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When a given fluid displaces another less viscous miscible one in a horizontal Hele-
Shaw cell, the displacement is stable from the viscous point of view. Nevertheless,
thin stripes perpendicular to the moving interface can be observed in the mixing
zone between the fluids both in rectilinear and radial displacements. This instability
is due to buoyancy effects within the gap of the cell which develop because of an
unstable density stratification associated with the underlying concentration profile.
To characterize this buoyancy-driven instability and the related striped pattern, we
perform a parametric experimental study of viscously stable miscible displacements
in a horizontal Hele-Shaw cell with radial injection. We analyze the influence of
the flow rate, the thickness of the gap, and the relative physical fluid properties on
the development and characteristics of the instability. C⃝ 2014 AIP Publishing LLC.
[http://dx.doi.org/10.1063/1.4870651]

I. INTRODUCTION

Hydrodynamic instabilities of interfaces impact numerous applications from oil recovery to
CO2 sequestration to name a few. It is classically known that when a fluid 1 of density ρ1 and
viscosity µ1 is injected with a given velocity into a miscible fluid 2 of density ρ2 and viscosity
µ2, various convective instabilities may be observed. From the viscous point of view, if µ1 <

µ2, viscous fingering triggered by the unfavorable mobility gradient between the two fluids can
deform the interface into fingers, the morphology of which depends on the relative viscosity, density,
and rheological characteristics of both fluids.1 In a gravity field, if the more dense fluid lies on
top of the less dense one, the horizontal interface is buoyantly unstable because of a Rayleigh-
Taylor instability and related “density fingering” can be observed.2–4 In vertical displacements,
such viscous and buoyancy effects can either cooperate to stabilize or destabilize the flow5 or, on
the contrary, compete, in which case there is a critical injection velocity above which there is an
instability.1

In horizontal systems, the density jump is in the direction perpendicular to gravity and the
stability of the interface is classically considered to depend only on the viscosity difference: viscous
fingering can be observed when the less viscous fluid is injected into the more viscous one while
the reverse displacement is viscously stable. The influence of density differences across the miscible
interface on the viscous fingering pattern has been recently addressed by both linear stability analysis6

and nonlinear simulations7 of the full 3D Stokes problem. It has been shown that a buoyancy-driven
instability can act within the gap of the cell on the upper side of the finger.

No systematic study has been devoted to analyze buoyancy effects in the reverse viscously stable
case, even though instabilities of viscously stable horizontal displacements taking the form of very
thin stripes developing perpendicular to the interface have been reported. Obernauer8 has observed
such stripes in a horizontal Hele-Shaw cell where water is injected from a hole into dyed water and
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flows out from another hole. It was conjectured that this instability was due to the slight difference
of density between the two liquids. Similar patterns have also been studied in horizontal rectilinear
displacements in Hele Shaw cells for dyed aqueous solutions of glycerine injected in water.9 It was
noted that the stripes exist for a gap width of 0.5 mm but vanish using a gap of 0.25 mm. Moreover,
their onset time decreased as the density difference across the interface increased while increasing
the viscosity or decreasing the injection speed had a stabilizing effect. These stripes were attributed
to a buoyancy-driven instability due to a locally unfavorable density stratification resulting from the
velocity profile within the gap (similarly to buoyancy effects seen in gravity currents with external
flow10). For radial injections, similar stripes are observed to grow radially in experiments done with
cupric sulfate injected in dyed water in a Hele-Shaw cell.11 Even if there is only a small surface
tension between the two solutions, the authors give an interpretation of the pattern in terms of a
Marangoni effect. To the best of our knowledge, there is currently no direct experimental proof that
the observed thin stripe patterns are due to a buoyancy effect and no systematic experimental study
has been made to characterize them in detail. There is however increased interest in understanding
the properties of such thin stripes either to suppress them or to avoid confusing them with other
patterns due to other instabilities. Recent work has indeed demonstrated that chemical reactions that
change the viscosity of polymer solutions12–14 can generate patterns at the interface between miscible
solutions even in the viscously stable case of a more viscous injected fluid displacing a less viscous
one. In such reaction-induced viscous fingering,14 the pattern-forming role played by reactions
modifying the viscosity in situ can only be appreciated if the underlying non-reactive displacement
is stable, which is not trivial when the above mentioned stripes come into play. Similarly, striped
patterns have recently been evidenced experimentally in reactive systems when a pellet of copper
sulfate is immersed in a sodium oxalate solution.15 A precipitate in the form of a striped pattern
is observed to grow radially. Such stripes also appear when the copper sulfate solution is pumped
radially from below into a sodium oxalate solution covered to avoid evaporation. The authors of this
study conjecture that the stripes are manifestations of buoyantly driven convection. Such a hypothesis
calls for a detailed characterization of the equivalent non-reactive displacements to analyze when
buoyancy-driven stripes can indeed appear and if so, how their properties can control the precipitation
pattern.

