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The displacement of two fluids in a porousmedium can be affected by a viscous fingering instability (VF) that

arises at the interface between the fluids when their viscosities are different. In parallel, one of the fluids may

contain solutes that reversibly adsorb on the porousmatrix at a rate that depends on the composition of the

two-fluid mixture, a so-called solvent strength effect. In some systems encountered for instance in liquid

chromatographic columns or in underground flows in environmental applications, both VF and solvent

strength effects may combine to influence the spatio-temporal distribution of solutes. Here, a

computational investigation of such dynamics is performed. The distribution of the solute in the porous

medium is affected by the combined effects of VF and solvent strength. A three component system

(displacing fluid, sample solvent and solute) is modeled using Darcy's law for the fluid flow velocity

coupled to a convection–diffusion equation for the sample solvent and a mass balance equation for the

solute in the mobile and stationary phases. The sample solvent is assumed to have a larger solvent

strength than the displacing fluid, in which the retention parameter due to the linear adsorption of the

solute depends exponentially on the concentration of the sample solvent. A parametric study of the

influences of the factors controlling the VF and solvent strength effects on the displacement velocity of

the fronts of solute zone and on its width along the porous medium has been performed by direct

numerical simulation of the governing equations. While each of the two effects (VF and solvent strength

effects) distorts and significantly increases the broadening of the solute zone, the simulations reveal that,

when they are acting in combination, these solute zone perturbations are reduced.

1 Introduction
Viscous ngering (VF) is a hydrodynamic instability observed
when a less viscous uid displaces a more viscous one in a
porous medium or in a Hele-Shaw cell, which is well docu-
mented in the literature.1–3 Transport in porous media has a
wide variety of applications in oil industry, chemical processing,
hydrology etc. This instability occurs when ows with variable
mobility are involved.3,4 The pattern formed due to the insta-
bility at the evolving interfaces of two miscible5,6 or immiscible2

uids has been studied by various techniques. VF is, among
others, also important in liquid chromatography, a ow based
separation method. In this technique, a given uid (called dis-
placing uid) displaces a miscible sample consisting of a

solvent in which a mixture of solutes (also named analytes) is
dissolved. The solutes are separated during the displacement
because of selective adsorption on the porous matrix and/or
selective transport properties. The uid ow in a porous
medium plays an important role in these separation tech-
niques. Indeed, if the sample solvent has a different viscosity
than that of the displacing uid, VF can come into play, leading
to distortion and widening of output peaks in the ngering
zone.7,8 Moreover, the strength of the adsorption on the porous
matrix depends on the local uid composition and can depend
on the concentration of the sample solvent. Such an effect is
called the solvent strength effect and it can interplay with
viscous ngering as this hydrodynamic instability will lead to
ngering of the solvent and hence to non trivial spatio-temporal
changes in the adsorption rate. Similar coupling between
ngering effects and adsorption on the porous matrix varying
with the local composition of the uids can be encountered in
environmental issues as well like in CO2 sequestration for
instance.

In this context, it is the objective of this work to develop
a generalized model to study theoretically how the transport of
a solute in a porous media can be affected by the interplay
of both VF and solvent strength effects. Despite a great deal of
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experimental work done in the eld of chromatography, there is
so far no theoretical study of such combined physico-chemical
effects of VF and solvent strength to understand the separation
of solutes undergoing variable sorption in a chromatographic
column. This phenomenon is also largely unexplored in envi-
ronmental applications.

Before explaining our model, let us rst review what is known
so far in this eld in chromatography. On one hand, VF has been
found to be detrimental for the separation of solutes in various
high performance liquid chromatographic (HPLC) separation
techniques like Reverse Phase Liquid Chromatography (RPLC) or
Size Exclusion Chromatography (SEC) because it leads to distor-
tion and widening of output peaks as shown experimentally.9–12 In
chromatography the focus is on a nite width sample of a given
viscosity being displaced by a uid of different viscosity. Viscous
ngering develops on either the frontal or rear interface of the
sample depending where the less viscous uid displaces the more
viscous one, the other interface being stable.13–15 VF is also only a
transient phenomenon since dispersion of the nite sample and
mixing due to VF reduce the viscosity gradient in the course of
time. A numerical study of VF effects in RPLC conditions has
conrmed that, if the injection solvent is more viscous than the
displacing uid, the rear interface shows distortions.16 The
quantitative comparison of the inuence of such VF on the peaks
shows that, for a given viscosity ratio, the peak broadening is
larger when the sample solvent is less viscous than the displacing
uid than in the opposite case.17

Another specicity important for VF in chromatography is
that, besides being entrained by the ow, the solutes or analytes
can also be retained on the stationary phase of the column. In
that regard, a reduction of VF effects has been observed exper-
imentally in case of an increase in retention of the solute.8,15,18

To describe this situation, a three-component system has been
modelled mathematically considering the solute as a passive
scalar, its spatio-temporal dynamics being affected by VF of the
sample solvent, when this solvent in more19 or less20 viscous
than the displacing uid. It was shown that the dynamics of the
solute is affected not only by VF of the sample solvent but also
by retention of the solute on the porous matrix.

On the other hand, another physico-chemical effect which
leads to distortions of the peak prole of the solute indepen-
dently of VF is the solvent strength effect which occurs when the
displacing uid has a weaker solvent strength than the sample
solvent, i.e. a lower ability to displace the solutes from a
particular stationary phase. Then, the retention factor k of the
solute on the porous matrix depends on the local concentration
c of the sample solvent. The deformation of the solute zone
occurs because of the different migration velocities of the
frontal and rear part of this zone. In such a situation, Jandera
and Guiochon21 have observed, in RPLC, a deformation and
even a splitting of the band proles. Such a peak splitting
phenomenon has been simulated by Ng and Ng22 using a model
in which the retention factor is changed as the sample solvent
moved through the column.

A dependence of the retention factor on the carrier liquid
composition is generally occurring in comprehensive two-
dimensional liquid chromatography (2D-LC). In 2D-LC,

sample component fractions collected from the exit of a rst
column are injected in a second chromatographic column and
displaced with a carrier liquid of a different nature or compo-
sition from that of the rst column. Such a difference may give
rise to a solvent strength effect as well as, when it is associated
to a viscosity difference, to a VF effect. The magnitude of these
two effects depends strongly on the sample volume. Under-
standing their inuence on dispersion of the solute is essential
for the optimization of the 2D-LC process since the fraction
collection volume is a key parameter to be optimized.

