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Nonlinear dynamics resulting from the interplay between diffusive and buoyancy-driven Rayleigh-
Taylor (RT) instabilities of autocatalytic traveling fronts are analyzed numerically for various
values of the relevant parameters. These are the Rayleigh numbers of the reactant A and
autocatalytic product B solutions as well as the ratio D ¼ DB=DA between the diffusion coefficients
of the two key chemical species. The interplay between the coarsening dynamics characteristic of
the RT instability and the constant short wavelength modulation of the diffusive instability can
lead in some regimes to complex dynamics dominated by irregular succession of birth and death of
fingers. By using spectral entropy measurements, we characterize the transition between order and
spatial disorder in this system. The analysis of the power spectrum and autocorrelation function,
moreover, identifies similarities between the various spatial patterns. The contribution of the
diffusive instability to the complex dynamics is discussed. VC 2012 American Institute of Physics.
[http://dx.doi.org/10.1063/1.3695339]

Interaction between two different instabilities is known
to yield spatiotemporal chaos (STC) in some cases. We
analyze here such STC when diffusive and buoyancy-
driven Rayleigh-Taylor instabilities of autocatalytic
fronts interact. The diffusive instability arises when reac-
tants A ahead of the front have a diffusion coefficient DA

much larger than the diffusion coefficient DB of the prod-
ucts behind it. It leads to cm-long periodic modulations of
the front developing after a few hours and the dynamics
of which becomes irregular in time and space for suffi-
ciently small values of the ratio D ¼ DB=DA. A convective
RT instability arises on the other hand when the reac-
tants and products have different densities such that the
denser part of the front lies above the less dense one in
the gravity field. Periodic flow vortices of the order of a
few millimeters deform then the front within a few
minutes. Interaction between these two instabilities can
lead to complex dynamics including spatiotemporal
chaos. On the basis of numerical simulations of the prob-
lem, we apply quantitative characterization of the STC
obtained when these diffusive and RT instabilities of
autocatalytic fronts interact. This gives insight into the
respective contribution of diffusive and convective modes
to the observed STC.

I. INTRODUCTION

Complex spatiotemporal dynamics are known to occur
when, for instance, two instabilities characterized by different

characteristic length and time scales interact.1 Recently, a
new example of such complexity arising from interplay
between two different instabilities has been evidenced in the
dynamics of autocatalytic fronts subject to both diffusive and
convective instabilities.2–5

Chemical fronts whereby autocatalytic products invade
fresh reactants at constant speed can indeed become unstable
because of two different kinds of instabilities. The first one
is due to differential diffusion effects. The corresponding dif-
fusive instability appears when the reactants diffuse suffi-
ciently faster than the products, in effect when the ratio
D ¼ DB=DA between the diffusion coefficients of the product
B and the reactant A is smaller than a critical value Dc, the
value of which depends on the kinetics of the reaction. A
spatial modulation of the front with a wavelength of the
order of cm appears on a time scale of a few hours.6–12 As an
example, this diffusive instability has been studied theoreti-
cally for the cubic autocatalytic reaction

Aþ 2B! 3B; rate k0cac2
b; (1)

where ca and cb are, respectively, the concentrations of reac-
tant A and autocatalyst B, and k0 is a kinetic constant. For this
reaction, the critical diffusion ratio below which the planar
front loses diffusively its stability under transverse perturba-
tions is Dc ¼ 0:43. One single length scale characterizes the
front modulation for D # Dc, while two characteristic lengths
interact for smaller D leading to spatio-temporal chaos.7

Fronts can also become unstable because of unfavorable
density gradients across the front. In absence of gels, these
gradients can trigger convective flows due to buoyancy
effects in the gravity field.13–17 Typically, a Rayleigh-Taylor
(RT) instability can appear when a denser solution lies on
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top of a less dense one in the gravity field, which is possible
as soon as the reactant A has a different density than the
product B. For some reactions15 like typically the iodate-
arsenous acid reaction, reactants are denser than the products
and ascending fronts are buoyantly unstable16 while for other
reactions such as the chlorite-tetrathionate one, for example,
the opposite is true: products are denser than reactants and
descending fronts are those that are unstable.17

