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a b s t r a c t

Across traveling exothermic autocatalytic fronts, a density jump can be observed due to changes in
composition and temperature. These density changes are prone to induce buoyancy-driven convection
around the front when the propagation takes place in absence of gel within the gravity field. Most
recent experiments devoted to studying such reaction-diffusion-convection dynamics are performed in
Hele–Shaw cells, two glass plates separated by a thin gap width and filled by the chemical solutions. We
investigate here the influence of heat losses through the walls of such cells on the nonlinear fingering
dynamics of exothermic autocatalytic fronts propagating in vertical Hele–Shaw cells. We show that
these heat losses increase tip splittings and modify the properties of the flow field. A comparison of
the differences between the dynamics in reactors with respectively insulating and conducting walls
is performed as a function of the Lewis number Le, the Newton cooling coefficient α quantifying
the amplitude of heat losses and the width of the system. We find that tip splitting is enhanced for
intermediate values of α while coarsening towards one single finger dominates for insulated systems
or large values of α leading to situations equivalent to isothermal ones.

© 2009 Elsevier B.V. All rights reserved.

The coupling between autocatalytic chemical reactions and
diffusion can lead to traveling fronts whereby products invade
fresh reactants at a constant speed. The properties of these fronts
have been studied in details in gels used to avoid any convective
motions. In absence of gels, the dynamics can be perturbed
by convective currents due either to buoyancy or Marangoni
effects. In this context, S.C. Müller has largely contributed to
characterize spatio-temporal dynamics due to convective motions
deforming waves traveling in shallow layers open to the air
or closed reactors [1–12]. In the case of the iodate-arsenous
acid (IAA) reaction traveling in vertical Hele–Shaw cells, Müller
and Böckmann have for the first time measured experimentally
dispersion curves giving the growth rate of the perturbations as a
function of their wavenumber at early times in the dynamics [10].
In such reactors, a Rayleigh–Taylor instability occurs when the
IAA front travels upwards in the gravity field as the reactants
are slightly heavier than the products. They have moreover
characterized experimentally the dynamics in the long time
nonlinear regime [11] showing that, after a general coarsening
trend, tip splittings can occur for large cells.More recently,we have
shown in collaboration that heat effects due to the exothermicity of
the reaction can affect the dynamics leading, for conducting walls,
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to a velocity field organized as a quadrupole instead of a dipole
obtained in insulated systems [12].

To gain more insight into the influence of such thermal effects
in buoyancy-driven convection around fronts, let us recall that,
across an autocatalytic front, the density variation �ρ = ρp − ρr

(i.e. the difference between the density of the product ρp and that
of the reactant ρr ) is the sum of a solutal �ρc and a thermal �ρT

part [13–16]. As no endothermic autocatalytic reaction is known,
the density decreases typically during an exothermic reaction due
to the thermal effects i.e. �ρT < 0. The solutal component on the
other hand can have both a positive or negative sign depending
whether the composition change decreases (�ρc < 0 like in the
IAA reaction) or increases the density (�ρc > 0 like in the chlorite-
tetrathionate - CT - reaction for instance [17,18]).

Solutal and thermal contributions to the density jump across
the front can thus either be opposite or reinforce each other [16].
In isolated systems where no heat is lost to the surroundings and
when �ρc and �ρT have the same sign, simple Rayleigh–Taylor
convection is observed for ascending fronts featuring heavy
reactants at room temperature above hotter and solute lighter
products [10,11,19–22] while in specific cases, differential diffu-
sive effects can destabilize descending fronts [23]. When the two
contributions are opposite they lead to multicomponent convec-
tion and double diffusive instabilities [14–16,24,25]. Fingering in
such competitive situations has been studied in the CT reaction
both experimentally [18,26–28] and theoretically [15,26] showing
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that a sufficiently strong exothermicity can destabilize otherwise
stable front and lead to new dynamics.