Recently, the contribution of the solvent strength effect in
pure dispersive sample solvent case has been discussed by
Mishra et al.23 The band peaks have been found to be non-
Gaussian even in the absence of VF because of the solvent
strength effect. The peak distribution is bimodal leading to
broadening of band and becomes unimodal only aer disen-
gagement of the solute from the sample solvent which matches
well with experimental results.

In order to understand the combined effect of VF and solvent
strength on the peak proles, we develop here a mathematical
model for the displacement of a sample of given viscosity by a
displacing uid of different viscosity combined to a solvent
strength effect i.e. a concentration dependent retention k(c) on
the porous matrix of the solute controlling the viscosity. The
model equations lead to fully coupled non-linear partial
differential equations of convection–diffusion type for the
solute and the sample solvent. The ow velocity in the porous
column is modeled with Darcy's law. In order to analyze the
evolution and distribution of the solute and sample solvent a
numerical study has been performed. We nd that the physico-
chemical phenomena i.e. viscous instability and the solvent
strength effect occur simultaneously, leading to a complex
dynamical pattern by partially canceling each other. A critical
analysis of the deformation of the solute peaks is done by
calculating the second central moment or the variance which
measures the spread of the peak.

2 Physical problem and governing
equations
Our model system is a two-dimensional porous medium, in
which a sample of length W with a solvent concentration c ¼ c0
and of viscosity m2 is injected at an initial time (see Fig. 1). The
sample contains the solute in concentration ca ¼ ca,0. It is
conned between two regions lled by another miscible uid,
the displacing uid, of viscosity m1 (m1 < m2). The concentrations

Fig. 1 Sketch of the system.
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of the solute and of the sample solvent inside the displacing
uid are ca ¼ 0 and c ¼ 0 respectively.

Once the sample is injected in the system, the solute starts to
be adsorbed on the porous matrix. We assume that this
adsorption process is characterized by a linear isotherm
dependence between the concentrations of the solute in the
mobile phase ca,m and in the stationary phase ca,s as ca,s ¼ Kca,m
where K¼ ka/kd is the equilibrium constant with ka and kd being
the adsorption and desorption kinetic constants. The retention
of the solute is characterized by the retention factor k ¼ FK,
where F ¼ Vs/Vm is the ratio between the volume of the
stationary phase Vs and the volume of the mobile phase Vm.

In the following, we consider that the solute retention
mechanism is that prevailing in RPLC, the most commonly
usedmode of retention in liquid chromatography. In this mode,
the displacing uid is generally a mixture of water and of an
organic modier (which in most cases is methanol (MeOH) or
acetonitrile (ACN)) with a volume fraction fm in organic
modier. The sample solvent is a mixture of water with that
organic modier having a volume fraction fs $ fm. Since the
displacing uid and the sample solvent have different solvent
strength the solute retention depends upon the composition of
the sample solvent i.e. k¼ k(c). As explained in Snyder et al.,24 as
a rst approximation this concentration dependence of k can be
deduced from the relation ln k ¼ ln k0 " Sf where k0 is the
retention factor of the solute in pure water, f is the volume
fraction of the organic modier and S ¼ 2.3S0, where S0 is the
solvent strength parameter. S0 has a value of about 3, which
means that k in pure MeOH or pure ACN is about 1000 times
smaller than in pure water. The normalized composition of the

liquid phase is c ¼ f" fm

fs " fm
; hence the initial concentration of

the sample solvent is c0 ¼ 1. Simplifying the above relation as in
Mishra et al.,23 the dependence of the retention factor on the
concentration of the sample solvent reduces to

k(c) ¼ kme
"S*c, (1)

with S*¼ ln(km/ks) where km, ks > 0 are the retention parameters
in the mobile phase and in the pure sample solvent,
respectively.

Eqn (1) expresses the fact that the retention factor k is equal
to km in absence of the solvent of the sample (c ¼ 0) and has a
value that decreases with c in the mixture of injected uid and
displaced sample solvent. The retention factor increases thus
when the solute leaves the sample solvent to go to the displacing
uid. Other functions than eqn (1) can be chosen but this one is
validated by a large number of experimental data in RPLC.

The uids are displaced uniformly with a mean velocity U
along the x-direction. Because the solute is retained, at the end of
the injection process, i.e. at the time t¼ 0, the length occupied by
the solute zone is different from that of the sample solvent zone.
We assume that, at time t ¼ 0, these two slices have a rectangular
shape and the rear boundaries of both zones are at the same
position. Hence the length of the solute zone is smaller and equal
toW/(1 + ks). Here the retention value of the solute is selected as ks
since the solute is surrounded by the pure sample solvent.

The viscosity is assumed to depend upon the concentration c
of the sample solvent only, through an exponential relation of
Arrhenius type5,19 m(c) ¼ m1eRc, where R is the log mobility ratio
dened as R ¼ ln(m2/m1). With m2 > m1, R > 0, hence the rear
interface of the sample solvent shows viscous ngering. As soon
as R s 0 and S* s 0, both VF and solvent strength effects are
operational. In that case, the spatio-temporal evolution of the
concentration of the solute will be inuenced by both the
deformation of the sample solvent zone by VF and by the
adsorption of the solute on the porous matrix.