Recent theoretical2–4 work have shown that, when these
two instabilities interact, complex spatiotemporal dynamics
in the form of irregular succession of birth and death of fin-
gers can be obtained. D’Hernoncourt et al.4 have character-
ized numerically these nonlinear dynamics in terms of
mixing length, averaged concentration profiles and, espe-
cially, space-time maps. Such maps which show the evolu-
tion in time of the location of minima and maxima of fingers
clearly demonstrate that spatiotemporal chaos (STC) is
obtained when diffusive and RT instabilities of fronts inter-
act. From the experimental point of view, it is challenging to
obtain interaction between diffusive and convective instabil-
ities as they both usually operate on very different time
scales. A first step in that direction has been achieved
by Rica et al. who have experimentally shown that
buoyancy-driven dynamics around autocatalytic fronts can
be influenced by a difference in the diffusion coefficient of
the reactant and autocatalytic product.5 Further develop-
ments need, however, to be done from an experimental point
of view to further study the coupling between diffusive and
convective instabilities.

In this context, it is of interest to further quantify theo-
retically the properties of the expected complex STC dynam-
ics in order to understand the relative weight of the diffusive
and convective modes in the degree of complexity of the
spatiotemporal evolution of the variables. In particular, as it
is known that STC is already obtained for diffusively unsta-
ble systems without convective effects when D is sufficiently
smaller than Dc, we want to understand to what extent the
properties of STC differ when only one or both instabilities
come into play. To do so, we numerically integrate, using
the cubic kinetics (1), a reaction-diffusion-convection model
which can feature both diffusive and RT instabilities. We
first focus on the pure reaction-diffusion system and analyze
the properties of diffusively unstable fronts and of the related
STC as a function of the parameter D. We next couple this
instability to the convective RT one and analyze the changes
in properties of diffusive STC when convection comes into
play.

The present article is, therefore, organized as follows. In
Sec. II, we present the model which describes the interplay
between diffusive and RT instabilities. Section III introduces
quantitative methods to identify and characterize transitions
from regular patterns to complex spatio-temporal dynamics.
Results are discussed in Sec. IV and conclusions presented
in Sec. V.

II. MODEL AND NUMERICAL SCHEME

We consider the autocatalytic reaction Aþ 2B! 3B
within a two-dimensional porous medium or Hele-Shaw cell

of length Lx and width Ly vertically oriented (see Fig. 1).
When coupled to diffusion, this reaction is known to provide
traveling fronts. We start from a system filled with the reac-
tant A and a band of product B in the middle such that it
leads to both downward and upward propagating fronts.
When unfavorable density gradients develop around the
front, convective motions can appear. The concentrations ca

and cb of reactant A and autocatalytic product B follow then
reaction-diffusion-convection dynamics described by the fol-
lowing equations:2–4

!
r $

!
u ¼ 0; (2)

!
rp ¼ %l

j !
u% qða; bÞ

!
g
!
e

x
; (3)

@ca

@t
þ

!
u $

!
rca ¼ DAr2a% k0cac2

b; (4)

@cb

@t
þ

!
u $

!
rcb ¼ DBr2bþ k0cac2

b: (5)

Here, the velocity field
!
u ¼ ðux; uyÞ of the incompressible

flow is described by two-dimensional Darcy’s law (Eqs. (2)
and (3)) written in the Boussinesq approximation. p repre-
sents the pressure and j is the permeability of the porous me-
dium. k0cac2

b is the reaction rate where k0 is the kinetic
constant. The diffusion coefficients DA;B of A and B, the
gravitational acceleration

!
g and the viscosity l are all

assumed constant.
The density is given by an equation of state qða; bÞ ¼

q0 þ caca þ cbcb where q0 ¼ qð0; 0Þ is the fluid density of
the solvent and ca;b are the positive solutal expansion coeffi-
cients of species A and B, respectively.2–4