In this context, we experimentally study viscously stable miscible displacements of one fluid by
another miscible, more viscous and denser one inside a Hele-Shaw cell, tuning the relative viscosity
and density difference across the interface by modulating the composition of both fluids. We first
demonstrate, using a rectilinear displacement, that stripes developing in horizontal displacements
vanish if the cell is vertical, which proves that the origin of these stripes is indeed related to the
orientation of the density difference with respect to gravity. We discuss the possible instability
scenario in terms of a buoyancy-driven instability inside the gap of the cell and discuss the analogy
with a Rayleigh-Bénard instability in the presence of a shear in order to explain the direction of
the stripes with respect to the direction of the fluid motion. We next analyze experimentally the
properties of these stripes in a radial injection as a function of the injection speed, gap width of
the cell, and relative density and viscosity differences between the two fluids. We show that the
buoyancy-driven stripes develop with an onset time that depends on the relative properties of the
liquids, which allows the control of the development of the instability and its influence on fluid
mixing.

The article is organized as follows: Section II presents the phenomenon to be studied, shows
that it is related to a buoyancy effect, and provides a probable mechanism of the instability. In
Sec. III, we present details of the experimental set-up for radial injections. The evolution of the
pattern over time as well as the influence of the flow rate q are presented in Sec. IV. In Sec. V, we
characterize the dependence of the wavelength of the pattern on the gap width b while keeping the
ratio q/b constant. Section VI is dedicated to configurations where differences in viscosity between
the two fluids are negligible in order to better illustrate that the destabilizing mechanism under
study is due solely to buoyancy effects. The onset time of the instability and the wavelength of the
pattern are studied as functions of the relative difference of density between the fluids or for different
viscosities µ1 ≈ µ2. Finally, in Sec. VII, we present a summary of the findings and conclusions are
drawn.
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(a) (b) (c) (d)

FIG. 1. (a) Striped pattern observed in a horizontal linear displacement of dyed water by a miscible aqueous solution of
glycerol 20 wt.%. (c) In a vertical upward injection, the displacement is stable. (b) and (d) show an enlargement of the square
in (a) and (c), respectively. The white arrow indicates the direction of injection.

II. BUOYANCY-DRIVEN INSTABILITY

A. Experimental observations

If a viscous solution of 20 wt.% glycerol in water is injected into dyed water from one lateral
side of a rectangular cell9, 16 at a constant speed U, the miscible displacement is stable from a viscous
point of view as the viscosity decreases along the direction of motion. Nevertheless, if the cell is
horizontal, a pattern with very thin stripes regularly spaced in the direction of the flow develops in the
mixing zone between the two fluids (see Figs. 1(a) and 1(b)). No stripes are observed in an upward
displacement in a vertical cell (Figs. 1(c) and 1(d)) which proves that the instability in horizontal
cells is driven by buoyancy effects. Note that to demonstrate the role of buoyancy in this way, it is
necessary to use a cell with a rectilinear injection because it is not possible to proceed the same way
with a cell with radial injection. In the latter case, there would indeed be an asymmetry between the
upper and the lower part of the cell.

B. Mechanism proposed: Destabilization due to convection

To explain the origin of the stripes visible in Figs. 1(a) and 1(b), let us consider the flow
developing in the gap between two plates of a horizontal Hele-Shaw cell upon a displacement of
a fluid 2 by a miscible fluid 1 in the viscously stable situation where µ1 > µ2 (Fig. 2(a)). In most
cases, the injected more viscous fluid is also the denser one such that ρ1 > ρ2. A buoyancy-driven
instability can then locally develop on the lower part of the concentration profile advected by the
parabolic velocity profile, where the denser fluid overlies the less dense one (Figs. 2(b) and 2(c)).
Similarly if the displaced fluid is denser than the displacing one, the destabilization due to buoyancy
can occur on the upper part of the profile so that the system is always unstable from a buoyancy
point of view. As a result, a set of convection rolls develop in the (x, z) plane spanning the thickness
of the gap (Fig. 2(c)). From above (along z), these rolls are seen as parallel stripes perpendicular to
the miscible interface (i.e., parallel to the y direction in Fig. 2(a), in agreement with the experimental
observations.

To understand the orientation of the stripes with respect to the mean flow motion, direct analogy
can be made with buoyancy-driven thermal Rayleigh-Bénard convection. For Rayleigh-Bénard in
static layers, it is well known that convection rolls develop in the layer of liquid when the thermal
Rayleigh number is larger than a given threshold. A similar criterion based on a solutal Rayleigh
number holds if the density stratification is due to concentration gradients. If, in addition to the
unstable stratification, there is an imposed parallel shear flow, it is also well known that the effect
of the flow is to orient the convection cells into streamwise oriented longitudinal rolls, as discussed
in classic papers by Deardorff17 and by Gage and Reid.18 The mechanism responsible for this
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(a)

(b) (c)

FIG. 2. (a) 3D sketch of the velocity profile in the rectilinear displacement of two miscible fluids in a horizontal Hele-Shaw
cell, (b) fluid stratification in the (x, z) plane at an arbitrary position y = y1 shown by the transverse (orange) plane, and (c)
qualitative development of convection rolls due to a buoyancy-driven instability of the lower unstable stratification of the
denser solution on top of the less dense one.

orientation selection is that the imposed flow and the unstable stratification do not interact if the
rolls are oriented in the streamwise direction, while there is a penalty and a higher Rayleigh number
required for transverse rolls, as they must overcome the advection in the flow direction in order to
persist.

