Figure 2(b)), as does the

frequency of amplitude reaching 0. For l¼ 149, we see

(Figure 2(c)) that the amplitudes lf and the distance ln often

reach 0. Consequently, the system alternates constantly

between the (previous) basins of attraction, and the dynamics

can be qualified as being “fully” intermittent. It should be

also noted that the distances ln and ls are usually synchron-

ized during the defect-mediated turbulence (as shown in

Figure 3), the system being closer to the saddle than to the

node. This synchronization changes when the system falls

into Sn, since the system passes through the saddle point first

(Figure 3(d)).

The different observed behaviors are summarized in

Figure 4(a). We see that the Hopf bifurcation (lH¼ 156.25)

is close to the homoclinic bifurcation (lA � 153). To assess

how the distance between these two bifurcation points

affects the dynamics, we now investigate the system at dif-

ferent values of /. For /¼ 10, the Hopf bifurcation occurs

at lH¼ 1111.11, whereas the Andronov bifurcation takes

place at lA � 1009. In this case, we see again that before

(but close to) the Andronov bifurcation, the system displays

defect-mediated turbulence. After that bifurcation, it addi-

tionally presents visits to the (1, 0) state (Figure 4(d)).

However, the defect domain is now separated from the Hopf

bifurcation by a region of stable bulk oscillations, indicating

that the defect-mediated regime can be found close as well

as far from the Hopf point. Intermediate values of /¼ 6 and

/¼ 8 are shown in Figures 4(b) and 4(c), respectively.

These results confirm our observation that the defect-

mediated regime always occurs close to the Andronov bifur-

cation point. Note that the saddle-node bifurcation at which

the saddle point vanishes occurs at low values of l (for

/¼ 5, ls¼ 100, whereas for /¼ 10, ls¼ 400) and is not

what causes the disappearance of the intermittency in favor

of the (1,0) point.

We have extracted and analyzed several statistical quan-

tities related to the defects in order to further characterize the

defect-mediated and the intermittent states. We observed

that the number of defects in the system varies as time goes

by, but that the time-averaged value does not depend appre-

ciably on l for a fixed value of /: There are usually between

2 and 3 defects for 100 space units. However, the time spent

by each point of the system in a defect strongly increases

with l, as illustrated in Figure 5 for /¼ 5 and /¼ 6. These

curves can be fitted with both an exponential and a power

law. As the insets of Figure 5 show, the correlation coeffi-

cient is essentially the same for the semi logarithmic and the

logarithmic plots, so that we cannot really discriminate

between these two laws. We note that the statistics do not

change abruptly when the Andronov homoclinic bifurcation

is crossed, a further indication that the transition to spatio-

temporal intermittency is gradual.

How can we understand, at least qualitatively, the

appearance of defect-mediated turbulence? In order to see

what is different between the dynamics of the homogenous

system before and after the appearance of spatiotemporal

chaos, we plot in Figure 6(a) the limit cycle at /¼ 10 and

l¼ 1030 and 1020 (in the region of bulk oscillations) and in

Figure 6(b) the limit cycle at /¼ 10 and l¼ 1010 and 1020

(in the region of defect-mediated turbulence). We see that in

Figure 6(a) there is but a small modification of the size of the

limit cycle, while in Figure 6(b) the same change in the pa-

rameter produces a large increase of this size. This situation

is similar to what is seen for the Oregonator model,3 for

which the domain where spatiotemporal chaos occurs sepa-

rates small amplitude oscillations (close to the Hopf bifurca-

tion) and large amplitude oscillations (away from the Hopf

bifurcation). The extreme variability of the amplitude with

respect to small parametric changes seems to be the main

reason behind the emergence of chaos in the Oregonator. We

believe that, similarly, the system can be “excited” locally

from a small limit cycle towards a big one, and that this exci-

tation can make that part of the system pass extremely close

to (and eventually go through) the unstable focus, which acts

as a defect.

In summary, we have found a regime of defect-mediated

turbulence in the Gray-Scott model in which the presence of

the stable node Sn does not play a role towards the formation

of spatiotemporal chaos. This behavior is observed far from

the Hopf bifurcation and, despite the chaotic behavior, the sys-

tem always remains within the basin of attraction of the limit

cycle generated by the unstable focus Sf. Decreasing the con-

trol parameter l makes the limit cycle of the homogeneous

problem collide with the saddle point (via a homoclinic bifur-

cation). At this point, the extended system shows, on top of

the defect-mediated turbulence, very rare jumps to the node

Sn. As the parameter l is further decreased, these excursions

become more frequent and one observes the type of chaos

reported thus far in the literature. Note that the excursions to

the stable node always pass through the saddle point.

An analytical assessment of the behavior of the defects

and of their statistics would certainly bring a crucial addi-

tional understanding of their origin and properties. We

expect that such a study could be done in the limit where the

Hopf and the Andronov bifurcation are close, or if they

merge. It is well-known that near a Hopf bifurcation, a sys-

tem can be represented by amplitude equations that take the

form of the CGLE.1 Such amplitude equations have, for

example, been derived previously for the Gray-Scott

model.12 It is also known that the CGLE can sustain defect-

mediated turbulence.8 The transition from defect-mediated

turbulence to spatiotemporal intermittency should be seen

and could be investigated with a CGLE-like equation that

accommodates the presence of multiple steady states.

On a more general note, we can conclude that having a

stable state coexisting with a limit cycle does not imply hav-

ing spatiotemporal intermittency. Similarly, having defects

in an oscillatory behavior does not exclude the possibility of

having spatiotemporal intermittency as well.
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