Let us then introduce the time scale T0 ¼ 1
k0c2

a0

, the length

scale L0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
DAT0

p
, and the characteristic velocity

U0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
DA=T0

p
. The density scales with dq ¼ ðca % cbÞca0,

i.e., the density jump across the front. The dimensionless
equations are then2–4

!
r $

!
u ¼ 0; (6)

FIG. 1. Sketch of the system.
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!
rp ¼ %

!
uþ ½Raca þ Rbcb)ix; (7)

@ca

@t
þ

!
u $

!
rca ¼ r2ca % cac2

b; (8)

@cb

@t
þ

!
u $

!
rcb ¼ Dr2cb þ cac2

b; (9)

where the diffusion coefficients ratio D and the Rayleigh
numbers Ra and Rb are given by

D ¼ DB

DA
; Ra ¼

cajg

l
ffiffiffiffiffiffiffiffiffiffi
DAk0

p ; Rb ¼
cbjg

l
ffiffiffiffiffiffiffiffiffiffi
DBk0

p : (10)

In absence of flow, i.e., when Ra ¼ Rb ¼ 0, the reaction-
diffusion system (8) and (9) with

!
u ¼ 0 can feature a diffu-

sive instability provided the system is large enough and
D < Dc, where Dc ¼ 0:43 for the cubic scheme chosen
here.2,6,7,12 Such a diffusive instability is independent of

gravity and affects thus both upward and downward traveling
fronts (see Fig. 2(a)). In spatially extended systems, spatio-
temporal chaos is then observed.6,7 If D > Dc, the front is
diffusionally stable. For any value of D, the front can also
become buoyantly unstable if density gradients operate
across the front. If the density decreases during the reaction
(reactants denser than products, i.e., Ra > Rb), the ascending
fronts are buoyantly unstable while, for increasing density
(Ra < Rb), the descending fronts are buoyantly unstable3,4

(Fig. 2(b)). If D < Dc and Ra 6¼ Rb, then both instabilities
can operate simultaneously.

To analyze the relevant dynamics numerically, the dimen-
sionless equations (6)–(9) are solved using a pseudo-spectral
numerical method introduced by Tan and Homsy18 and
adapted to take the chemical reaction into account. The bound-
ary conditions are periodic in x and y directions, while the ini-
tial conditions are ca ¼ 1; cb ¼ 0 and no flow. A local
horizontal noise input of B in the middle of the system initiates
the traveling front (see Fig. 1). Each simulation starts with
exactly the same noise in a system of dimensionless length
Lx ¼ 8192 and width Ly ¼ 512. The spatial discretization uses
a ratio of 2 between the number of spectral modes Ny and Nx

and the dimensionless width Ly and length Lx. Hence, the

FIG. 2. Example of interface modulation for a descending front due to (a)
diffusive instability Ra ¼ Rb ¼ 0;D ¼ 0:15 and (b) a Rayleigh-Taylor insta-
bility for Rb > Ra;D ¼ 0:6. Size of the image: 86* 256.

FIG. 3. Example of a dynamics where RT and diffusive instabilities interact
for Rb > Ra;D ¼ 0:1. Size of the image: 121* 256.

FIG. 4. Space-time map of the locations
of the maxima (black) and minima
(grey) of the longitudinally averaged
profile of ca as a function of time
(increasing downwards from t¼ 0 to
t¼ 5000) for the pure diffusive instabil-
ity and various values of D. Ra;b ¼ 0.
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computational domain has here Nx ¼ 4096 and Ny ¼ 256
nodes. The time step is dt¼ 0.2. The ratio a ¼ Rb

Ra
¼ cb

ca
is here

kept constant. We study three different cases Rb ¼ aRa:
a ¼ 0; a ¼ 0:5, and a ¼ 2 for various values of D. Our objec-
tive is to characterize spatio-temporal complexity arising when
the RT and diffusive instabilities interact. Before doing so, let
us introduce the various tools used to quantify spatio-temporal
complexity. These tools will first be used to characterize the
pure diffusive instability before convection will be added to
the problem.