Similar considerations of mode selection hold for the case of flow in Hele-Shaw cells. As
shown schematically in Fig. 2(a), an initially vertical density front will be advected and stretched
by the underlying Poiseuille flow while simultaneously spreading vertically as a result of diffusion.
As sketched in Fig. 2(b), this produces a vertical stratification in which the lower density layer
is gravitationally unstable when the upper displacing fluid is denser than the lower displaced one
(the upper layer being unstable should the situation be reversed). The situation is slightly more
complicated than treated in the classic papers referenced above, as the density stratification depends
on both time and spatial location in the direction of flow. However, the same basic mechanisms
express themselves, leading to streamwise oriented rolls, as sketched in Fig. 2(c) for the case in
which the displacing fluid is the more dense.

These general considerations are substantiated in the very recent paper by Talon et al.6 While
these authors include the effect of unstable viscosity ratios, the findings in their work that are most
relevant here are as follows. Using direct numerical simulation of the Stokes equations for a Hele-
Shaw flow, they find that the density profiles produced by the parallel flow and depicted schematically
in Fig. 2(a) reach a final quasi-steady state in which the variation of the stratification in the flow
direction is much weaker than that in the vertical direction. Using these numerically determined
base states, they formulate and solve the linear stability problem for a sequence of quasi-steady and
quasi-parallel base states. The resulting study shows that, over a very wide range of parameters,
longitudinal rolls (their β modes) are always significantly more unstable than transverse modes,
the latter being damped or occasionally very weakly unstable for the range of Rayleigh numbers
considered. Thus while the details of the flow fields, the range of parameters, and the property ratios
considered therein are different than those of our experiments, this work shows that the mechanisms
identified by the classical papers cited above17, 18 are robust, and it substantiates our hypothesis that
the striped patterns are buoyancy-driven instabilities that are oriented in the flow direction by the
nearly parallel flow in the gap of the Hele-Shaw cell.

In the case of radial injection, the velocity field −→v responsible for the shear is a function of
both of the radial distance from the injection point and the vertical direction z. In the creeping flow
regime, this velocity profile can be computed analytically.19, 20 Along the z direction, the profile is
parabolic whereas it decays as 1/r with the radial coordinate. Explicitly, the expression of radial
velocity reads

ur (r, z) = 3q
8πb3r

(
b2

4
− z2), (1)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
109.128.150.226 On: Tue, 15 Apr 2014 15:35:50



044102-5 Haudin et al. Phys. Fluids 26, 044102 (2014)

where q is the flow rate and the walls of the cell are located at z = ± b
2 . Neglecting diffusion, the

miscible interface between the fluids then adopts a profile in the thin dimension that at any instant
of time consists of a section of an ellipse (see the Appendix).

The relative strength of advection and diffusion can be quantified by the Péclet number defined
as

Pe = Ub
D

, (2)

where D is the molecular diffusion coefficient of the solute contributing to the density changes and
U is a characteristic speed defined for a given radius r as

U = q
2πbr

, (3)

which gives a Péclet number varying as 1/r:

Pe(r ) = q
2πr D

. (4)

This shows that, for a radial displacement, the effects of diffusion become relatively stronger in the
course of time because the displacement speed decreases away from the injection point.

If the hypothesis of a buoyancy-driven instability of the density profile stretched in the gap is
correct, one expects to characterize the problem in terms of a Rayleigh number Ra which we define
as

Ra = $ρgL3

µD
. (5)

Here L is the characteristic length of the mixing zone in the stretched profile over which the density
difference $ρ = ρ t − ρb is applied, where ρ t and ρb are the densities of the denser solution at
the top and of the less dense one at the bottom ends, respectively, of the density profile while µ =
(µ1 + µ2)/2 is the average of the dynamical viscosity of the two fluids and g is the gravitational
acceleration.

Note that, in the present problem, the length L over which the density contrast develops is a
function of time. Indeed, in the course of time, the mean flow stretches the density interface from
being vertical at short times to nearly horizontal at longer times, a situation susceptible to buoyancy-
driven instabilities. In the case of a Rayleigh-Taylor instability, i.e. for an unfavorable (denser on
top) discontinuous jump in density across a sharp horizontal interface, the stratification is always
unstable and there is no critical density difference. In the stretched profile considered here (Fig. 2(a))
and in the presence of diffusion and viscous damping, a vertical gradient in density develops in the
miscible mixing zone between the two end values ρ t and ρb. The problem is thus analogous to a
Rayleigh-Bénard problem with a linear density profile extending over a vertical extent L growing in
time and is then characterized by a threshold value of Ra above which the buoyancy-driven instability
sets in.

The Rayleigh number then controls two key aspects of the convection: the onset time and the
wavelength of the pattern. Regarding the first of these, the larger the Rayleigh number above the
threshold, the larger the growth rate of the instability, and the shorter the onset time. At the same
time, the wavelength that is manifest will be approximately that of maximum growth rate, which
is known to be only a weak function of the Rayleigh number. Thus, as formula (5) shows, this
implies that the system should be more unstable if the density difference $ρ between the two fluids
is increased at fixed µ. Similarly, if the density contrast is kept fixed and the viscosity increased, the
Rayleigh number is decreased and one expects the system to be more stable. The gap width b does
not come into play in the problem as long as L ≪ b which is expected to be true at sufficiently large
Péclet numbers and sufficiently short times.

