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a b s t r a c t

Buoyancy-driven convection can be induced by concentration and temperature gradients near the
interface between two immiscible fluids filling a vertical Hele–Shaw cell, each of them containing a
reactant of an exothermic AþB-C reaction taking place in the bulk of the lower layer. A chemo-
hydrodynamical pattern appears then due to the combined action of Rayleigh–Taylor, diffusive layer
convection and Rayleigh–Bénard instabilities occurring either below or above the interface. The
mathematical model we develop to describe such dynamics consists in a set of reaction–diffusion–
advection equations ruling the evolution of concentrations and temperature coupled to Navier–Stokes
equation, written in a Hele–Shaw approximation. We perform numerical simulations of the non-linear
system and study the influence on pattern formation of changes in the Damköhler number of the
problem and in the ratio of initial reactant concentrations.

& 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Formation and dynamic evolution of patterns are at the core of
numerous studies in both hydrodynamic and reaction–diffusion
(RD) systems. In the last years, an increasing number of works has
been devoted to the study of patterns that emerge when RD and
hydrodynamic mechanisms are put at work together. In this
framework, the study of buoyancy-driven fingering in a reactive
two-layer system of immiscible fluids is interesting both from a
fundamental point of view and with respect to potential applica-
tions ranging from petroleum engineering, extraction of pluto-
nium salt to pharmaceutical engineering and food production.
The spontaneous generation of convective flows in immiscible
two-layer systems is of practical importance because convection
leads to mechanisms of mass transfer from one fluid phase to the
other much more intensive than molecular diffusion and can
drastically alter pattern formation in the system. One of such
mechanism results from a buoyancy-induced chemo-hydrodyna-
mical instability of Rayleigh–Taylor type due to the existence of
statically unstable density profiles in the gravity field. Such
unfavorable density stratifications generate spontaneous convec-
tive flows near the liquid–liquid interface. This happens, for
example, when either one of the reactants or the product solution
in the bulk or close to the interface is denser than the surrounding
liquid. Under the action of gravity the denser liquid sinks into the

less dense one inducing a convective pattern which progresses in
time. Such chemically driven buoyancy-related patterns have
received increasing attention during the last years both from
experimental (Sherwood and Wei, 1957; Micheau et al., 1983;
Avnir and Kagan, 1984, 1995; Pons et al., 2000; Ermakov et al.,
2001; Karlov et al., 2002) and theoretical (Citri et al., 1990; Pérez-
Villar et al., 2000; Bees et al., 2001) point of view. Recently,
convective phenomena related to such buoyancy effects due to an
exothermic AþB-C neutralization reaction close to an immisci-
ble liquid–liquid interface have been studied experimentally by
Eckert and Grahn (1999), Eckert et al. (2004), Bratsun et al.
(2005), Shi et al. (2005), Shi and Eckert (2006, 2007). Depending
on the nature of the reactants used, Marangoni effects due to
surface tension gradients can come into play as well (Bratsun
et al., 2005; Shi et al., 2005; Shi and Eckert, 2006, 2007; Grahn,
2006; Bratsun and De Wit, 2004). Their experimental system
consists in an organic solution containing an acid (reactant A) put
in contact in a Hele–Shaw cell with an aqueous solution in which
a base (reactant B) is dissolved. After transfer of the acid across
the interface, a neutralization reaction takes place in the aqueous
phase. In the absence of Marangoni effects, dynamics and patterns
in the form of plumes rising above the interface and fingers falling
below it are observed (Eckert and Grahn, 1999; Eckert et al.,
2004). They result from the coupling between different buoyancy-
driven instabilities, such as Rayleigh–Taylor, diffusive-layer con-
vection (DLC), Rayleigh–Bénard and double diffusive instabilities
(Trevelyan et al., 2011).

Similar experiments have been conducted in parallel using
miscible solvents. In this case a less dense aqueous solution of

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/ces

Chemical Engineering Science

0009-2509/$ - see front matter & 2011 Elsevier Ltd. All rights reserved.
doi:10.1016/j.ces.2011.08.010

n Corresponding author.
E-mail address: adewit@ulb.ac.be (A. De Wit).

Chemical Engineering Science 66 (2011) 5723–5734



Author's personal copy

a given acid is put in contact from the above with a miscible denser
aqueous solution of a simple base (Zalts et al., 2008; Almarcha et al.,
2010a,b). Buoyancy-driven patterns are observed which are quite
different from those observed in the immiscible case: only ascending
plumes are obtained above the initial contact line while a planar
reaction front moves downwards (Almarcha et al., 2010a). In some
cases, convective deformations are also observed after a longer time
below the initial contact line (Zalts et al., 2008) but this has been
shown to be due to the interference of the color indicator used for
visualization purposes (Almarcha et al., 2010b). It is interesting to
note that, in miscible systems, the patterns observed are asymmetric
with regard to the contact line between both solvents, a peculiarity
related to the reaction and thus not observed in non-reactive systems
where buoyancy-driven instabilities have up–down symmetries
(Trevelyan et al., 2011). This up–down symmetry with regard to the
contact line is also broken when the two solvents are immiscible
however reaction–diffusion–convection (RDC) patterns are quite
different from those in the miscible reactive case even if similar
reactants are used. As an example, the patterns studied by Eckert and
Grahn (1999) using simple carboxylic acids in an organic phase above
immiscible water containing sodium hydroxide (NaOH) are quite
different from those observed in the same geometry when chlorhyd-
ric acid (HCl) is put on top of NaOH in miscible aqueous solutions
(Almarcha et al., 2010a, 2011) especially below the contact line. Even
if, in both cases, ascending plumes develop above the line of contact,
no convection is obtained in the miscible case below it while
descending plumes are obtained in the immiscible case.