Assuming the uid to be incompressible and velocity to be
governed by Darcy's law inside the porous medium,3,25 the
evolution equations in vector form become,19

V̱$u ̱ ¼ 0, (2)

V p ¼ " mðcÞ
Kp

u ; (3)

vc

vt
þ u :Vð Þc ¼ Dx

v2c

vx2
þDy

v2c

vy2
; (4)

vca;m
vt

þ F
vca;s
vt

þ u :V ca;m ¼ Da;x
v2ca;m
vx2

þDa;y
v2ca;m
vy2

; (5)

where V ¼
!
v

vx
;
v

vy

"
, Kp is the permeability of the porous

medium, p is the pressure and u ̱ ¼ (u, v) is the two-dimensional
velocity vector, with u and v the velocity component in x and y
direction, respectively. Eqn (4) is the convection–diffusion
equation for the concentration c of the sample solvent ruling
the viscosity of the solution, where Dx, Dy are its dispersion
coefficients in the x and y direction respectively. Eqn (5) is the
mass balance equation, with both mobile ca,m and stationary
phase ca,s components of the solute concentration ca where F ¼
Vs/Vm is the phase ratio of the volumes in stationary phase Vs
and mobile phase Vm respectively.11 Da,x and Da,y are the
dispersion coefficients of the solute along x and y directions. All
previous works done on separated VF or solvent strength effects
can be recovered as particular cases of this very general system
of equations. In the particular case of uniform ow and viscosity
independent of the sample solvent concentration (R¼ 0), we get
the equations studied by Mishra et al.23 for the pure solvent
effect. By taking S* ¼ 0 in the present model, the VF results of
Mishra et al.19 with a constant retention factor can be retraced.
If km is also taken equal to 0, we get back to VF with no
adsorption as analysed by De Wit et al.14 i.e. the two component
model. The boundary conditions are:

u ¼ U ; v ¼ 0 and
vc

vx
;
vca;m
vx

¼ 0; at the inlet and outlet (6)

vv

vy
¼ 0;

vc

vy
¼ 0;

vca;m
vy

¼ 0;cx at the transverse boundaries (7)

As explained in Mishra et al.,19 the mobile phase concen-
tration ca,m of the solute varies from 0 in the pure displacing
uid to ca,0 in the sample solvent. To non-dimensionalize the
governing equations, we take ca,0 as the reference concentration
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for the solute, U as the characteristic velocity, the length scale as
Lc ¼ Dx/U and a time scale as tc ¼ Dx/U2. The non dimensional
quantities are then obtained as

x̂ ¼ x

Lc

; ŷ ¼ y

Lc

; t̂ ¼ t

tc
; û ¼ u

U
; v̂ ¼ v

U
;

p* ¼ p

m1Dx

#
Kp

; m* ¼ m

m1

; c*a;m ¼ ca;m
ca;0

; 3 ¼ Dy

Dx

;

3a ¼
Da;y

Da;x
; d ¼ Da;x

Dx

We further introduce a reference frame moving with the ow
velocity, x* ¼ x̂ " t̂, y* ¼ ŷ, u* ¼ û " 1, v* ¼ v̂, t* ¼ t̂. Using the
linear isotherm adsorption hypothesis, the non dimensional
form of the governing eqn (2)–(5) along with the viscosity rela-
tion m(c) and retention relation k(c) (as in eqn (1)) become aer
dropping the superscripts (*):

V̱$u ¼ 0, (8)

V̱p ¼ "m(c)(u + ex), (9)

vc

vt
þ u :V c ¼ v2c

vx2
þ 3

v2c

vy2
; (10)

vca;mð1þ kðcÞÞ
vt

þ u
vca;m
vx

" vca;mðkðcÞÞ
vx

þ v
vca;m
vy

¼ d

$
v2ca;m
vx2

þ 3a
v2ca;m
vy2

%
; (11)

m(c) ¼ eRc, (12)

k(c) ¼ kme
"S*c, (13)

where ex is the unit vector along the x-direction. With the above
dimensionless scales, the non-dimensional length and width of
the domain are L0 ¼ ULx/Dx, and a Péclet number Pe ¼ ULy/Dx,
where Lx and Ly are their dimensional measures, respectively.
Hence the non-dimensionalised boundary conditions in the
moving frame along the inlet and outlet boundaries (eqn (6))
reduce to

u ¼ 0; v ¼ 0;
vc

vx
;
vca;m
vx

¼ 0; (14)

and along the transverse boundaries, without loss of generality,
the boundary conditions of eqn (7) can be considered equiva-
lent to periodic boundary conditions as:

u(x, 0, t) ¼ u(x, Pe, t), (c, ca,m)(x, 0, t) ¼ (c, ca,m)(x, Pe, t). (15)

In order to numerically solve the system of eqn (8)–(15), we
use a stream-function formulation to reduce the number of
variables and because the stream function has been observed to
be a more convenient and independent variable than the pres-
sure eld or velocity eld.5,6 Moreover, for distorted interfaces
there is a signicant reduction in computation time of the
stream function in comparison to that of the velocity eld.

Hence introducing the stream function j(x, y) as (u, v) ¼ (vj/vy,
"vj/vx). The governing eqn (8)–(13) become

"V2j ¼ R

!
vj

vx

vc

vx
þ vj

vy

vc

vy
þ vc

vy

"
; (16)

vc

vt
þ vj

vy

vc

vx
" vj

vx

vc

vy
¼ v2c

vx2
þ 3

v2c

vy2
; (17)

vca;mð1þ kðcÞÞ
vt

" vca;mkðcÞ
vx

þ vj

vy

vca;m
vx

" vj

vx

vca;m
vy

¼ d

$
v2ca;m
vx2

þ 3a
v2ca;m
vy2

%
: (18)

It is clear from above that eqn (18) is decoupled from eqn
(16) and (17). Hence once the stream function j and the solvent
concentration c are evaluated from eqn (16) and (17) for a given
R, the transport of the solute concentration ca,m can be deter-
mined from eqn (18) for different values of the solute parame-
ters (km, S*, d, 3a).

2.1 Numerical method

Eqn (16)–(18) are solved numerically using a Fourier pseudo-
spectral technique.26 In this technique the variables c, ca,m
and j are evaluated in the Fourier space in order to compute the
spatial derivatives and the evolution of the concentration elds
in time. The non-linear and variable coefficient terms are
calculated in the real physical space. The concentration elds
and the other variables are represented as Fourier series as,

cðx; y; tÞ ¼
X

p

X

r

ĉp;rðtÞeiðkpxþkryÞ; (19)

with i2¼"1 andwhere ĉ are the Fourier coefficients of c calculated
at discretized collocation points, kp and kr are the wave numbers of
the Fourier modes. The Fourier discretization is uniform in space
and is truncated at p ¼ 0 and p ¼ M " 1, r ¼ 0 and r ¼ N " 1,
where M and N are the grid point numbers in the x and y
directions, respectively. The transformation between the real
and the Fourier space is done by using fast Fourier trans-
formation with the order of complexity N log2 N, where
N ¼ M & N. Eqn (16) and (17) are classical miscible VF equa-
tions already studied at length since Tan and Homsy.5 Eqn (18)
is a non-linear partial differential equation with variable
coefficients.