As for the influence of the flow rate q, looking at the formula (1) for the velocity, one sees that
the larger the flow rate the faster the density front gets elongated and can then be destabilized. We
expect however that the flow rate must be larger than a critical value for destabilization to occur.
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Indeed, if q is too small, the relevant Pe is small and diffusive mixing will homogenize the two fluids
in the gap faster than injection stretches the profile and no instability is expected.

Let us now confront these various predictions with experimental results.

III. EXPERIMENTAL SET-UP

Our parametric study is performed in a Hele-Shaw cell with radial injection. The Hele-Shaw cell
is made of two square plexiglass plates (215 mm × 215 mm × 8 mm) separated by a plastic spacer,
the thickness of which can be varied and is always less than a millimeter. The fluid is injected from
the bottom at the center of the lower plate through an injection valve connected to a syringe pump
providing a controlled injection rate (Razel syringe pump). Seen from above the injection valve is
a black disk of radius 0.9 cm. For all the experiments, time t = 0 corresponds to the last picture
before the injected solution appears beyond the black disk of the injection valve. The fluid injected
is a mixture in variable concentration of glycerol and distilled water. In some experiments, sucrose
solutions are also used or sucrose is added to the glycerol solutions to induce small changes of density.
The density is measured with a densimeter at room temperature (between 22.2 and 24.7 ◦C). Then
the viscosity is extrapolated from the measured density using the data21 available in the literature
at 20 ◦C. The cell is initially filled with solutions dyed with Trypan blue at a concentration 0.06
wt.% which is assumed not to change the properties of the fluid (diffusion, density, viscosity). It has
been checked that the difference of density induced by adding the dye to water is of the order of $ρ

= ρ1 − ρ2 = 10−4 g cm−3 at room temperature and is not sufficient to trigger destabilization by
a buoyancy effect in our experimental conditions (radial geometry and given range of flow rates),
contrary to what was observed by Obernauer8 and Maes9 for other geometries. The dynamics of the
fluid is recorded with a reflex digital camera (Nikon D300) with a macro lens at the frame rate of 1
picture per second. Let us first start with a description of the pattern and of the effect of changing
the flow rate.

IV. THIN STRIPES AND INFLUENCE OF THE FLOW RATE

A. Thin stripe pattern

We first consider the case where an aqueous solution of 20 wt.% of glycerol is displacing radially
dyed water. The parameters of this reference experiment are reported in Table I. Both density and
viscosity differences exist between the two fluids as the injected glycerol solution is denser and more
viscous than water. Thus the radial displacement is stable from a viscous point of view, yet a striped
pattern evolving with time is quickly observed close to the miscible interface (Fig. 3), similar to
what is seen in the rectilinear displacements of Fig. 1.

The first signs of destabilization in the form of radial filaments are visible around t = 3 s. In
the following, this time necessary for the instability to develop will be referred to as the onset time,
tonset. At t = 4 s, the pattern is well developed and, later on, it becomes much more visible and
extends radially over a larger region. An important feature of the dynamics is the fact that, after a
given time or equivalently beyond a given radius, the filaments start splitting, leading to stripes with
smaller spacing beyond a certain distance from the injection point. For larger times (i.e., larger radii)
not shown in Fig. 3, the relative effect of diffusion to advection becomes larger; in other words the
Péclet number Pe decreases, and the stripes become less discernable.

TABLE I. Parameters of the reference experiment of Fig. 3. C1 is the percentage in mass of glycerol and $ρ = ρ1 − ρ2.

q (mL/min) b (mm) C1 (wt.%) ρ1 (g cm−3) ρ2 (g cm−3) $ρ/ρ1 µ1 (cP) µ1/µ2

6.48 0.51 20 1.0479 0.9998 46 × 10−3 1.8 0.56
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FIG. 3. Temporal evolution of the viscously stable miscible displacement of dyed water by glycerol 20 wt.% in a quarter of
the Hele-Shaw cell at successive times shown in the lower left corner. The experimental pictures are represented using a gray
scale map (false colors). The field of view is 2.5 cm × 2.5 cm.

B. Tip splitting and time evolution

To better illustrate the splitting of the stripes, we first plot the spatiotemporal map of the fluid
displacement along a horizontal line passing through the injection point (Fig. 4(a)). From this plot,
a given level of intensity I in grey values is selected and fitted with a power law ξ (t) = qt

πb
ϵ , where ϵ

is close to 1/2. An example is shown in Fig. 4(b) for the I = 100 grey level. For a given time ti, the
intensity profile along the circular contour ξ (ti) is plotted. Two examples of selected contours are
shown in Figs. 4(c) and 4(d) with the corresponding intensity profiles plotted in Figs. 4(e) and 4(f).

We see that the pattern, well defined at t = 6 s, seems to later lose its regularity due to splitting
events. The increasing effect of diffusion when Pe decreases leads to a lower intensity level and a
blurry pattern further from the injection point as shown for t = 16 s for example.