In this framework, the present work aims to study numerically
the chemo-hydrodynamic patterns which can result from buoy-
ancy effects in vertical reactive immiscible two-layer systems. We
analyze the coupling between a simple exothermic AþB-C
reaction and gravity-driven convection in a setup similar to the
one studied experimentally using immiscible solvents by Eckert and
Grahn (1999) and Eckert et al. (2004). Our goal is, in particular, to
describe the falling fingers observed below the interface as a
function of the parameters of the problem. Our analysis is based
on numerical integration of a two-dimensional (2D) model coupling
Navier–Stokes equations for the evolution of the flow velocity in
both layers coupled to RDC equations for the concentrations of the
relevant chemical species and temperature. We study numerically
the spatio-temporal dynamics that can be observed due to unfavor-
able density profiles appearing in the system when the reaction
starts to take place upon diffusion of the reactant dissolved in the
upper layer toward the lower layer. We analyze numerically the
influence of the ratio between the characteristic hydrodynamic and
chemical time scales (i.e. the role of the Damköhler number of the
problem) and of the ratio of the initial concentrations of reactants on
the spatio-temporal dynamics of concentration and flow velocity. We
compare our numerical results with those obtained experimentally
(Eckert and Grahn, 1999; Eckert et al., 2004) and discuss also the
differences and analogies with the miscible case.

In this regard, the article is organized as follows: in Section 2
we formulate the problem and discuss all aspects of the proposed
mathematical model. The details of the numerical method are
given in Section 3 while Section 4 gives the numerical results and
comparison with experimental data. Section 5 summarizes the
results and provides some discussion.

2. Theoretical model

The system we consider consists in two vertical parallel solid
plates separated by a thin gap containing two immiscible incom-
pressible liquid solvents, separated by a plain and undeformable
interface (see Fig. 1). A reactant A dissolved in the upper solvent
can diffuse down through the interface to react with another

reactant B dissolved in the lower layer. The reaction AþB-C
forms a product C in an exothermic reaction with enthalpy Q. In our
theoretical model, we assume that, as in experiments (Eckert and
Grahn, 1999; Eckert et al., 2004), this exothermic reaction takes
place solely in the lower phase as the reactant B is considered
immiscible in the upper phase and that the product C does not
dissolve in the upper layer (Eckert and Grahn, 1999). For simplicity,
we also consider that the three chemical species A, B and C have the
same diffusion coefficient in the lower phase. The concentrations of
the chemical species are here small enough for the properties of the
fluids to be independent of concentrations and Boussinesq approx-
imation to be made. Concerning the flow, we assume that all
phenomena related to surface tension are absent, i.e. Marangoni
instabilities are negligible and the interface is undeformable.

We start with the standard set of RDC equations coupling
Navier–Stokes Eq. (2) to evolution Eq. (3) for the temperature Y
and (4) and for the concentration Sj of species j:

r " ~U ¼ 0, ð1Þ

@~U
@t

þ~U "r~U ¼&
1
r0

rPþnD~Uþ
1
r0

rðY,SjÞ~g , ð2Þ

@Y
@t

þ~U "rY¼ wDY&
1

Cpr0
QRðY,SjÞ, ð3Þ

@Sj

@t
þ~U "rSj ¼DjDSjþRðY,SjÞ, ð4Þ

where D is the Laplacian in 3D, ~UðUx,Uy,UzÞ is the velocity, and P is
the pressure. The density r0 of the fluid, its kinematic viscosity n,
temperature diffusivity w, heat capacity Cp and the diffusion
coefficient Dj of the species j are constant. RðY,SjÞ is the kinetic
function of the problem while Q is the enthalpy of reaction. The
boundary conditions at the solid plates are

y¼ 7d : ~U ¼ 0,
@Y
@y

7
1
d
BiðY&Y0Þ ¼ 0,

@Sj

@y
¼ 0: ð5Þ

The reference temperatureY0 is the room temperature at which the
density of the fluid is r¼ r0. The dimensionless Biot number, Bi, is
defined as Bi¼ dgT=k, where gT is the heat exchange coefficient
between the fluid and the solid walls, 2d is the gap-width between
the plates and k is the thermal conductivity of the fluid. Depending
on the composition of the Hele–Shaw plates and on their thickness l,
the Biot number Bimay take a value from 0 (thermo-isolated plates)
to 1 (highly conductive plates).

We further assume that the gap-width 2d is small enough so
that the fluid flow may be considered as quasi two-dimensional,

y

z

fluid 1

interface

Hele−Shaw cell

fluid 2

x

2d
l

Fig. 1. Geometrical configuration of the two-layer system and coordinate axes.
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i.e. a Hele–Shaw approximation is applicable (Bratsun and De Wit,
2004). Taking into account the boundary conditions (5), the velocity,
temperature and concentration profiles are assumed to be approxi-
mated by the following functions along the gap:

Uxðx,y,zÞ ¼
3
2

1&
y2

d2

! "
vxðx,zÞ,

Uyðx,y,zÞ ¼ 0,

Uzðx,y,zÞ ¼
3
2

1&
y2

d2

! "
vzðx,zÞ,

Yðx,y,zÞ ¼
3
2

Bi
ð3þBiÞ

2
Bi

þ1&
y2

d2

! "
Tðx,zÞ,

Sjðx,y,zÞ ¼ Cjðx,zÞ, ð6Þ

where ~vðvx,vzÞ is the two-component velocity field while T(x,z) and
Cj(x,z) are the 2D temperature and concentration fields obtained
after averaging the 3D fields along the gap.