III. QUANTITATIVE AND QUALITATIVE MEASURES

Nonlinear dynamics can be analyzed by studying the
evolution of the two-dimensional (2D) concentration fields
ca;bðx; y; tÞ such as shown in Figs. 2 and 3 in the course of
time. At successive times, these 2D concentration fields can
be spatially averaged along the longitudinal x coordinate in
half the system where the front propagates to yield one-
dimensional (1D) averaged profiles defined by19:

hca;bðy; tÞi ¼
2

Lx

ðLx=2

0

ca;bðx; y; tÞdx: (11)

For a stable front, the front is flat and hence hca;bðy; tÞi
remains constant and equal to the mean concentration in the
cell. For unstable systems, this measure allows one to follow
the number of fingers in time and, in particular, shows how
the fingers interact: some fingers can spread and shield their
neighbors, while others merge to ultimately lead, in some
cases, to one asymptotic single finger.19,20

These longitudinally averaged profiles also enable to
distinguish different characteristics of finger patterns when
they are used to plot space-time maps. These maps show the
location of the maxima and minima of the longitudinally
averaged profile hca;bðy; tÞi in the course of time.4,20 The
resulting system’s dynamics for diffusively unstable fronts is
presented in Figure 4 for Ra ¼ Rb ¼ 0 and different values
of D below Dc.

In these spatio-temporal maps, one can see that, for
D¼ 0.4, the wavelength of fingers remains almost constant.

Interactions among fingers characterized by succession of
birth and death and the subsequent irregularity increase
when D is decreased below Dc. This is coherent with the cha-
otic trend observed for large systems in the diffusively unsta-
ble regime.2,6,7

This irregularity can be characterized thanks to the mea-
sure of the spectral entropy, defined as21–24

SðtÞ ¼ %
XN

k¼1

pk;t ln pk;t; (12)

where pk;t is the relative weight of mode k,

FIG. 5. Time-averaged spectral entropy for the pure diffusive instability.
FIG. 6. Autocorrelation function AC as a function of the delay time s for
D¼ 0.15%0.4 at (a) t¼ 1000, (b) t¼ 3000, and (c) t¼ 5000.
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pk;t ¼ j ^ca;bðk; tÞj2X

k

j ^ca;bðk; tÞj2:
(13)

Here, ĉa;b is the discrete spatial Fourier transform of ca;bðy; tÞ
given by

ĉa;bðk; tÞ ¼
XN%1

j¼0

ca;bðjDx; tÞe%
ffiffiffiffiffi
%1
p

jDxk; (14)

where k ¼ 2pm=N and m ¼ 0; 1; 2::::;N. This spectral entropy
is a good measure of changes in the spatial patterns and in par-
ticular of the spatial disorder. If pk;t ¼ 0 we assume the product
pk;tlnpk;t ¼ 0. Therefore, if pk;t ¼ 1 for some k, then S(t)¼ 0
(ordered state). The maximum entropy24,25 is SðtÞ ¼ lnðNyÞ.
For our system where Ny ¼ 256; SmaxðtÞ + 5:5.

To analyse the spectral entropy for each D, we calcu-
lated the time-averaged spectral entropy,24 hSit, correspond-
ing to the mean of S(t) in the time interval 0 # t # 5000. In
case of a transition to a complex dynamics, the spectral en-
tropy suddenly increases. Hence, as long as D > Dc where
the front remains planar, the time-averaged spectral entropy
hSit ¼ 0. However, once D is decreased below Dc, irregular-
ity sets in and hSit departs from zero. This characteristic is
shown in Figure 5. Interestingly, the largest spatial disorder
is obtained when D + 0:15 (hSit + 1:9).

If we analyse 15 different simulations with same values
of parameters but different noise in the initial conditions,
we obtain hSit ¼ 2:20 6 0:12 for D¼ 0.15 which we consider
here as the representative value for the pure diffusive instability.