C. Influence of the flow rate

The influence of the flow rate q is next investigated to see how the displacement velocity can
influence the pattern (see Fig. 5). The first important observation is that the onset times are roughly
the same (3–4 s) regardless of the speed of the flow, which is consistent with the fact that the Rayleigh
number (5) proposed to quantify the instability is independent of the flow rate q. Nevertheless, a
minimum flow rate is needed to observe the instability. Indeed, the Péclet number Pe cannot be too
small otherwise vertical mixing by diffusion prevails and weakens the density gradient.

Comparing the different flow rates in Fig. 5, we can notice that, for the smaller q = 1.68
mL/min, the pattern is quite blurry and the miscible interface more diffuse as the effect of diffusion
is relatively more important. For the two larger flow rates, the filaments have sharper contours.
Small dots, visible at the end of the white region where both fluids are mixing (rectangular frames of
Fig. 5), might be interpreted as the final end of the 3D convection rolls. Splitting phenomena are
visible at t = 5 s for the two larger displacement speeds and at t = 6 s for the smaller one where it
is less easy to identify since the pattern is less contrasted.

To quantify the influence of the flow rate on the wavelength λ of the stripes, we consider in each
experiment the situation for which the miscible interface has covered the same radial distance R after
a given time tobs. On the corresponding experimental picture, we evaluate on a half-circle of radius
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FIG. 4. (a) Spatiotemporal plot along a line passing through the injection point and (b) contour level I = 100 in grey values
as a function of time in light gray (green) and fit ξ (t) connected dots (blue), (c) and (d) experimental snapshots with the
contour ξ (ti) plotted in black for ti = 6 s and ti = 16 s, respectively. (e) and (f) Intensity profiles along 40 mm of the black
half-circle shown in (c) and (d).

R as shown in Fig. 6 the number N of intervals between two stripes. The different radii chosen are
R1 = 1.50 cm, R2 = 1.63 cm, and R3 = 1.75 cm. The related averaged wavelength λi = πRi/N and
Péclet numbers Pei (calculated with the formula (4) using the infinite dilution value of diffusivity of
glycerol in water D = 1.06 × 10−9 m2 s−1) are given in Table II for three different flow rates.

We see that the larger the radius at which the number of fingers is counted, i.e., the smaller the
Pe number for each imposed flow rate, the smaller the wavelength, which indicates that tip splitting
phenomena occur further from the injection point. On the other hand, comparing the two smaller Pe
for the two smaller flow rates, the wavelengths are relatively close.

We note here a dual influence of Pe on the wavelength as the results of Table II indicate that
smaller wavelengths (i.e., a more unstable system) occur for smaller Pe while there is a critical Pe
below which stripes do not appear as the system is then dominated by diffusion. Another dual role of
Pe has already been evidenced in viscous instabilities.22, 23 Here the explanation can be understood
as follows: recalling that we compare in Fig. 6 situations where the miscible interface has reached
approximately the same position, this implies that for the smaller flow rate, it takes more time for
the injected fluid to reach the same radius. As the onset time of the instability is not significantly
affected by the flow rate, it means that, in the case of the smaller flow rate, the pattern is existing for
a longer time. At the back of the front, diffusion has had time to play a stabilizing role, leading to
a larger wavelength whereas the wavelength is smaller at the edge of the front. On the contrary for
the larger flow rate, diffusion does not have time to smooth smaller wavelengths out and nearly the
same wavelength is observed at both the back and the front of the miscible interface.
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FIG. 5. Zoom on a selected region of the cell for t ranging from 0 to 8 s and for 3 different flow rates. The rectangles evidence
the small dots visible in the mixing area, which might be the end of the convection rolls.

FIG. 6. Black half-circles of radius Ri on which the number N of wavelength λ is calculated. First line: q = 1.68 mL/min, t
= 15 s; second line: q = 3.35 mL/min, t = 9 s; and third line: q = 6.48 mL/min, t = 5 s.
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TABLE II. Averaged wavelength λi and related Péclet number Pei computed on the circles of radius Ri of Fig. 6 for three
different flow rates. The different radii are R1 = 1.50 cm, R2 = 1.63 cm, and R3 = 1.75 cm. The time tobs is the time of the
corresponding snapshot in Fig. 6.

q (mL/min) tobs (s) Pe1 λ1 ± $λ1 (mm) Pe2 λ2 ± $λ2 (mm) Pe3 λ3 ± $λ3 (mm)

1.68 15 280 0.98 ± 0.05 258 0.79 ± 0.03 240 0.57 ± 0.01
3.35 9 559 0.80 ± 0.03 514 0.79 ± 0.03 479 0.58 ± 0.01
6.48 5 1081 0.70 ± 0.02 995 0.71 ± 0.02 927 0.64 ± 0.02

As a summary, the experiments presented in this section show that when a denser and more
viscous fluid is injected radially into a less dense and less viscous one in a horizontal Hele-Shaw cell,
a pattern with stripes aligned in the direction of the flow is observed. The destabilization appears
with an onset time that is independent of the flow rate. Furthermore, in the radial geometry, splitting
phenomena occur beyond a certain time or equivalently beyond a given distance from the injection
point, leading to a smaller wavelength.

V. INFLUENCE OF THE THICKNESS FOR CONSTANT RATIO q/b

Next, the influence of the thickness b of the gap of the Hele-Shaw cell on the wavelength of
the pattern is studied for gaps ranging from 0.08 mm to 0.89 mm, for an aqueous solution of 20
wt.% glycerol injected into dyed water. For b = 0.08 mm, no pattern develops as shown in Fig. 7,
indicating that a minimum thickness is necessary for the instability to develop. Patterns are observed
starting from b = 0.13 mm.