The Fourier representation of the non-linear and variable
coefficient terms in eqn (18) is:

J1ðx; y; tÞ ¼
1

ð1þ kðcÞÞ

!
d

$
v2ca;m
vx2

þ 3a
v2ca;m
vy2

%

"
!
vj

vy

vca;m
vx

" vj

vx

vca;m
vy

"
þ kðcÞ vca;m

vx

þ S*kðcÞca;m
$
v2c

vx2
þ v2c

vy2
" Jðx; y; tÞ " vc

vx

%"

¼
X

p

X

r

Ĵ1p;rðtÞe
iðkpxþkryÞ: (20)
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With the above representation, the equations in Fourier
space become a system of algebraic differential equations:

ĵp,r ¼ R(N̂p,r + ikrĉp,r)/(kp
2 + kr

2), (21)

dĉp;r
dt

¼ "Ĵp;r "
&
kp

2 þ kr
2
'
ĉp;r; (22)

dĉ1p;r
dt

¼ Ĵ1p;r ; (23)

where N̂, Ĵ are the Fourier coefficients of the non-linear terms in
eqn (16) and (17) respectively (cf. Tan and Homsy5). The terms N̂,
Ĵ and Ĵ1 are evaluated pseudo-spectrally by transforming vari-
ables ĉ, ĵ and ĉ1 to real physical space, computing all the terms
having non-linear and variable coefficients in the same real
physical space and then transforming back to Fourier space.

The time-stepping scheme used is a predictor-corrector
method, with a second order Adams–Bashforth scheme for
predicting the variables which are corrected by using a trape-
zoidal rule. A similar algorithm has been followed by Mishra
et al.23 for eqn (23) and by Tan and Homsy5 for eqn (21) and (22).
The spectral method used to solve the system of partial differ-
ential equations is more accurate on a coarser discretization
grid of the spatial domain in comparison to other numerical
methods like nite differences or nite elements. Hence it is
advantageous to use this method as it requires lesser memory
while achieving a higher accuracy. Moreover, there is no or very
little numerical dissipation with spectral methods.27

As initial condition, the non-dimensional initial length of
the sample solvent zone is l¼ UW/Dx with x¼ 0 as the middle of

the sample solvent zone. So the initial non-dimensionalised
length of the solute zone is la ¼ l/(1 + ks).23 The rear boundary
of both the solute and the sample solvent zones are at the same
position x ¼ "l/2. So, the frontal boundary of the solute will be

at x ¼ lð1" ksÞ
2ð1þ ksÞ

and that of the sample solvent at x ¼ l/2. The

initial conditions for the sample solvent and the solute
concentrations correspond to a rectangular sample of concen-
tration c ¼ 1, ca,m ¼ 1 and of size Pe & l and Pe & la respectively
in a c ¼ ca,m ¼ 0 background. To apply the Fourier pseudo-
spectral method, periodic boundary conditions are employed
along the longitudinal and transverse directions. Our simula-
tions were performed on a rectangular domain L0 & Pe dis-
cretized using a lattice of 8192 & 128 grid points.

3 Results and discussion
In the porous medium, the solute undergoes both a linear
adsorption in the mixture of displacing uid and sample
solvent with a strong solvent strength and the inuence of VF
occurring between these two uids. The resulting dynamics of
the solute is studied here in the case of a positive log-mobility
ratio R, i.e. a less viscous displacing uid displacing the
sample solvent with a solute retention factor k depending locally
on c, as given by eqn (13). In this generalized model, when km ¼
0, d¼ 1 and 3a¼ 3 we obtain the two component system,14 so the
evolution prole of the solute is the same as that of the sample
solvent as shown in Fig. 2a. This ngering dynamics of the
sample solvent affects the evolution of the solute concentration

Fig. 2 Evolution of the local solute concentration ca with l ¼ 512, 3 ¼ 1, 3a ¼ 1, d ¼ 1, R ¼ 2 and S* ¼ 4 for (a) km ¼ 0, (b) km ¼ 1, (c) km ¼ 2 and
(d) km ¼ 5 at t ¼ 0, 1000, 2000, 6000 and 8000 from top to bottom.
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in two ways. Firstly it affects the retention of the solute on the
stationary phase (see eqn (5)). Secondly the solute zone develops
ngers when either of its interface comes in contact with the
unstable interface of the sample solvent. The combined effect of
these two perturbations, VF and the solvent strength effect, on
the evolution of the solute is analysed for different values of the
parameters km, S* and R chosen to maximize the effect on the
solute distribution.

3.1 Effect of retention parameter km

Since at any instant the solute is present in both stationary and
mobile phases, its evolution is tracked by following its local
overall concentration, ca(x, y, t) which, according to eqn (11) is
proportional to (1 + k(c))ca,m. The dynamics of ca is shown in Fig. 2
at successive times for different values of km by xing S* ¼ 4,
l ¼ 512 and R ¼ 2. The parameter values are taken to match the
typical experimental situations encountered in analytical HPLC
column. For instance in a 4.6 mm i.d. HPLC column packed
with 3 mm particles with a total porosity 0.7 and solute with a
reduced plate height of 3, the sample length l ¼ 512 considered
in this study corresponds to an injection volume of 27 mL. The
value 4 is selected for S*, corresponding to S0 ¼ 3 and to
(fs" fm)¼ 0.6 characteristic of organic solvent–water mixtures.