2D evolution equations in the Hele–Shaw approximation are
obtained by inserting (6) into (1)–(4) and averaging with respect
to the y-space direction perpendicular to the solid plates as

/ " " "S¼
1
2d

Z d

&d
. . . dy:

This procedure reduces the system geometry to a 2D domain
spanned by the x and z-coordinates and in which the evolution
equations now read:

r "~v ¼ 0,
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where now D¼ @2=@x2þ@2=@z2.
Taking into account that our system consists of two layers of

immiscible fluids we divide the system geometry into two 2D sub
regions 0oxoH, &LbotozoLup separated by a line z¼0 standing
for the interface. H is the width of the system while Lbot and Lup
are the height of the lower and upper layers respectively. Let
indexes i¼1,2 correspond to the lower ðzo0Þ and upper ðz40Þ
layer respectively. To non-dimensionalize the problem, we choose
the following characteristic scales: length 2d, time ð2dÞ2=DA1,
velocity DA1=2d, pressure r1n1DA1=ð2dÞ2, concentrations A0 and
temperature jQ jA0=r1Cp1 where DA1 and A0 are respectively the
diffusion coefficient and the initial concentration of the reactant A
in the upper layer while r1,n1 and cp1 are the density, kinematic
viscosity and heat capacity of the lower fluid. In addition, since,
here, heat effects are not dominant, we assume that the solid
walls are highly-conductive, i.e. Bi-1. Considering a simple
reaction scheme AþB-C with kinetic constant kc, the dimension-
less governing equations in the Boussinesq approximation can be
written as follows: for the lower layer, we have

r "~v1 ¼ 0, ð8Þ
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For the upper layer, we get

r "~v2 ¼ 0, ð14Þ
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Here Tiðx,z,tÞ the temperature field, Aiðx,z,tÞ, B(x,z,t) and C(x,z,t) are
the concentrations of the reactants and product respectively. The
full list of dimensionless parameters (Damköhler number Da,
Lewis number Le, thermal R and solutal RA,RB,RC Rayleigh num-
bers, etc) which appear in Eqs. (8)–(17) is given in Table 1.

To simplify the problem and avoid adding additional para-
meters related to jump conditions for the variables at the inter-
face, we assume continuity of these quantities at the interface, i.e.
take the following boundary conditions:

z¼ 0 : T1 ¼ T2, A1 ¼ A2, vz1 ¼ vz2 ¼ 0, vx1 ¼ vx2, ð18Þ
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¼ k @T2
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@z
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¼ 0: ð20Þ

At the upper z¼ Lup and lower z¼&Lbot horizontal boundaries,
we assume no flow and no-flux boundary conditions for the
concentrations and temperature. Periodic boundary conditions are
applied at the vertical boundaries x¼0,H. The initial conditions are

&Lbotozo0 : ~v1 ¼ 0, T1 ¼ 0, A1 ¼ 0, B¼
1
g , C ¼ 0,

0ozoLup : ~v2 ¼ 0, T2 ¼ 0, A2 ¼ 1: ð21Þ

where g¼ A0=B0 is the ratio between the initial concentrations
of A and B initially present in the upper and lower layer respectively.
This is typically the parameter which is varied in experiments.

Table 1
List of dimensionless parameters.

Sc¼ n1=DA1 Schmidt number
Le¼ w1=DA1 Lewis number

Da ¼ ð2dÞ2kcA0=DA1 Damköhler number

R¼ gbT 9Q9A0ð2dÞ3=k1n1 Thermal Rayleigh number

RA ¼ gbA1A0ð2dÞ3=DA1n1 Solutal Rayleigh number related to reactant A

RB ¼ gbBA0ð2dÞ3=DA1n1 Solutal Rayleigh number related to reactant B

RC ¼ gbCA0ð2dÞ3=DA1n1 Solutal Rayleigh number related to the product C

r¼r2=r1 Density ratio
k¼k2=k1 Heat conductivity ratio
w¼ w2=w1 Heat diffusivity ratio
n¼ n2=n1 Kinematic viscosity ratio
Z¼ Z2=Z1 Dynamic viscosity ratio

b¼ bT2=bT1 Thermal expansion coefficient ratio

bA ¼ bA2=bA1 Solutal expansion coefficient ratio
D¼DA2=DA1 Diffusivity ratio of A
g¼ A0=B0 Initial concentration ratio
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In addition to the set of Eqs. (8)–(21), there is a conservation law for
the concentrations. Indeed, as we have supposed that DB¼DC, we
can add Eqs. (12) and (13) taking into account the initial and
boundary conditions to obtain

Bðx,z,tÞ ¼
1
g&Cðx,z,tÞ, ð22Þ

which is used when the system is studied numerically.
Let us briefly discuss the equations we use. Eqs. (9) and (15)

differ from the two-dimensional Navier–Stokes equations by the
additional dissipative terms linear in the velocities ~v1 and ~v2.
These terms appearing in the Hele–Shaw approximation may be
interpreted as the average friction force due to the presence of the
plates and are analogous to the linear velocity term in Darcy’s law
valid for fluid flow in porous media. The heat Eqs. (10) and (16)
contain a cooling term linear in T1 and T2 respectively which
relates to the dissipation of heat through the solid plates.