FIG. 7. Time-averaged power spectrum PS(k) as a function of k for (a)
D¼ 0.13% 0.17 and (b) D¼ 0.3% 0.4.

FIG. 8. Space-time map of the locations
of the maxima (black) and minima
(grey) of the longitudinally averaged
profile of reactant A as a function of
time for a buoyantly unstable ascending
front for Ra ¼ 0:5;Rb ¼ 0:25, different
values of D from t¼ 0 to t¼ 5600. On
top, the concentration ca at time
t¼ 5000.
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The front dynamics can also be characterized quantita-
tively by the autocorrelation function

Cðt; sÞ ¼ ACðsÞ
ACðs ¼ 0Þ

; (15)

where

ACðsÞ ¼ 1

N

XN%s

t¼1

ðcðt; yÞ % !cðtÞÞðcðtþ s; yÞ % !cðtÞÞ (16)

evaluated for each t. We chose three t at which to evaluate
C: t¼ 1000, t¼ 3000, and t¼ 5000. Figure 6 shows the de-
velopment of correlations in time.

The system with the largest spatial disorder (D¼ 0.15)
presents some correlations at earlier time (see Fig. 6(a)) that
do not persist later on (see Fig. 6(b)). However, for systems
with D > 0:15, it is possible to observe a persistent short
range correlation during the front evolution (see Figs. 6(b)
and 6(c)). These short range correlations indicate a charac-
teristic wavelength arising from the front instability, which
can be analysed using the time-averaged power spectrum

PSðkÞ ¼ 1

T

XtfþT

ti

hjĉa;bj2i: (17)

This quantity is used to characterize the degree of spatial dis-
order. In Figure 7, the time-averaged power spectra show
different degrees of spatial disorder for different values of
the diffusion ratio. In each case, this quantity indicates simi-
larities between the spatial patterns.

The largest degree of spatial disorder is observed for
small values of D (see Fig. 7(a)). The results for the systems
of Figure 6 are shown in Figure 7.

In this case, the time-averaged power spectrum shows
a repetitive behaviour for D¼ 0.3 indicating the correla-
tion observed in Figure 6. For D¼ 0.15, the time-averaged
power spectrum indicates the growth of modes with
smaller wave numbers. This dynamics corresponds to the
appearance of structures on longer length scales which is
in good agreement with predictions from the linear stabil-
ity analysis.12

Let us now examine the results of such spectral analysis
of the system when the influence of buoyancy effects is
added, i.e., when the diffusive instability starts to interact
with buoyancy-driven instabilities of the fronts (Ra;b 6¼ 0).

IV. BUOYANTLY UNSTABLE CHEMICAL FRONTS

The results of space-time maps of concentrations, corre-
lation function and spectral analysis (spectral entropy and
time averaged power spectra) when the RT and diffusive

FIG. 9. Same as Fig. 8 but for a buoyantly stable descending front and
Ra > Rb.

FIG. 10. Time-averaged spectral entropy for the system with Ra > Rb.
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instabilities interact are here analyzed when Ra 6¼ Rb and
D < Dc.

A. Case: Rb 5 aRa ; a 5 0:5

In this case, the density decreases during the reaction as
Rb < Ra, i.e., the solution of the product B is less dense than
that of the reactant A. The ascending fronts are buoyantly
unstable, while the descending fronts are convectively stable.
Figures 8 and 9 illustrate the dynamics by space-time maps
for ascending and descending fronts, respectively, when
Ra ¼ 0:5 and Rb ¼ 0:25.