Fig. 2a shows the evolution of the solute zone with km ¼ 0 i.e.
in absence of adsorption. In this case VF is observed at the rear
of the sample (i.e. the le region of the solute zone) where the
less viscous uid displaces the more viscous one. The frontal
interface of the sample solvent being stable undergoes pure
diffusion. The solute zone is advected by the resulting ow and
follows the same dynamics as that of the sample solvent. Hence
the three component system is reduced to the two component
system which has already been studied by De Wit et al.14 In
Fig. 2b–d the evolution of ca with km ¼ 1, 2 and 5 is shown for
successive times. The solute is observed to develop two sepa-
rated signicant concentration zones, one inside the sample
solvent as seen by the solute ngers which are affected by VF
(referred to as the locked-in region). The second one is dragged
along the displacing uid (referred to as the dragged-along
region) and features a dispersive regime outside the solvent
affected zone. The dragged-along region of solute appears
behind the rear of the locked-in region and moves away from
the sample solvent as time t is increased. It is observed that the
dragged-along region of solute dilutes with time into the bulk of
the displacing uid. Aer a while both interfaces of the locked-
in region start interacting and the time of this interaction arises
earlier for larger values of km. The extent of the ngering pattern
in the locked-in region is found to reduce with an increase of
the retention parameter in the mobile phase km. This is because
the solute zone is locked for lesser time inside the sample
solvent for larger values of km. Hence it comes out faster from
the solvent zone thus is less affected by VF. Since we are in a
frame of reference moving with the injection velocity, the
sample solvent has no bulk motion and the solute zone has an
axial advection velocity in the upstream direction (towards the
le in the gures). Hence we say that the solute zone comes out
of the sample solvent zone faster so that it is more retained by

adsorption on the stationary phase. A similar analysis can also
be done in the laboratory frame of reference, where both the
sample solvent and the solute zones move in the downstream
direction with the sample solvent moving at a higher velocity
than the solute zone. So the solute region lags behind the
sample solvent zone and disengages from the sample solvent.

As can be seen from Fig. 2b–d the solute zone is inside the
sample solvent area for km¼ 1, 2 till tx 8000 whereas for km¼ 5
it is outside the sample solvent zone at that time. Hence, the
solute is less affected by VF for km ¼ 5 as compared to smaller
values of the retention parameter km.

A quantitative analysis of the evolution of the solute
concentration is done by plotting the transversed average
prole of the solute concentration in mobile phase !ca,m and the
local cross sectional average solute mass, !ca, dened as14

ca;mðx; tÞ ¼
1

Pe

ðPe

0

ca;mðx; y; tÞdy; (24)

caðx; tÞ ¼
1

Pe

ðPe

0

ð1þ kðcÞÞca;mðx; y; tÞdy: (25)

These quantities are computed at successive times for the
xed values km ¼ 5, S* ¼ 4 and R ¼ 2. The detectors in chro-
matograms give similar plots. The set of eqn (16)–(18) are solved
for the concentration of the sample solvent and solute mass in
the mobile phase ca,m. Thus to study their peak distribution
along the migration axis the transverse average concentration
prole of the sample solvent !c(x, t) and of the solute in the
mobile phase !ca,m(x, t) are plotted. Fig. 3a shows the
average concentration !c(x, t) of the sample solvent (i.e.

c ¼ 1
Pe

ðPe

0
cðx; y; tÞdy) or !ca,m with km ¼ 0 which corresponds to

Fig. 2a. The concentration prole shows distortions due to
ngering. Such distorted peaks are observed experimentally
also in RPLC.7,8,11 !ca,m(x, t) is shown in Fig. 3b at different times.
Similarly, inside the sample solvent, !ca,m(x, t) is affected by VF
and hence its prole also gets distorted. The downstream
distribution peak of !ca,m(x, t) advects with a velocity km/(1 + km)
in the axial direction, which leads to a larger spreading of the
solute.

Fig. 3c shows the local cross sectional average solute
concentration !ca corresponding to Fig. 2d. The rear interface is
affected by VF with a stable frontal interface as R > 0. The area
of the distribution of the solute is constant in time. This
conrms the conservation of the solute mass !ca (see Fig. 3c)
unlike the quantity !ca,m (see Fig. 3b). The VF of the sample
solvent affects the dispersion dynamics of the solute and thus
ngering effects are seen in the average solute concentration
proles !ca(x, t). The upstream distribution prole corresponds
to the solute zone dragged along the displacing uid as seen in
the density plots of the solute (Fig. 2). It features a standard
error function which is a characteristic of a pure dispersion
prole for the corresponding parameters in Fig. 3c. The
appearance of this le peak tail is due to the effect of the
solvent strength parameter S*, which leads to variable advec-
tion and diffusion speed of the solute that comes out of the
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sample solvent.23 For R > 0, the VF dynamics of the sample
solvent zone affects the solute retention in it, thus distortions
are seen on the concentration peak of the solute locked inside

the sample solvent. Both interfaces of the solute zone can then
be affected by VF depending on when they come in contact
with the VF of the sample solvent. Further in time, the solute

Fig. 3 (a) Cross-sectional average concentration profiles of the sample solvent !c(x, t) as a function of x for different times. (b) Average concentration
profiles of the solute in the mobile phase !ca,m for different times with km ¼ 5. Cross-sectional average solute concentration profiles !ca as a function
of x, (c) for different times with km ¼ 5, and (d) for different values of km at t ¼ 7000. Other parameters have the same value as in Fig. 2.

Fig. 4 (a) Evolution of the concentration of the sample solvent c. Local solute concentration ca with l ¼ 512, 3 ¼ 1, 3a ¼ 1, d ¼ 1, R ¼ 2 and km ¼ 5
for (b) S* ¼ 0, (c) S* ¼ 2 and (d) S* ¼ 3 at t ¼ 0, 1000, 2000 and 5000 from top to bottom.

This journal is © The Royal Society of Chemistry 2014 RSC Adv., 2014, 4, 34369–34381 | 34375

Paper RSC Advances



comes out of the sample solvent and thus goes out of the VF
affected zone. It is clearly seen from Fig. 3a and b at t x 8000
that the frontal interface of the solute is at x x "3900 whereas
the rear interface of solvent is at x x "2700, so the solute zone
is completely disengaged from the sample solvent zone. The
spreading zone of the solute has also been reduced due to
adsorption of the solute on the porous matrix.