The flow rate q is adjusted depending on the thickness in order to have the same ratio q/b for all
experiments. Proceeding this way enables us to work with the same radial evolution of the velocity,
ur, given by Eq. (3), in all the experiments. The number of wavelengths, N, is counted along a circle
close to the border of the stripes on a quarter of the cell. The related data are summarized in Table III
for the experimental images shown in Fig. 8.

The measured wavelength, of the order of 0.7 mm, appears to be nearly independent of the gap
width. This is due to the fact that the onset time is here short and therefore the distance L on which
the unfavorable density difference $ρ operates is still much smaller than the gap. We notice that
for this set of data, the wavelength of the pattern is of the order of the gap of the cell or a bit larger.
Comparison with theoretical predictions in the viscously unstable case6 is however difficult as the
values of the parameters are different.

VI. INFLUENCE OF THE RELATIVE FLUID PROPERTIES

In the experiments presented in Secs. IV and V, glycerol 20 wt.% is injected in dyed water and
differences in both density and viscosity between the two liquids are present. In order to isolate the
role played by these two parameters independently, we have first performed a set of experiments

(a) (b) (c) (d)

FIG. 7. Buoyancy pattern for the four smaller thicknesses available. The field of view is 2 cm× 2 cm and the flow rates are,
respectively, (a) q = 0.52 mL/min, (b) 0.85 mL/min, (c) 1.25 mL/min, and (d) 1.64 mL/min.
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TABLE III. Influence of the gap thickness on the wavelength of the pattern.
The ratio q/b is kept constant and λ is evaluated along a quarter of a circular
contour with radius R.

Thickness (mm) Onset time (s) R (cm) N (number of λ) λ ±$λ (mm)

0.25 3 1.4 32 0.69 ± 0.04
0.33 3 1.6 36 0.70 ± 0.04
0.38 2 1.4 30 0.73 ± 0.05
0.46 3 1.5 35 0.67 ± 0.04
0.51 2 1.6 33 0.76 ± 0.05
0.59 3 1.5 32 0.74 ± 0.05
0.64 3 1.6 39 0.64 ± 0.03
0.70 2 1.5 32 0.74 ± 0.05
0.76 3 1.6 45 0.56 ± 0.03
0.89 3 1.6 31 0.80 ± 0.05

where µ2/µ1 ≈ 1 for different values of $ρ/ρ1 to study the role of density. Next, to isolate the
influence of the viscosity, we have considered cases where $ρ/ρ1 is fixed and µ1 ≈ µ2 is increased.
Finally, we vary both viscosity and density by considering glycerol in different concentrations
injected in dyed water.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 8. Instability pattern for different thicknesses b and the same injection velocity at constant q/b. The experimental
pictures correspond to the first picture where a clear pattern is observed (1 s after destabilization). The field of view is 2
cm×2 cm. The flow rates are the following: (a) q = 2.17 mL/min, (b) 2.50 mL/min, (c) 2.82 mL/min, (d) 3.35 mL/min, (e)
3.88 mL/min, (f) 4.20 mL/min, (g) 4.60 mL/min, (h) 4.99 mL/min, and (i) 5.85 mL/min.
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TABLE IV. Fluid properties for the smallest and the largest density ratios.

Solutions $ρ/ρ1 µ1 (cP) µ2/µ1

Smallest density ratio 1 × 10−3 1.02 0.98
Largest density ratio 20 × 10−3 1.16 0.86

A. Viscosity ratio close to unity, variable !ρ/ρ1

A way to confirm that the instability under study is due to buoyancy is to take the relative
density between the two fluids as a variable parameter, keeping the viscosity ratio close to unity.
When the parameter $ρ/ρ1 is close to zero, the system should remain stable whereas increasing the
density difference should lead to a more unstable situation and the onset time of the pattern should be
smaller. To check this, we have set up a series of experiments in which a low concentration sucrose
solution is injected in dyed water in a cell with 0.51 mm gap thickness. For the smallest value of
$ρ/ρ1, the viscosity µ1 is 1.02 cP, so that the viscosity ratio is µ2/µ1 = 1/1.02 ≈ 0.98, whereas
for the largest value of density contrast, the viscosity µ1 is 1.16 cP and µ2/µ1 = 1/1.16 ≈ 0.86.
The relative error made in assuming that the viscosity ratio is 1 will be 2% for the smallest density
contrast and 14% for the largest one (Table IV).

The onset times are plotted as a function of $ρ/ρ1 for two different flow rates in Fig. 9 on a
log-log scale. We see that the smaller $ρ/ρ1, the larger the onset time which is consistent with the
hypothesis of destabilization by buoyancy and with the expected increase of the growth rate with
Rayleigh number. In particular, the power law of approximately −1.0 is consistent with a growth
rate that is proportional to Ra.

Comparing the trends for the two flow rates shows however that the onset time does not change
significantly with the speed of the flow, as it was shown previously in Sec. IV. This proves that
it is the relative properties of the fluids which are mainly determining the instability. In addition,
the pattern is qualitatively the same whether aqueous solutions of sucrose or not too concentrated
glycerol solutions are used.