The space-time maps for the ascending fronts (Fig. 8)
show a small wavelength in the beginning of the simulation.
The merging of lines observed during the time evolution
indicates coalescence of fingers towards one single finger20

occurring faster for D > Dc. Here, the RT instability is act-
ing and a pattern with a larger wavelength is, therefore, still
present when D > Dc. For buoyantly stable descending
fronts (Fig. 9), the defects observed in spatio-temporal maps
decrease as D increases (Figs. 9(a)–9(c)) and the system
tends to a planar state for D > Dc, i.e., no modulation is seen

on space-time maps. For small D, the diffusive instability
dominates and a great number of fingers with a smaller
wavelength are observed. As the system evolves, they coa-
lesce and divide due to buoyancy forces. However, as a com-
parison with Figure 4 shows, the irregularity is different in
the presence of density changes (Fig. 9) then when the diffu-
sive instability is the only one to be operative (Fig. 4).

The degree of irregularity of spatial patterns can be
quantified by the time-averaged spectral entropy (see
Fig. 10). For descending fronts, the spectral entropy reaches
the largest value hSit + 2:7 when D is small and then
decreases quickly. An ordered state is reached when
D > 0:25. For ascending fronts, RT takes over for larger D
and the value of spatial disorder remains hSit + 1:2 up to
D + 0:7 and then decreases indicating a transition to an or-
dered state. This result agrees with the linear stability analy-
sis, which shows larger growth rates of disturbances for
small D and ascending fronts.3

In order to establish the entropy for systems where either
the RT instability or diffusive instability dominates, fifteen
different simulations are evaluated for the system with the
largest entropy value in Figure 10: D¼ 0.1. The average

FIG. 11. Autocorrelation functions for the buoyantly unstable ascending front of reactant A (see Fig. 8) when Ra > Rb at three times: t¼ 1000, t¼ 3000 and
t¼ 5000.
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value of the spectral entropy for the ascending fronts is
hSit ¼ 0:89 6 0:09, and for the descending fronts is
hSit ¼ 2:38 6 0:07. We can conclude, by comparing the
results from spectral entropy and space-time maps, that the
first value represents the value of entropy for a system domi-
nated by the RT instability, while the second value corre-
sponds to a system dominated by the diffusive instability
with Ra > Rb. This last value is slightly larger than hSit ¼
2:20 computed for the diffusive instability case with
Ra ¼ Rb ¼ 0.

The dynamics of the autocorrelation function for results
of Figs. 8 and 9 is shown in Figs. 11 and 12 at three different
times. For t¼ 1000, we analyze the behavior of the system
close to onset of its evolution. At t¼ 3000 and 5000, we
address the properties of the system in the middle and final
stages of its evolution, respectively. Also, each set of data
corresponds to a value of D allowing us to compare different
systems.

The first data set (Figures 11(a)–11(c)) focuses on D in
the range [0.1–0.2]. Differences between the autocorrelation
functions, especially the curve corresponding to D¼ 0.1
stand out at t¼ 3000 (see Fig. 11(b)). Compared with the

space-time map, at this point in the evolution, the RT insta-
bility dominates the structure formation. At t¼ 5000, i.e., the
end of the simulation, the autocorrelation function does not
show indication of periodicity any longer, but some persis-
tent oscillations are still present. Looking at the space-time
maps, the propagation front is almost stable with some RT
fingers remaining.

The second data set for D from 0.2 to 0.3 shows that
the correlations are almost identical at the beginning of the
simulations (Figure 11(d)), have decreased when t¼ 3000
(Figure 11(e)) and vanish at t¼ 5000 (Figure 11(f)). For
0:3 < D < 1 (third data set), and as expected from the lin-
ear stability analysis, some periodicity is noticed in the be-
ginning of the simulations (Figure 11(g)) but when fingers
from the RT instability dominate (D , 0:9), a periodic
behavior in the autocorrelation function may be seen at
t¼ 3000 (Figure 11(h)). It vanishes when t¼ 5000 (Figure
11(i)).