In order to model specific experiments, we use the experi-
mental data from Eckert et al. (2004) listed in Table 2. On the
basis of these data, we calculate that the Schmidt number is
Sc' 980 while the Lewis number is Le¼131. It means that
hydrodynamic and heat processes are here quick compared to
reaction–diffusion processes. For the set of Rayleigh numbers, we
get: R¼5.34, RA¼2200, RB¼1750, RC¼1100. By inspecting the
density term in Eqs. (9) and (15), this means that heat lowers the
density of the solution while the chemical species all contribute
to make the solution denser, a solution of A being denser than an
equimolar solution of B which is itself denser than that of C. Note
that the thermal Rayleigh number is much smaller than the
solutal ones which shows that the dynamics in the experiments
is here mainly controlled by solutal effects. This is the same as for
acid-base reaction fronts in miscible systems where heat effects
were also found to be of much smaller amplitude than the solutal
ones (Almarcha et al., 2010a, 2011). It is the goal of this article to
fix all these values of parameters to focus on changes of dynamics
when the Damköhler number Da and the ratio of initial concen-
trations g are varied. Before discussing our results, let us mention
that, according to the parameter values in Table 2, one dimen-
sionless unit of time is equal to the characteristic time t¼ 227 s
while one unit of length is equal to the characteristic length
Lc ¼ 0:5 mm.

3. Numerical scheme and quantitative measurements

3.1. The solution method

In order to perform two-dimensional simulations of nonlinear
regimes, we use the vorticity-stream function formulation of the

governing equations (8)–(21), where the vorticity Fi is defined as
Fi ¼&DCi where Ci is the stream function. A noisy stream
function field Ci with amplitude less than 10&3 is used in the
initial condition.

The described boundary value problem is solved by finite differ-
ence methods. The scheme of Simanovskii and Nepomnyashchy
(1993), which we have generalized for the reaction–diffusion–con-
vection system in Bratsun and De Wit (2004), was adopted to
discretize equations. Equations and boundary conditions are approxi-
mated on a uniform mesh using a second order approximation for
the spatial coordinates. The non-linear equations are solved using an
explicit scheme on a rectangular uniform mesh. The typical resolu-
tion was 5(5 nodes for a square of unit side, so that for the domain
H¼40, Lbot ¼ 40, Lup ¼ 20 we use typically 200(300 nodes. In order
to ensure the stability of the numerical scheme, the varying time step
is calculated at each iteration by the formula

Dt¼
Dx2

2ð2þmaxð9Ci9,9Fi9ÞÞ
:

The Poisson equations are solved by the iterative Liebman successive
over-relaxation method at each time step: the accuracy of the
solution is fixed to 10&4. The Kuskova and Chudov formulas
(Simanovskii and Nepomnyashchy, 1993), providing second order
accuracy, are used for the evaluation of the vorticities at the solid
boundaries:

F1ðx,&LbotÞ ¼
1

2Dz2
ðC1ðx,&Lbotþ2DzÞ&8C1ðx,&LbotþDzÞÞ,

F2ðx,LupÞ ¼
1

2Dz2
ðC2ðx,Lup&2DzÞ&8C2ðx,Lup&DzÞÞ:

At the interface the expression for the vorticity is approxi-
mated with second-order accuracy for spatial coordinates by the
formula:

F2ðx,0Þ ¼&
2ðC1ðx,&DzÞþC2ðx,DzÞÞ

Dz2ð1þZÞ , F1ðx,0Þ ¼ ZF2ðx,0Þ:

Here Dx,Dz are the mesh sizes for the corresponding coordinates.
The temperature and the concentration of A at the interface are
calculated by the second-order approximation formula:

T1ðx,0Þ ¼ T2ðx,0Þ ¼
4T1ðx,&DzÞ&T1ðx,&2DzÞþkð4T2ðx,DzÞ&T2ðx,2DzÞÞ

3ð1þkÞ ,

A1ðx,0Þ ¼ A2ðx,0Þ ¼
4A1ðx,&DzÞ&A1ðx,&2DzÞþDð4A2ðx,DzÞ&A2ðx,2DzÞÞ

3ð1þDÞ
:

Our code has been successfully tested by comparison with results
by Nepomnyashchy and Simanovskii (2001) for two-layer sys-
tems with heat release at the interface. In addition, the code
recovers known dynamics of the simple reaction–diffusion sys-
tem. Our results have been tested to be robust with regard to time
and space mesh refinements.

3.2. Characterization of the nonlinear dynamics

In order to characterize the nonlinear dynamics resulting from
the coupling between chemical reactions and hydrodynamic
flows, various types of measurements have been done during the
numerical simulations (De Wit, 2004). Let us briefly enumerate
them.

At successive times, the two-dimensional concentration fields
of A(x,z,t) and B(x,z,t) (or C(x,z,t)) can be spatially averaged in the
lower layer along either the transverse coordinate x

Axðz,tÞ ¼
1
H

Z H

0
Aðx,z,tÞ dx ð23Þ

Table 2
List of experimental data from Eckert et al. (2004).