B. Viscosity ratio close to unity for increasing values of µ, constant !ρ/ρ1

We next examine the influence of an increased viscosity when keeping µ1 ≈ µ2 and $ρ/ρ1

constant. In order to do so, we have performed a set of experiments with glycerol solutions of
different concentrations. Once prepared, the solution is split into two parts. The first one is dyed
with 0.06 wt.% Trypan blue. The second one is kept transparent and sucrose is added to it in order to
obtain a value of $ρ/ρ1 close to 5 × 10−3. This small addition of sucrose is assumed not to change

FIG. 9. Onset times for two different flow rates as a function of $ρ/ρ1 on a log-log scale. The fluid 1 is a sucrose solution
and fluid 2 is dyed water. Dots (blue) correspond to q = 3.35 mL/min, stars (red) to q = 6.48 mL/min, and the black dotted
line to a fit of the experimental data. The values of the power law fit are α = 0.08 and β = −1.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:
109.128.150.226 On: Tue, 15 Apr 2014 15:35:50



044102-13 Haudin et al. Phys. Fluids 26, 044102 (2014)

FIG. 10. Onset times for two different flow rates as a function of the dynamical viscosity µ ≈ µ1 ≈ µ2. Fluids 1 and 2 are
prepared from the same initial glycerol solution. A small amount of sucrose is added in fluid 1 such that $ρ/ρ1 ≈ 5 × 10−3

while the dye is added in fluid 2. Dots (blue) correspond to q = 3.35 mL/min, stars (red) to q = 6.48 mL/min, and the black
dotted line to a fit of the experimental data. The linear fit coefficients are γ = 11.6 and δ = −8.8.

the viscosity of the glycerol solution. For an aqueous solution of sucrose injected in dyed water, ρ1

has to be equal to 1.005 g cm−3 to obtain $ρ/ρ1 = 5 × 10−3 at T=20 ◦C, and the extrapolated
viscosity21 is 1.028 cP <µ1 < 1.055 cP. For these data, the maximum error made assuming µ1 = 1
cP is 5.5%.

Fig. 10 shows that the larger the viscosity, the larger the onset time of the buoyancy-driven
stripes for a fixed value of $ρ/ρ1, which seems logical as the larger the viscosity, the more difficult
it is to induce fluid motion. In a manner similar to the dependence on the density difference, the
nearly linear dependence on viscosity is consistent with a scaling of the instability growth rate with
the Rayleigh number, as smaller µ indicates larger growth rate (shorter onset time) and vice versa.

C. Influence of changing both !ρ/ρ1 and µ2/µ1

Eventually, we go back to the case where both effects of density and viscosity are present (see
Table V) when glycerol solutions are injected in dyed water for two different concentrations (5 and
20 wt.%). The thickness of the gap is 0.51 mm and the flow rate q = 6.48 mL/min. Fig. 11 shows
that the larger the concentration of glycerol, the earlier the destabilization occurs.

The number of stripes, N, is counted along a circle of radius R = 2.1 cm. The results for the
average wavelength λ are summarized in Table V. From these data, we see that the larger the density
of the injected solution, the smaller the wavelength. Since the destabilization is occurring earlier for
larger density differences, splitting events have had time to occur and the resulting λ is smaller.

Other combinations of fluids have been studied to test cases where now it is the properties of the
displaced fluid which are changed: 48 wt.% glycerol solutions plus sucrose injected either in dyed
48 wt.% glycerol solution or dyed 17 wt.% glycerol solution, for comparison. The corresponding
images are shown in Fig. 12 and the properties of the two fluids are reported in Table VI. Fig. 12
clearly shows that for $ρ/ρ1= 5 × 10−3 the miscible interface is not yet unstable at t = 8 s whereas
for $ρ/ρ1= 71 × 10−3, the pattern is already developing at t = 4 s. These results indicate that, when
keeping the same injected solution, reducing the concentration of the displaced fluid leads to a more
unstable situation. In conclusion, decreasing the ratio $ρ/ρ1 is a way of delaying the instability.

TABLE V. Influence of the fluid properties on the wavelength λ of the pattern computed along a circular contour with radius
R = 2.1 cm at a time tobs.

Solutions ρ1 (g cm−3) $ρ/ρ1 µ1 (cP) µ2/µ1 tobs(s) λ ± $λ

Glycerol 5 wt.% → dyed water 1.0115 11 × 10−3 1.05 0.95 9 0.97 ± 0.06
Glycerol 20 wt.% → dyed water 1.0479 46 × 10−3 1.80 0.56 9 0.80 ± 0.04
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FIG. 11. Temporal evolution of the miscible displacement of dyed water by glycerol solutions for two different concentrations:
first line C1 = 5 wt.% and second line: C1 = 20 wt.%. The field of view is 2.4 cm × 2 cm and the flow rate q = 6.48 mL/min.

FIG. 12. Experimental pictures of miscible interfaces at different times. First line: glycerol 48 wt.% + sucrose injected in
dyed glycerol 48 wt.%. Second line: glycerol 48 wt.% + sucrose displacing dyed glycerol 17 wt.%. The field of view is 2
cm × 2 cm and the flow rate q = 6.48 mL/min.