For descending fronts, the same procedure is applied
and gives the autocorrelation functions of Fig. 12. In the first
data for 0:1 < D < 0:2, a transient periodic behavior is
observed when D¼ 0.19 (Figs.12(a)–12(c)). When t

FIG. 12. Autocorrelation functions for the buoyantly stable descending front of reactant A as seen on Fig. 9 when Ra > Rb at three times: t¼ 1000, t¼ 3000
and t¼ 5000.
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approaches 5000, however, such a function is no longer peri-
odic (Fig. 12(c)). In the second data for D from 0.2 to 0.3
(Figs. 12(d)–12(f)), we see that the periodicity for D¼ 0.2
increases in time. This is the signature of the regular small
wavelength pattern of the diffusive instability. Compared
with the space-time maps, this behavior is similar to that
observed for Ra ¼ Rb ¼ 0 and D¼ 0.3. Thus, the autocorre-
lation function has a shorter wavelength. However, in this
data set, we observe that there is no correlation for D¼ 0.29.
This result was expected from the analysis of spectral en-
tropy, which indicates the tendency of the system to evolve
to a homogeneous state for D > 0:3 which is confirmed in
the third set of data where no correlation can be noted (Figs.
12(g)–12(i)).

Comparison of the time-averaged power spectra show
that, for the buoyantly unstable ascending front, the degree
of spatial disorder is largest for small values of D, when
small undulations are observed in Fourier modes (Fig.
13(a)). These undulations disappear as D increases
(Fig. 13(b)).

For buoyantly stable descending fronts, systems that
showed some periodicity in the autocorrelation function
present in the time-averaged power spectra similar behav-
ior, in particular systems with D¼ 0.19 (Fig. 14(a)) and
D¼ 0.2 (Fig. 14(b)). For systems with 0:2 < D < 0:3, we
can set the period off for each case (Fig. 14(b)). Moreover,
the peaks are nearly coincident, with respect to the Fourier
mode, indicating that there was a scattering of spectral

energy to other modes as D decreases. As expected, as D
increases, no period can be observed in the power spectrum
(see Fig. 14(c)).

B. Case: Rb 5 aRa; a 5 2

In this case, the density increases during the reaction as
the product B is denser than the reactant A. The ascending
fronts are hence buoyantly stable, while the descending
fronts are unstable. Figure 15 shows the dynamics for de-
scending fronts. The system is here both buoyantly and diffu-
sively unstable if D < Dc which is known to produce
spatiotemporal chaos. The complex dynamics in space-time
maps shows indeed an irregular succession of merging and
splitting of fingers indicating the interplay between RT and

FIG. 13. Time-averaged power spectra for the reactant A in the buoyantly
unstable ascending fronts for Ra > Rb and different values of D. FIG. 14. Same as in Fig.13 but for buoyantly stable descending fronts.
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diffusive instabilities. When D increases above Dc, large fin-
gers due to the pure RT instability are the only ones
remaining.4

The time-averaged spectral entropy reaches the largest val-
ues when RT and diffusive instabilities interact, i.e., for de-
scending fronts (bottom) when D < Dc (Fig. 16). This quantity
suddenly decays indicating a transition to an intermediate value
of spatial disorder. This value almost does not change
(hSit + 1; 1) up to D ffi 0:7. The large fingers due to a
Rayleigh-Taylor instability are predominant for larger D. The
tendency to a more homogeneous state occurs when hSit
decreases when D > 1, as predicted by linear stability analysis.3

For ascending fronts, the stabilizing buoyancy effects
kill the unstable diffusive modes and hSit remains zero.
Figure 17 shows the autocorrelation function for various val-
ues of D when the RT instability interacts with the diffusive
instability. For 0:1 < D < 0:2, the autocorrelation function
has no periodicity and the curve oscillates unpredictably

FIG. 15. Space-time map of the loca-
tions of the maxima (black) and minima
(grey) of the longitudinally averaged
profile of reactant A as a function of
time when the density increases during
the reaction for different values of D for
buoyantly unstable descending fronts
from t¼ 0 to t¼ 5600. On top, the con-
centration of reactant A is shown at time
t¼ 5000.