Lower layer Upper layer Ratio

Z1 ¼ 1:169( 10&3 Pa s Z2 ¼ 1:122( 10&3 Pa s Z¼ 0:96

n1 ¼ 0:89( 10&6 m2=s n2 ¼ 1:0( 10&6 m2=s n¼ 1:1

k1 ¼ 0:566 W=m K k2 ¼ 0:131 W=m K k¼ 0:231

w1 ¼ 1:43( 10&7 m2=s w2 ¼ 0:847( 10&7 m2=s w¼ 0:592

DA1 ¼ 1:1( 10&9 m2=s DA2 ' 1:1( 10&9 m2=s D¼1.0

bT1 ¼ 1:8( 10&4 1=K bT2 ' 1:8( 10&4 1=K b¼ 1:0

bA1 ¼ 7:0( 10&3 l=mol bA2 ¼ 12:8( 10&3 l=mol bA ¼ 1:83

bB ¼ 5:6( 10&3 l=mol

bC ¼ 3:5( 10&3 l=mol

Q ¼&5:7( 104 J=mol

2d¼ 0:5( 10&3 m
A0¼0.25 mol/l
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or the longitudinal coordinate z

Azðx,tÞ ¼
1
Lbot

Z 0

&Lbot

Aðx,z,tÞ dz, ð24Þ

to yield one-dimensional averaged profiles Ax(z,t) and Az(x,t) respec-
tively. The transversed averaged profile (23) gives insight into the

speed and intensity of invasion of the lower layer by the reaction
front and by convective currents. The longitudinal averaged profile
(24) allows on the other hand to follow the interaction between
fingers.

The transverse averaged profile (23) is next used to define the
tip and rear of the fingered zone. The tip is chosen arbitrarily
as the location along the z-axis in front of which the averaged
concentration Ax(z,t) is less than 0.001. The position of the rear
is nothing else than the location of the interface z¼0. Thus,
the position of the tip defines automatically the mixing length
(which is the distance between the tip and the rear of the
fingered zone).

If the chemical reactions affect the hydrodynamic fingering,
fingering also has an influence on the reaction rate. Indeed in a
fingered front, it is expected that the rate of reaction will speed up
because of the convective movements of the fluid. In that respect,
an interesting measure is given by the reaction rate R computed
in terms of the area of the reacted zone (i.e. the number of points
where C(x,z,t) is larger than an arbitrary threshold Cn) normalized
by the width of the system versus time. In other words, we
compute as a function of time the quantity

RðtÞ ¼
1

HLbot

Z 0

&Lbot

Z H

0
z dx dz, ð25Þ

where z¼ 1 if Cðx,z,tÞ4Cn (Cn is typically 0.001 here) and zero
otherwise.
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Fig. 2. Classification of the various dynamic regimes in the parameter plane
spanned by the ratio of initial reactant concentrations g versus the Damköhler
number Da. The lines delimit approximatively the regimes dominated by hydro-
dynamics (J), chemistry (K) or by a mixture of these (W).
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Fig. 3. Density plots of the concentration of species A showing the dynamics in the absence of reaction: Da¼0, g¼ 1. The frames from left to right and from up to down
correspond to times t¼1.2, 2.2, 3.2, 4.0 respectively. The domain of integration is 0oxo40, &40ozo20.

D.A. Bratsun, A. De Wit / Chemical Engineering Science 66 (2011) 5723–5734 5727



Author's personal copy

The mass transfer rate M of A through the interface and its
dependence on reaction and convection is of special interest from
different points of view. A convenient quantitative characteristic
of this process can be defined as

MðtÞ ¼

RH
0

@A1ðx,z,tÞ
@z

####
z ¼ 0

dx

RH
0

@Adiff
1

ðx,z,tÞ
@z

####
z ¼ 0

dx
, ð26Þ

where Adiff
1 ðx,z,tÞ is the concentration of A in the pure reaction–

diffusion regime. This definition is similar to that of the Nusselt
number formulated for heat. Eventually, a convenient quantitative
measure of the dynamic change of the wavelength of the pattern is
provided by the power averaged mean wavenumber defined as

kðtÞ ¼
P

kiPiP
Pi

, ð27Þ

where ki are the Fourier modes of the Fourier transform of the
longitudinal averaged profile (24) and Pi their amplitude in Fourier
space.

4. Nonlinear simulations

4.1. Overview

As described in Eckert and Grahn (1999) and Eckert et al.
(2004), the origin of convection in the upper layer is a diffusive

layer convection (DLC) mechanism (Trevelyan et al., 2011) whereby
the acid rich zone on top of the cell overlies the acid depleted region
just above the interface. This depletion is the result of the transfer
of the acid towards the lower layer. This mechanism is similar to
the one occurring for fast downward diffusing acids responsible for
the plumes observed above the initial contact line in miscible
systems (Almarcha et al., 2010a, 2011).