In order to further quantify the inuence of km on the peak
proles of ca, we plot in Fig. 3d, the average concentration of the
solute !ca for different values of km at time t ¼ 7000. The le tail

of the solute distribution, which corresponds to the pure
dispersion prole of the solute zone dragged along the dis-
placing uid unaffected by VF, moves further away from the
sample solvent zone with increasing values of the retention
parameter km. But the remaining solute prole remains under
the effect of VF, thus showing distorted peak shapes. The non
dimensional axial advection speed of the solute in the mobile
phase in the upstream direction is k(c)/(1 + k(c)) in the moving
frame of reference. As ca is proportional to ca,m, it also propa-
gates with a speed proportional to that of the solute in the
mobile phase. With an increase in km, the advection speed of
the solute increases in the upstream direction hence it moves
out faster from the sample solvent. Also it is known that VF
leads to a faster reduction of the sample solvent concentration.
This leads to an increase in the effective retention k(c) of the
solute as it depends upon the local concentration of the sample
solvent. Hence it ultimately increases the advection speed of the
solute distribution in the upstream direction. This fact is clearly
seen in Fig. 3d where for km ¼ 5, R ¼ 0, the distribution is
advected to the le at a slower speed as compared to the
distribution of the solute with km ¼ 5, R ¼ 2.

3.2 Solvent strength effects

Fig. 4 compares the dynamics of the sample solvent with that of
the local average solute concentration ca for different values of
the solvent strength parameters S* ¼ 0, 2, 3 which correspond
to fs " fm ¼ 0%, 29%, 43% of the organic modier (MeOH or
ACN) with S0 ¼ 3 at xed km ¼ 5 and R ¼ 2. Fig. 4a shows the
evolution of the sample solvent and Fig. 4b depicts the

Fig. 5 Cross-sectional average concentration profile of the solute
!ca(x, t) as a function of x for different values of the solvent strength
parameter S* at t ¼ 3000 with R¼ 2, km ¼ 5, l¼ 512, 3¼ 1, 3a ¼ 1, d ¼ 1.

Fig. 6 Evolution of the local solute concentration ca with l¼ 512, 3¼ 1, 3a¼ 1, d¼ 1, S*¼ 4 and km¼ 5; for (a) R¼ 0, (b) R¼ 1, (c) R¼ 2 and (d) R¼
3 at t ¼ 0, 1000, 3000 and 7000 from top to bottom.
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evolution of the solute for S* ¼ 0 when the retention parameter
is independent of the sample solvent concentration. Hence the
solute zone moves with a uniform velocity whatever the frac-
tional amount of the sample solvent in the displacing uid.

With strong solvents S* s 0, the dispersion dynamics of the
solute changes from that for S* ¼ 0 [Fig. 4c and d]. Firstly, there
is a change in the length of the solute zone as it depends now
upon the sample solvent strength. The initial length of the
solute zone la ¼ l/(1 + ks) increases with an increase in S*.
Secondly, the spread of the solute zone increases with an
increase in S*. S* > 0 implies that the solvent strength of the
sample solvent is larger than that of the liquid phase (fs > fm),
so the retention of the solute zone depends upon the local
composition of the sample solvent. This leads to a variable
velocity of the solute zone, the velocity being smaller for the part
of the solute locked inside the sample solvent zone than for the
part dragged along the displacing uid.

Now for S* ¼ 0 the solute zone shows no ngering pattern as
it comes out of the sample solvent before getting affected by VF.
However with an increase in solvent strength S*, the dragged-
along region of solute develops outside the locked-in region.
As mentioned earlier this dragged-along region of solute comes
out of the sample solvent without interacting with its VF
dynamics while the locked-in region interacts with the VF
dynamics. There is an increase in disengagement time of the
solute from the sample solvent. Thus distortions are seen for
larger times for higher values of S*. As can be seen in Fig. 4, at
t ¼ 2000 the solute zone is without ngering pattern for S* ¼ 2
(Fig. 4c) while ngering is still seen for S*¼ 3 (Fig. 4d). Thus the
presence of a strong sample solvent does affect the inuence of
VF on the solute zone.

The above result is quantitatively analysed by plotting the
corresponding transversely averaged proles !ca(x, t) for different
values of S* in Fig. 5. The axial non dimensional advection
speed of the solute in the upstream direction is proportional to
k(c)/(1 + k(c)). It decreases with an increase in the solvent
strength parameter S* and increases when the sample solvent
concentration decreases along the x-axis. This is because of the
dependence of the concentration c on both x and t. So the solute
gets locked in for a larger time inside the sample solvent for

increasing values of S*. In Fig. 5 for S* ¼ 2 the solute is
completely outside the sample solvent while for S* ¼ 4 it is still
inside it. Hence the peak prole of the solute is more distorted
for a larger solvent strength parameter S* (Fig. 4), whereas,
because of a decrease in the concentration of the sample solvent
in the liquid mixture due to VF, the advection speed of the
locked-in solute zone increases. This can be clearly visualized in
Fig. 5 by comparing the peak prole for S*¼ 4 (that implies fs"
fm ¼ 58%) with R ¼ 0 and R ¼ 2. It is seen that the locked-in
part of the solute zone, advects faster for R ¼ 2 than for R ¼
0. Hence the combined effect of VF and of the solvent strength
effect signicantly affects the ow dynamics of the solute.

3.3 Effects of log mobility ratio R

Since viscous ngering of the sample solvent due to Rs 0 affects
the solute distribution through adsorption and ngering
dynamics, it is interesting to know how changing the viscosity
contrast between the sample solvent and the displacing uid,
i.e. changing R, affects the evolution prole of the solute zone.
For that purpose density plots of the solute concentration ca are
plotted at successive times in Fig. 6 for different values of the
log mobility ratio R xing km ¼ 5 and S* ¼ 4. The concentration
eld of ca with R ¼ 0 i.e. without VF is shown in Fig. 6a. It
presents all the characteristics of the dynamics of ca in presence
of a solvent effect as already studied by Mishra et al.23 We know
that, when R > 0, the rear interface of the sample solvent zone
becomes unstable and shows VF, thereby displacing the centre
of gravity of the sample solvent backwards with respect to the
initial position. This ngering affects the dynamics of the local
solute concentration as shown in Fig. 6b–d for different values
of R. It is observed that, as the value of R increases, ngering at
the rear interface of the locked-in solute zone is observed
earlier. The ngers travel faster for larger R and hence the two
interfaces of the locked-in solute zone interact faster for R¼ 3 as
compared to lower values of R. The interesting fact is that the
dragged-along solute zone has travelled the same distance
irrespective of the increase in the viscosity contrast between the
sample solvent and the displacing uid.