Experimental evidences [12,26,29–33] and theoreticalwork [12,
31,33,34] have however shown that heat losses through the walls
of the reactor can have an important influence on the dynamics.
When thermal effects cannot be neglected (i.e. for more exother-
mic reactions or thicker cells [33]), stability properties and nonlin-
ear dynamics can be affected. In capillary tubes, it has already been
shown long ago that changing the surroundingmediumaround the
tube can modify the stability properties of the front [19,29] while
measurements of the heat variation during an experiment in a tube
yields a thermal change smaller than in adiabatic conditions point-
ing out to the existence of heat losses [30]. Furthermore a change
in the material of the walls of the Hele–Shaw cell have also proved
to change the stability of the fronts [26]. From a theoretical point
of view, it has been shown that, in the cooperative case, thermal
leaks can change the fingering dynamics [12,34] in the sense that
stable downward propagating cooperative fronts can become un-
stable due to the change of the temperature profile from a front to
a localized pulse solution. On the other hand, upward propagating
fronts can for some values of parameters feature more frequent tip
splitting. Furthermore the flow field is shown to change from a two
convection roll situation in the absence of heat losses to a four vor-
tices one in their presence [12]. In antagonistic reactions like the CT
system, hot spots have been observed experimentally for conduct-
ing walls [32]. A detailed understanding of the role of heat losses
on the nonlinear dynamics as a function of the various values of the
parameters of the problem is however still missing.

In this context, it is the objective of this article to provide an
extensive numerical analysis of the influence of heat losses through
the walls of the reactor in the nonlinear fingering dynamics
of cooperative exothermic reactions for which the solutal and
thermal part to the density jump across the front have the same
sign. For cooperative fronts, density effects lead in insulated
systems to typically buoyantly unstable upwardpropagating fronts
as they correspond to a stratification of heavy reactants at room
temperature on top of lighter and hotter products. The nonlinear
evolution of fingers is then the same as that for isothermal systems
with �ρs < 0 as has been studied with the IAA reaction both
experimentally [11] and theoretically [22]. These studies show
that, after an initial linear regimewhere the properties of fingers is
well described by dispersion curves [10,35,36] and a well defined
wavelength [37], fingers start tomerge and coarsen towards larger
fingers [11,21,22]. In narrow systems, the asymptotic dynamics is
one single finger of constant length and speed [19–21] featuring
self-similar properties [22,38]. In larger systems or for larger
Rayleigh numbers, fingers undergo tip splittings events whereby a
sufficiently large finger breaks into two smaller fingers [11,12,22].
Similar observations of coarsening towards one single finger in
narrow systems and occurrence of tip splitting in larger ones have
also been obtained for the CT reaction when thermal effects can be
neglected [39,40]. In order to understand how heat losses through
the walls can affect these properties for exothermic reactions, we
perform here a detailed parametric study of the influence of heat
losses through a Newton coefficient α, of the Lewis number and
of the width of the cell on the nonlinear fingering dynamics of
exothermic cooperative fronts. We show that heat losses favor tip
splitting events which remain present even when heat diffusion
is quite large. While single fingers can be obtained either for
insulated systems or large heat losses, tip splitting is encountered
for intermediate values of α. Wemoreover study the change in the
properties of convection rolls as a function of the heat loss inte-
nsity α.

The paper is organized as follows. In Section 2 we present the
model and the numerical method used to integrate the nonlinear
evolution equations. In Section 3 we perform a parametric study
before characterizing the flow field in Section 4. We then briefly
conclude in Section 5.

Fig. 1. Nonlinear dynamics of concentration (left) and temperature (right) in the
fingering of exothermic reaction-diffusion fronts respectively without (top) and
with (bottom) heat losses for the parameters Le = 5,Da = 0.3, γT = −5. The
time interval between two images is 500 units of time. The width of the integration
domain is Ly = 512. For the isolated case (α = 0, top) the descending front is stable
while the ascending one features coarsening towards one single finger traveling
with constant shape and speed. For the conducting case (α = 0.01, bottom) the
descending front is unstable as witnessed by the small ondulation of the interface
visible in the T field. The ascending front features tip splittings.

1. Model

The model system is a Hele–Shaw cell of length Lx oriented
along the gravity field and ofwidth Ly. This cell has a gapwidth h �
Lx, Ly, sufficiently thin to consider the incompressible velocity field
u = (ux, uy) as two dimensional and evolving following Darcy’s
law (1) coupled to reaction-diffusion-convection equations for the
concentration c of the autocatalytic product (4) and temperature T
(5) through the dimensionless model [15,34]:

∇p = −u + ρ(c, T )i
x
, (1)

ρ = (1 − c) + γT T , (2)
∇ · u = 0, (3)
∂c

∂t
+ u · ∇c = ∇2

c − Da c(c − 1)(c + d), (4)

∂T

∂t
+ u · ∇T = Le∇2

T − Da c(c − 1)(c + d) − αT . (5)

InDarcy’s law, the density depends on c and T as (2)where γT <
0 is the dimensionless thermal expansion coefficient quantifying
the thermal contribution to the density jump across the front
[12,15,34]. In practice, it measures the ratio between the thermal
density change �ρT relative to the solutal one �ρc and it is
therefore a negative quantity as �ρT < 0 while �ρc > 0 in the
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Fig. 2. Transversely averaged profiles of the concentration c (top) and temperature T (bottom) for the upward moving front (i.e. moving here towards decreasing values of
x) in the case of insulating walls (α = 0, left column) or conducting walls (α = 0.01, right column) for the simulations of Fig. 1. The time interval between two successive
curves is �t = 200.