In the lower layer of the immiscible stratification, convection
originates from a Rayleigh–Taylor instability induced by the
diffusion into the lower layer of the reactant A. In the absence
of reaction, this leads in the lower aqueous phase to a boundary
layer of A on top of a less dense bulk solution of B because RA4RB

which triggers convection into fingers slowly invading the lower
layer. This explains the experimental observation of convection in
the same system with pure diffusion of A without reaction (Eckert
and Grahn, 1999; Eckert et al., 2004), a situation for which the
effect of the reaction product C and of heat can be ignored.
Numerical simulation of our equations indeed demonstrate
appearance of convection even in this simplified case which
shows that the basic instability in the lower layer is not related
to double-diffusion (excluded here as DA¼DB) (Trevelyan et al.,
2011; Almarcha et al., 2010a) but to a Rayleigh–Taylor mechan-
ism. This might not be true for other values of the Rayleigh
numbers, but for the above fixed values calculated from experi-
mental data, only density fingering was found. Let us note that no
fingering occurs below the contact line for miscible experiments
done with HCl/NaOH (Almarcha et al., 2010a, 2011) because in

0 10 20 30 40
-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 20

 0

 0.2

 0.4

 0.6

 0.8

 1

0 10 20 30 40
-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 20

0 10 20 30 40

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 20

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 20

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 20

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 20

Fig. 4. Density plots of the concentration of species A showing the dynamics in the presence of a chemical reaction: Da¼3 and g¼ 10. The frames from left to right and
from up to down correspond to times t¼1.4, 2.6, 3.8, 5.0, 11.0, 15.0 respectively. The domain of integration is 0oxo40, &80ozo20.

D.A. Bratsun, A. De Wit / Chemical Engineering Science 66 (2011) 5723–57345728



Author's personal copy

this special case the acid is less dense than the base but most
importantly it is consumed by the reaction and is replaced by a
less dense salt diffusing upwards which avoids the accumulation
of a locally denser boundary layer responsible for downward
fingering in the immiscible case.

Let us now focus on the immiscible case and analyze to what
extent the chemical reaction changes the characteristics of the
instability and impacts pattern formation. Fig. 2 classifies the
dynamics in the parameter plane g versus Da, where three
different types of pattern formation were found. Open circles
indicate a ‘‘pure’’ density fingering similar to the one observed in
the absence of reaction, triangles denote fingering extending far
into the lower layer with a strong reaction effect while black
circles correspond to a regime of small extent fingering confined
near the interface. The lines draw approximate limits between
these three cases. Figs. 3–6 show how the pattern evolves in each
characteristic case. Let us consider them in detail.

4.2. ‘‘Pure’’ density fingering

When chemistry is playing a minor role as for the open circles
in Fig. 2, the dynamics is similar to the one obtained in the
absence of any reaction, i.e. for Da¼0, g¼ 1 as shown in Fig. 3. The
open circles on Figs. 7–9 present for these values of parameters
the Ax(z,t) profile at t¼4 (Fig. 7a), the location Z(t) of the finger tip
(Fig. 7b), the Az(x,t) profile at t¼4 (Fig. 8a), the power averaged

wavenumber k(t) (Fig. 8b), the time evolution of the stream
function maximum (Fig. 9a) and the mass transfer rate M(t)
(Fig. 9b). The dynamics of the system can be divided in four
stages. First, a diffusive process (or a reaction–diffusion one if
Daa0) takes place (see Fig. 7b). Then, convection arises, first in
the upper layer where the depletion of A close to the interface
leads to an unstable density stratification (DLC mechanism
Trevelyan et al., 2011) similar to the one seen in miscible systems
(Almarcha et al., 2010a, 2011). Due to the interaction through the
interface, convection above helps to develop flows in the lower
layer. On the other hand, A diffusing into the lower layer produces
a denser sublayer located just below the interface providing
locally a stratification which is unstable with respect to Rayleigh–
Taylor disturbances. The resulting convection in the lower layer
leads to the onset of the fingering process (Fig. 3), to a sharp
increase of the amplitude of the stream function (Fig. 9a) and
of the reactant mass transfer through the interface (Fig. 9b). It
manifests itself also in the acceleration of the movement of the
finger tip far away from the interface shown in Fig. 7b. The
average wavenumber of fingers at this stage is about k' 2 (the
wavelength is about 3 units of length or 1.5 mm). As time goes by,
the vortices and consequently the fingers become wider, i.e. the
wavenumber permanently decreases with time (Fig. 8b). This
tendency can be explained by a weakening of the unstable
gradient of A in the course of time.

At about t' 2:2 the dynamics changes again: the wavenumber
of the pattern has become such that the fingers do not enlarge any

0 10 20 30 40
-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 20

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

0 10 20 30 40
-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 20

0 10 20 30 40

0 10 20 30 40 0 10 20 30 40 0 10 20 30 40

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 20

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 20

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 20

-80

-70

-60

-50

-40

-30

-20

-10

 0

 10

 20
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more by just widening along the interface and, as a consequence,
they do not penetrate deeper in the lower layer. The system enters
in a regime which could be called ‘‘predominantly diffusive’’
characterized by a square root type of growth for the tip movement
(Fig. 7b). The dominance of diffusion can also be seen in Fig. 3
(second frame above), where the boundaries between fingers
appear smoother in comparison with previous or following stages.
After the wavenumber of the pattern has decreased sharply to
0.5 at about t' 3, the stream function increases and hydrody-
namics dominates again over diffusion. A quick propagation of
fingers (now with larger wavelength) is then observed deeply
inside the lower layer (Fig. 7b). It is interesting to note that the
‘‘motor’’ of fingering is here a pair of intensive vortices extending
downwards from the interface and penetrating deeper and deeper
inside the lower layer. The fluid flow inside the vortices circulates
such as to pull fresh A downward (Fig. 3, lower row) in the middle
of the fingers as observed experimentally (Eckert et al., 2004). This
general spatiotemporal dynamics is observed for all points denoted
by open circles in Fig. 2. When g is increased, this pattern is
observed for an increased set of Da. This is due to an increasing
influence of denser A for a given small value of C as the initial
concentration Ao is increased for a fixed value of Bo. In the presence
of chemical reactions (Daa0), the heat effect produced by the
reaction just below the interface reinforces the plumes in the upper
layer by a Rayleigh–Bénard mechanism.