TABLE VI. Fluid properties with glycerol 48 wt.% as the injected fluid.

Solutions ρ1 (g cm−3) $ρ/ρ1 µ1 (cP) µ2/µ1 tonset

Glycerol 48 wt.% + sucrose→ dyed glycerol 17 wt.% 1.1224 71 × 10−3 4.95 0.31 3
Glycerol 48 wt.% + sucrose→ dyed glycerol 48 wt.% 1.1224 5 × 10−3 4.95 ≈1 Infinite
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If the viscosity is roughly the same for the two fluids with a constant $ρ/ρ1, larger viscosities also
delay the onset time of the pattern.

VII. CONCLUSIONS

We have presented an experimental study of a buoyancy-driven instability observed when
injecting a viscous fluid into another miscible less viscous one within a horizontal Hele-Shaw
cell. Even if the displacement is viscously stable, a pattern consisting of very thin stripes oriented
perpendicularly to the miscible interface develops provided the density difference between the two
solutions and the gap of the cell are large enough. The phenomenon is related to buoyancy as it
disappears in a vertical cell. It can be explained in terms of a buoyancy-driven instability of the
density profile which is stretched in the gap of the cell in the course of time by the fluid injection. In
a horizontal cell with radial injection, the pattern, which appears after a given onset time, consists
of radial stripes. Further away from the injection point, splitting of the stripes is observed.

A parametric study shows that the system is more unstable when the density difference between
the two fluids is increased at a constant µ and that the later the instability develops, the larger the
wavelength. In parallel, at constant $ρ/ρ1, increasing the viscosity µ1 ≈ µ2 has a stabilizing effect.
These two dependencies, together with their scaling laws, are fully consistent with an instability
growth rate proportional to $ρ/(ρ1µ), i.e., to a Rayleigh number. When both density and viscosity
differences exist, for example, comparing cases of increasing concentrations of a given solute, the
destabilization occurs earlier for the most concentrated solution. Changing the flow rate q does not
have a significant influence on the onset time of the pattern but a minimum q is needed for the
instability to be observed. Changing the thickness b of the cell keeping q/b constant does not have a
significant influence on the instability as the onset time and the wavelength of the pattern for similar
displacements are approximately constant. However, the pattern does not appear if the gap width is
too small.

All these experimental observations can be rationalized by quantifying the instability in terms
of a Péclet number Pe and a Rayleigh number Ra defined in Eqs. (4) and (5), respectively. Both
parameters have to be larger than a critical value for the instability to set in. All effects which
increase the Rayleigh number (increasing $ρ/ρ1 or decreasing µ) have a destabilizing effect. The
existence of a threshold value in Ra explains why a given delay after the start of the injection is
needed for the instability to set in. The Rayleigh number is independent of the gap width b and
flow rate q which explains why these two parameters have no influence on the characteristics of the
pattern once the system is unstable. Nevertheless, the gap width and flow rate must be large enough
for the instability to develop. This is tantamount to say that the Péclet number of the problem must
be large enough for the locally buoyantly unstable density gradient to develop within the stretched
profile in the gap. If the flow rate and hence the Péclet number is too small or if the gap width is not
large enough, then diffusion takes over the advective deformation of the profile and no instability
sets in.

As future work, it would be of interest to conduct more experiments in a rectilinear displacement
to isolate the influence of the injection speed on the problem. Indeed, in radial geometries, the speed
decreases when the distance r from the injection point increases which complicates the interpretation
of the mechanism at the origin of tip splittings for instance. Also it would be interesting to test the
influence of the thickness b of the gap for different fluid pairs or for constant q rather than constant q/b.
Results of experiments in rectilinear displacements could also be easier to compare with theoretical
stability analyses or full numerical solutions of the relevant equations.6, 7 Simulations could moreover
test the influence of the different parameters of the problem on the evolution of the pattern in 3D.
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(a) (b)

FIG. 13. Comparison of the interface profiles for rectilinear injection (dotted line/blue) and radial injection (full line/green)
at two different dimensionless distances reached by the middle of the front (respectively represented in (a) and (b)). The
coordinates are normalized by half the gap width and the injection location is r = 1.

APPENDIX: VELOCITY AND CONCENTRATION PROFILES WITHIN THE GAP
OF A HELE-SHAW CELL FOR A RADIAL INJECTION

As shown in Refs. 19 and 20, the velocity field adopted by a flow injected radially between
parallel plates is given (in the creeping regime) by

ur (r, z) = 3q
8πb3r

(a2 − z2), (A1)

where a = b
2 . According to this relation, the radial coordinate r of fluid particles then obeys the

following equation:

dr
dt

= 3q
8πb3r

(a2 − z2). (A2)

Starting from a cylindrical interface located at r = rinj at t = 0, we see that at time t, this interface
is described by the following expression:

r2 + Ctz2 = Ca2t + r2
inj, (A3)

where C = 3q
4πa3 . Equation (A3) describes an ellipse in the (r, z) coordinate system.

In Fig. 13, we compare the shapes of a parabolic velocity profile arising in the case of rectilinear
injection and the elliptic profile arising in the case of radial injection. To allow an easy comparison,
the profiles are compared when the tip of the injected fluid zone has reached the same distance from
the injection point on the middle plane of the cell.
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