We further investigate the effect of increasing the log
mobility ratio on the prole of the cross sectional average solute

Fig. 7 Profile of the cross-sectional average solute concentration !ca(x, t) along the x-axis for different values of R at t¼ 5000 with S*¼ 4, km¼ 5,
l ¼ 512, 3 ¼ 1, 3a ¼ 1, d ¼ 1. (b) Spreading length of the solute zone as a function of time for different values of Rwith km ¼ 5, S* ¼ 4, l ¼ 512, 3 ¼ 1,
3a ¼ 1, d ¼ 1.
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concentration (Fig. 7a). It is observed that for R ¼ 0, the solute
distribution prole becomes bimodal. This kind of bi-modality
is seen is practice in RPLC conditions.11,15,21,28 Further, it is
observed that, with an increase in R, the upstream peak tail of
the solute distribution is at the same position irrespective of the
value of R. This is because as soon as the rear part of the solute
zone comes out of the sample solvent, it advects with a constant
speed km/(1 + km). On the other hand, the concentration of the
sample solvent decreases faster with an increase in R thus
increasing the effective retention of the solute. This in turn
increases the advection speed of the locked-in solute zone,
which travels faster with increasing R and hence comes out of
the sample solvent earlier. The disengagement time of the
solute decreases with an increase in R because of a faster mixing
of the sample solvent. This leads to a decreased spreading of the
solute. The effect of R on the spreading of the solute can be
analyzed by the dynamics of the mixing length Lm shown in
Fig. 7b. The mixing length is dened as Ld ¼ ld " la, where ld is
the spreading length of the solute for the interval in which
!ca(x, t) > 0.001 and la is the initial solute length.19,20 As seen in
Fig. 7b, the spreading length Ld is largest for R ¼ 0 and
decreases with R. Fig. 6 also clearly depicts this decrease in the
spreading length of the solute with increasing R. Hence, we
conclude that VF of the sample solvent reduces the effect of the
solvent strength on the solute propagation in the column. The
band broadening of the solute only due to solvent strength
effect23 is reduced when combined with the VF effect of the
sample solvent. In addition, the band broadening is reducing
with an increase in viscosity contrast between the sample
solvent and displacing uid.

3.4 Variance of the solute

The present work models, among others, the ow separation
dynamics in chromatography conditions. The solute plate
height is one of the essential parameters to be considered by
experimentalists in chromatography and it can be measured by
the rate of change of the spatial variance of the solute zone in
the column with respect to the distance along the column x. To
analyse the effect of VF and adsorption on the solute plate
height, we compute the second central moment, the variance
s2a(t), from the cross-sectional average solute concentration
prole as:23

sa
2ðtÞ ¼

ðL0

0

caðx; tÞ½x"mðtÞ(2dx
ðL0

0

caðx; tÞdx
; (26)

where mðtÞ ¼
ðL0

0
xf ðx; tÞdx is the rst moment of f(x, t), where

f ðx; tÞ ¼ caðx; tÞ
, ðL0

0

caðx; tÞdx;

is the probability density function of the continuous distribu-
tion of the total solute mass !ca(x, t). The variance of the
distribution when the solute is injected in the mobile phase is
s2a,0 ¼ l2a/12 + 2[d/(1 + km)]t, where l2a/12 is the contribution due to
the initial width of the solute. In order to quantify the

Fig. 8 Temporal evolution of the combined contributions of the
solvent strength and VF effects to the solute variance, s2a,fs, with km¼ 5,
S* ¼ 4 (a) for different values of R with d ¼ 1, 3 ¼ 1, 3a ¼ 1. (b) for
different values of d with R ¼ 2, 3 ¼ 1, 3a ¼ 1 (c) for different values of 3
with km ¼ 5, d¼ 1, 3a ¼ 1, S*¼ 4 and R¼ 2 (inset: temporal evolution of
sample solvent variance for R ¼ 2 and different values of 3).
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contribution of the combined effects of VF and of the sample
solvent strength on the total variance of the solute in the tran-
sient phase, s2a,fs, can be computed as:

s2a,fs ¼ s2a " s2a,0. (27)

In Fig. 8a the variance s2a,fs is plotted for different values of R
for km ¼ 5 and S* ¼ 4. We see that s2a,fs increases gradually at
early times and then saturates to a maximum value. This satu-
ration time corresponds to the disengagement time of the
solute zone from the sample solvent. The solute zone comes out
of the inuence of the ngering zone, hence the variance
saturates to a maximum value under pure diffusive conditions.
We see that the asymptotic variance of the solute decreases with
an increase in the log mobility ratio R. This is because of the
interplay and overall inuence of the viscosity gradient and of
the solvent strength effect on the solute dispersion. We know
that, when increasing R, viscous ngering becomes intense and
ngers travel faster.14 Hence the variance of the sample solvent
zone increases with an increase of the viscosity contrast
between the sample solvent and the displacing uid. However,
the situation is quite different for the variance of the solute zone
which is seen in Fig. 8a to decrease with increasing values of R.
This can be explained by the fact that the advection speed of the
locked-in part of the solute zone increases for larger values of R,
whereas that of its dragged-along part is independent of R along
the upstream end. Therefore, the solute distribution width, and
thus s2a,fs, decreases with an increase in R.

Fig. 8b shows the inuence of varying the ratio of the
dispersion coefficients of the solute and of the sample solvent
d¼ Da/D on s2a,fs. For xed value of R, km and S*, increasing d has
a destabilizing effect on the dynamics of the solute. For d < 1, D >
Da so the sample solvent zone spreads faster. Hence the
concentration of the sample solvent decreases faster with time
which leads to an increase in k(c). So the advection speed of the
solute increases hence it comes out faster from the sample

solvent. Thus s2a,fs is smaller for d < 1. However, for d > 1, Da > D
the sample solvent is spreading at a slower rate thus its
concentration decreases more slowly. So the advection speed of
the solute is smaller, thus it is locked inside the sample solvent
zone for a larger time. Hence it gets affected by the VF of the
sample solvent for a longer time which results in an increase in
its variance. Its saturation time also increases because of the
increase in its disengagement time from the sample solvent
zone with an increase in d. Hence we conclude that increasing d
induces a stronger inuence of VF on the displacement of the
solute.