4.3. Reactive fingering

Let us now consider non-linear dynamics and pattern forma-
tion for a stronger effect of reaction: Da¼3, g¼ 10. This case
characterizes generally the processes happening in the domain
indicated in Fig. 2 by open triangles. The equations were inte-
grated in a longer domain &80ozo20 in order to trace the
dynamics up to later times. Fig. 4 shows the temporal evolution of
the concentration of A while Fig. 5 shows the dynamics of the C
concentration (upper row) and of the stream function (lower row)
respectively. The quantitative properties of the dynamics are shown
for these values of parameters by open triangles in Figs. 7–9.

The system evolves through four stages as in the previous case:
reaction–diffusion ð0oto1:4Þ, onset of fingering ð1:4oto2:0Þ,
dominance of diffusion over convection ð2:0oto3:0Þ followed by
fingering again after the wavenumber of pattern decreases ðt43:0Þ.
All these stages lead to a sharp change in the fingers propagation
speed (Fig. 7b) and in the mass transfer rate (Fig. 9b). But in this case
where chemical reactions are quite efficient, the action of the
Rayleigh–Taylor instability is more complicated than in the previous
case. Now three species are interplaying in the density profile. By
inspecting the experimental data listed in Table 2, we see that the
solutal expansion coefficient is maximal for A, slightly less for B and
minimal for C (RA4RB4Rc). It means that we still have a buoyantly
unstable density stratification as the density gradient is positive
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when going from the concentrated B solution to the upper A one. But
when the reaction starts, lighter C, which is produced in the reaction
zone between A and B, replaces both reactants and, being less dense
than them, stabilizes locally the system. Thus, one can a priori expect
that the Rayleigh–Taylor instability will be less intense and will then
induce a more complicated pattern.

This is indeed the case. The most striking difference with the
case of hydrodynamic density fingering of Fig. 3 is the appearance
of a quite regular pattern at about t' 3 (Figs. 4 and 5). The stream
function features now a vertical chain of counter-rotating short
vortices instead of the sole long vortex observed in the previous
regime (see Fig. 5, second column). This chess-like structure
persists in time despite the fact that the wavenumber of the
pattern grows in time (Fig. 5, last column).

In order to observe such a pattern experimentally, one can
increase the initial concentration A0 and B0 keeping their ratio g
constant but changing in this way the Damköhler number –
ð2dÞ2kcA0=DA1 – moving thus to the right in the ðDa,gÞ parameter
plane. It is however necessary to realize that the Rayleigh
numbers will then also vary complicating the situation.

4.4. Interfacial convection: mild fingering

Eventually, let us consider the case where only mild fingering
is observed (lower part in Fig. 1 indicated by black circles). As an
example, consider the case for which Da¼1, g¼ 1. Fig. 6 shows
the time evolution of the concentration of A while the various

quantitative measures quantifying the dynamics for these values
of parameters are shown in Figs. 7–9 by black circles.

As can be seen from these figures, this dynamics is characterized
in the lower layer by a weak invasion of A (Fig. 7b), a low intensity of
hydrodynamic flow (Fig. 9a) and a smaller mass transfer through the
interface (Fig. 9b). In fact, the fluid dynamics remains localized near
the interface and no developed fingering is observed below the
interface. This can be explained as follows: if the Damköhler number
increases, the chemical time scale is decreasing, the reaction prevails
over the hydrodynamics and consequently a larger amount of
product C is produced per unit of time. A zone of C solution which
is substantially less dense and hotter than those of the overlying A
and underlying B prevents the fingers from invading the lower part
of the system. The upper unstable transition zone between A and C
is then subdued by a stable transition zone between C and B. The
Rayleigh–Taylor instability in this case remains confined into a
boundary layer close to the interface because of the high rate of A
consumption during the reaction.

It should be noted that between the mild fingering domain and
the domain of predominantly reactive fingering in the parameter
plane of Fig. 1 there is a transition region with intermediate
regimes. A solid line delimiting the two zones is drawn as a guide
to the eye and is thus not a bifurcation curve. A smooth transition
is actually observed in between these domains.

4.5. Parametric study

Let us now consider the particular effect on the fingering
dynamics of the ratio of initial concentrations g¼ Ao=Bo (Fig. 10)
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and of the Damköhler number Da (Fig. 11). To do so we follow the
temporal evolution of the reaction rate R and of the position of the
tip of the fingers. Fig. 10 shows that, for a fixed value of Da, the
system is more unstable when g is increased. This increase leads
indeed to much more intense fingering witnessed by a strong
increase in R(t) (Fig. 10a) and in the increase of the invasion
length of the fingers in the lower layer (Fig. 10b). When g¼ 0:1, B
is largely in excess compared to A. Any molecule of A diffusing
across the interface will quickly be converted into the product C
leading to a stable stratification of less dense C above denser B. No
visible fingering takes place in that case and the reaction rate
grows diffusively in time while the position of the reaction front
remains pinned close to the interface. When g¼ 1, i.e. in a
situation of equimolar initial concentration of A and B, fingers
slowly invade the lower layer and organize themselves quite
regularly as seen on Fig. 4 and also observed in experiments
(Eckert et al., 2004). The strongest fingering occurs for g41 when
A is in excess (Eckert et al., 2004). In that case, the reaction front
invades the lower layer and the excess of denser A on top of the
less dense product C and reactant B makes the system strongly
Rayleigh–Taylor unstable.