FIG. 16. Time-averaged spectral entropy for the system with Ra < Rb for
descending fronts unstable both from RT and diffusive instabilities.
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around zero (see Figs. 17(a)–17(c)). For D¼ 0.19, we can
notice a characteristic wavelength, larger than that observed
when D¼ 0.2 in Figure 12. It indicates the presence of struc-
tures with larger size due to RT modes. A similar situation is
present when 0:2 < D < 0:3. After a transient situation for
t. 1000, the autocorrelation function exhibits a typical
behavior in the presence of large structures (see Figs.
17(d)–17(f)).

For the last data set, we study cases where the spectral en-
tropy shows an intermediate value of spatial disorder. The cor-
responding space-time maps indicate the prevalence of the RT
instability. Note that some periodicity can be observed up to
half of the simulation evolution (see Figs. 17(g)–17(i)). At the
end of the simulations, the autocorrelation function exhibits a
behavior similar to that of systems with a single finger (see
Fig. 17(i)).

The time–averaged power spectra show a similarity
among the spatial patterns obtained for D < 0:1 (Figure
18(a)) and 0:2 < D < 0:3 (Figure 18(b)). The small oscilla-
tions present in the curves of the time–averaged power spec-
tra indicate the presence of disturbances in the system,
caused by the diffusive instability, which spreads the spectral
energy in Fourier mode.

V. CONCLUDING REMARKS

We have shown that spectral analysis using longitudi-
nally averaged profiles is a useful methodology to study the
dynamics of unstable chemical fronts. By means of time–-
averaged spectral entropy and analysis of autocorrelation
functions, it is possible to characterize the complex dynam-
ics of buoyantly and diffusively unstable propagating fronts.
Spectral entropy identifies and quantifies the transition to
spatio–temporal chaos when both RT and diffusive instabil-
ities interact. From the autocorrelation function, we are able
to find either the wavelength of the front modulation or to
identify possible chaotic behavior. Also, the time–averaged
power spectra can be used to verify such results.

Figures 19(a) and 19(b) summarize the results for the
spectral entropy of ascending and descending fronts respec-
tively. For the ascending front (Fig. 19) and D > Dc, the RT
instability dominates if Ra > Rb and the corresponding hSit
is then positive in a larger domain of D than for Ra ¼ Rb ¼ 0
where hSit 6¼ 0 only in the diffusively unstable regime. This
result indicates that the disorder due to the RT instability is
not so high compared with the spatio-temporal chaos in the
form of biscale chaos7 caused by diffusive instability.

FIG. 17. Autocorrelation function C of the descending front for the reactant A when Rb > Ra at three points in time: t¼ 1000, t¼ 3000, and t¼ 5000.
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Therefore, it is clear that the diffusive instability provides
patterns with a larger degree of spatial disorder, and a transi-
tion to more complex dynamics. Furthermore, it indicates
that the RT instability leads to structures with more regular
periodic dynamics. If Rb > Ra, the density stratification is
stabilizing and kills the diffusive instability. As a conse-
quence, hSit ¼ 0, even for D < Dc.

In the case of descending fronts (Fig. 19(b)), if Ra > Rb,
the system is buoyantly stable and the only disorder comes
from the diffusive instability when D < Dc. The time-
averaged power spectrum indicates that the system has some
periodicity before becoming ordered (low spatial disorder).
In other words, the dynamics changes from a complex

pattern to a periodic one. When Rb > Ra, the interaction
between the RT and diffusive instabilities leads to a very
complex dynamics (Fig. 15) characterized by the largest
value of hSit (Fig. 19(b)). However, if the diffusion rate D
increases, this interaction decreases and the RT instability
takes over. The intensity of spatial disorder decreases then to
an intermediate value, while space-time maps show a switch
to one single dominant finger.

In conclusion, this work has quantified the degree of
complexity of spatiotemporal patterns obtained when diffu-
sive and RT instabilities act on traveling fronts to yield spa-
tiotemporal chaos. We have developed several quantitative
measurements which could easily be applied on experimen-
tal data to gain more insight into new STC dynamics result-
ing from the interplay between two different instabilities.
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