The inuence of the ratio of dispersion coefficients 3 on the
variance prole of the solute is shown in Fig. 8c. We observe
that the variance s2a,fs decreases when 3 decreases, which, for
xed values of R, has a destabilising effect on the sample solvent
as VF is then more intense.14 It is shown in the inset of Fig. 8c
that the variance of the sample solvent zone increases with a
decrease in 3. This is because a small transverse dispersion Dy

favours the longitudinal growth of VF of the sample solvent. But
the situation is quite different with the analyte for which a
decrease in 3 has a stabilising effect on the analyte dispersion
dynamics. This is because the advection speed of the analyte
zone locked in the sample solvent increases with a decrease in 3.
So, the spreading of the solute distribution decreases with
decreasing 3 which hence reduces the variance of the solute.

3.5 Propagation of longitudinal extrema of the solute ngers

Length average proles of the local solute concentration,

~caðy; tÞ ¼
1
L0

ðL0

0
ð1þ kðcÞÞca;mðx; y; tÞdx help in understanding the

spreading of ngers and their interactions. In order to study the
dynamics of the VF and solvent strength effects in the system,
the space–time plots of the locations of the local extrema of
these length average proles are shown in Fig. 9b and d for R ¼
1 and 3 (which correspond to simulations of Fig. 6b and d).

Fig. 9 Space-time plots of the longitudinal average profile of the sample solvent ~c(y, t) and the solute ~ca(y, t) for parameters km ¼ 5, S*¼ 4, d¼ 1,
3 ¼ 1, 3a ¼ 1, (a) ~c(y, t) for R ¼ 1 (b) ~ca(y, t) for R ¼ 1 (c) ~c(y, t) for R ¼ 3 (d) ~ca(y, t) for R ¼ 3. Black represents maxima, grey represents minima.
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Those for the sample solvent ~cðy; tÞ ¼ 1
L0

ðL0

0
cðx; y; tÞdx are

shown in Fig. 9a and c respectively. Through space–time plots
we show the mechanism of spreading and shielding of ngers
along with the reordering of the extrema until one single nger
remains. Here the horizontal direction corresponds to y and
time is increasing upwards from t¼ 0 to t¼ 7000. The defects in
the space time plot are related to the death and birth of ngers.

The dynamics of the sample solvent (Fig. 9a) shows the
presence of a large number of ngers at earlier times which
start merging with time. In Fig. 9a we see that aer a large
time there is only one maximum–minimum which represents
a single nger le when the dispersion dominates the system
and dilutes the sample solvent into the bulk of displacing
uid. When the log mobility ratio R ¼ 1, the viscosity differ-
ence between the sample solvent and the displacing uid is
relatively small. Thus, few ngers are seen in the dynamics of
the sample solvent and hence in that of the solute (Fig. 6b). In
the space–time plot there are few maxima and minima (see
Fig. 9a and b) which ultimately merge to one single nger.
Whereas with R ¼ 3 (Fig. 9d), a large number of ngers is seen
in the dynamics of the solute coinciding to the larger initial
number of maxima and minima in the proles of the sample
solvent (Fig. 9c). The splitting of the solute ngers is domi-
nant at earlier times and is later on taken over by a coarsening
process due to a decrease in the effective viscosity ratio. For
R ¼ 3, splitting is more dominant than coarsening whereas
the reverse is seen for R ¼ 1. The dominance of coarsening at
low values of R (see Fig. 9) is evident from the spreading
length Ld of the solute which is larger for smaller R due to
merging of ngers as seen in Fig. 7b.

4 Conclusion
The spatio-temporal distribution of solutes entrained by a ow
in a porousmedium can become complex when affected by both
VF and retention on the porous matrix. On one hand, VF due to
a difference in viscosity between the sample solvent and the
displacing uid leads to a distortion of the solute prole which
is widened and tailing. On the other hand, the fact that the
degree of retention of the solutes on the porous matrix can
depend on the local concentration of the sample solvent due to
the solvent strength effect, can also lead to a bimodal distri-
bution of the solutes in the column. When both effects are
simultaneously at play, the retention varies strongly in space
and time as it can be locally modulated by the ngering of the
sample solvent.

In this article, we have presented the rst description of
solvent strengths effects on the distribution of adsorbed solutes
with the presence of VF due to different viscosities of the sample
solvent and of the displacing uid in porous media. The model
we have developed is a very general model which encompasses all
previous effects studied separately. The problem is controlled by
two main parameters, the log-mobility ratio R due to the viscos-
ities differences between sample solvent and displacing uid and
the solvent strength parameter S*. We nd that, in the absence of

the solvent strength effect, i.e. setting S* ¼ 0, the adsorption of
the solute reduces the effect of VF on it. On the other hand,
adsorption with a solvent strength effect obtained when S* s 0,
increases the time of interaction of the solute with the VF of the
sample solvent. We nd that VF reduces the effect of the solvent
strength on the solute distribution which decreases the bimodal
character of the solute distribution. On the other hand, the
spreading of the solute is reduced due to VF as compared to the
case when only the solvent strength is playing a role. This anti-
synergetic aspect of the interplay of the VF and solvent strength
effects is counter-intuitive and has not been previously noticed to
our knowledge. The main ndings of the paper can thus be
summarized as

) Both VF and a solvent modulated adsorption can affect the
dynamics of solute propagation in porous media but when
these effects are combined, they partially cancel each other.

) Thebimodal distributionof the solute concentration, related
to the solvent strength parameter S*, vanishes as soon as the
solute gets affected by VF of the sample solvent.

) Theparametric study reveals that,when the logmobility ratio
R is increased, there is a decrease in the spreading length and an
earlier disengagement of the solute zone.

The model presented here paves the way to a better under-
standing of peak deformations in chromatographic applica-
tions and possible quantitative comparison with experimental
data in the presence of strong sample solvents. The equations
we have presented may also be of future use in other applica-
tions including dispersion of solutes in soils and CO2 seques-
tration where VF and variable retention are also encountered.
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