If now, the ratio of initial concentrations g is fixed to a constant
value but the Damköhler number Da is varied (see Fig. 11), we
observe that the most unstable situation is the non-reactive case
Da-0. Indeed, for the values of parameters related to the
experiments conducted by Eckert and Grahn (1999) and Eckert
et al. (2004), RA4RB4RC and the solution of species A is the denser
one. Hence, the larger the amount of A crossing the interface and
invading the lower layer, the more unstable the density stratification
of dense A on top of less dense B. When Da is increased, the chemical

reaction becomes more effective and more A is converted into C per
unit time. This replaces A by less dense C which is stabilizing the
system as seen in Fig. 11 which shows a decrease in R and in the
invasion by fingers of the lower layer when Da is increased. For
infinitely large Da, A is instantaneously converted into C which
drives a stable stratification of C above denser B. The growth of the
reaction rate and the position of the reaction front evolve then
diffusively in time as shown in Fig. 11 for Da¼3.

4.6. Comparison with experiments

To make more quantitative comparison with experiments, we
note that in the experiments by Eckert et al. (see Fig. 2c of Eckert
et al., 2004), the wavelength l of the regular fingers seen in the
lower layer is of the order of 3.5 mm at a dimensional time
td¼22 min (1320 s) for g¼ 1. Recalling that, in our non-dimensio-
nalization scheme, our characteristic length Lc¼0.5 mm and time
t¼ 227 s, this corresponds to a dimensionless wavenumber
k¼ 2pLc=l¼ 0:9 at a dimensionless time t¼ td=t¼ 5:8, which is
in excellent agreement with the value of k(t) given in Fig. 8b for
g¼ 1 (black circles). Moreover, Fig. 4 of Eckert et al. (2004) confirms
our observation that the length of the fingers is larger when g is
increased at fixed Da (as shown when comparing with our Fig. 10).

Comparison with experiments has however also some difficulties
as we do not exactly know the value of the Damköhler number as
we do not have the value of the kinetic constant kc. Besides, our
simulations are done here with equal diffusion coefficients for all
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species which kills any possible solutal double diffusive instabilities
(Trevelyan et al., 2011). The resulting difficulty is best illustrated in
Fig. 12 where we compare the position of the tip of the fingers in the
lower layer obtained experimentally (see Fig. 5 of Eckert et al., 2004)
with those converted in dimensional units for g¼ 4 and three
different values of Da. While the agreement is quantitative in the

early stages, discrepancies increase later on depending on the value
of Da when fingers are in well developed nonlinear regimes. As
these nonlinear dynamics are also particularly sensitive to initial
conditions and on noise (see De Wit et al., 2005, for a discussion on
the sensitivity of nonlinear dynamics to the noise seeding initial
conditions), this highlights the interest but also limitations of
comparison with experiments.

5. Discussion and conclusions

In immiscible two-layer systems oriented vertically in the
gravity field, convection can set in upon diffusion of a chemical
species A from the upper to the lower layer where a species B is
initially dissolved. We have here analyzed numerically the influ-
ence of an exothermic chemical reaction AþB-C taking place
solely in the lower layer on such a buoyancy-driven instability of
Rayleigh–Taylor type. To do so, we have numerically integrated a
reaction–diffusion–convection model coupling the evolution of
concentrations and temperature to the flow field inside a 2D
Hele–Shaw cell. Fixing the Rayleigh numbers of the problem to
values computed for experimental data available in the literature
(Eckert and Grahn, 1999; Eckert et al., 2004), we study the
changes in dynamics as a function of the Damköhler number Da

of the problem and of the ratio of initial reactant concentrations g.
Depending whether A initially dissolved in the upper layer is in
excess or not, the Rayleigh–Taylor fingers developing in the lower
layer will be very elongated or only limited to a small boundary
layer close to the interface. If A is in excess, it will develop after
diffusion into the lower layer a zone of denser solution of A on top
of less dense solutions of product C and bulk reactant B. This
favors the growth of long and elongated density fingers in the
lower layer. On the contrary, when the reactant B present in the
lower layer is in excess, the reaction zone remains confined close
to the interface and convection remains of small finite amplitude.
The most regular fingers are obtained for intermediate situations
when the initial concentrations of A and B are of the same order of
magnitude. To quantify the dynamics we have computed various
properties of the system like typically the reaction rate and the
speed of reaction front as a function of time. We find that both
quantities increase with g but decrease with Da.

The present work has fixed the Rayleigh values of the problem to
those computed for the experiments performed by Eckert and Grahn
(1999) and Eckert et al. (2004). It will be of interest in the future to
analyze to what extent the dynamics depend in particular on these
parameters. Indeed, changing the nature of chemical species at fixed
initial concentrations has been shown to have a drastic influence on
the fingering pattern (Eckert and Grahn, 1999).
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