Fig. 3. Longitudinally averaged profiles of concentration for the simulations of Fig. 1 in the case of insulating walls i.e. α = 0 on the left, and with conducting walls i.e
α = 0.01 in the center for the upward propagating front. The right figure shows the averaged profile for the unstable downward propagating front when α = 0.01. The
time interval between two successive curves is �t = 200.

Fig. 4. Space-time maps of the locations of the maxima (black) and minima (grey) of the transversely averaged profiles �c(y, t)� for the simulations of Fig. 1 for the cases of
the ascending front when α = 0, and the upward and downward moving fronts when α = 0.01 from left to right respectively. The horizontal direction corresponds to the
y direction (Ly = 512) while time is increasing downwards up to t = 4400.
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Fig. 5. (left) Temporal evolution of the location of the tip (t) and the rear (r) of the fingering zone for α = 0 (dotted lines) and α = 0.01 (bold lines) respectively; (right)
corresponding mixing length.

Fig. 6. Power averaged mean wavenumber �n� of fingers as a function of time for
the conducting (α = 0.01, dotted lines) and non conducting (α = 0, bold lines)
cases. The stepped curves give the temporal evolution of the value of n for the
Fourier mode with the largest amplitude.

case considered here. Its typical value is of order −1 as usually
�ρc and �ρT are of the same order [15,26]. As the effect of this
parameter has already been studied in detail before [15,26], we
keep it to a constant value around γT = −3 typical of a strongly
exothermic reaction. The kinetics used in (4) is a simple one-
variable cubic scheme known to produce traveling fronts when
coupled to diffusion. The kinetic parameter d is here fixed to
d = 0.0021, a value characteristic of the IAA system [35]. The
Damköhler number Da is a dimensionless parameter expressing
the ratio between the hydrodynamic and chemical time scales. It
is of order 1 for the IAA reaction [35] and takes smaller values
close to Da = 0.001 [15,41] for the CT reaction. As the effect
of the Damköhler number has already been analyzed in details
before [22,35,38,41], we will keep it here to typical intermediate
values close to 0.1 for which first studies of the influence of heat
losses have already been performed [34]. The Lewis number Le

is defined as the ratio between the thermal and solutal diffusion
coefficients. Its value ranges between 10 for the CT system [15,34]
to larger values around 70 for typical aqueous solutions of small
ions. The equation for the temperature (5) further contains a
Newton’s cooling coefficient α quantifying the intensity of heat
losses through the walls. For α = 0, the system is insulated and all
heat produced by the chemical reaction is kept inside the reactor.
For infinite α, all heat immediately escapes through the wall
and we effectively analyze an isothermal system. It is difficult to
quantify this parameter experimentally, however it is reasonable
to take values such that the thermal profile becomes a pulse of
given extent rather than a front as is observed experimentally [32].
For the kinetics used here, this is typically achieved with values of
α between 0.001 and 0.1 [34]. We are here interested in analyzing
nonlinear dynamics for intermediate values of α.

The model thus depends on four parameters, the Damköhler
number Da, the Lewis number Le, γT the thermal expansion
coefficient ruling the density jump due to the heat release during
the reaction and α quantifying the heat losses through the walls.

The base state of the problem in the absence of heat losses
is a reaction-diffusion (RD) front whereby the stable steady state
(c, T ) = (1, 1) corresponding to the products invades the unstable
one (c, T ) = (0, 0) i.e. the reactants. In the absence of convection,
the solution of the RD problem is given by [42];

c(x, t) = 1
1 + e−√

Da/2(x±vt)
(6)

where the sign + and − correspond to the ascending and
descending front respectively. The reaction front travels with a
nondimensional speed v = √

Da/2(1 + 2d) and has a width
w = √

8/Da ln[(1 − δ)/δ], defined as the distance between c = δ
and c = (1 − δ). In the presence of heat losses (i.e. α �= 0) the
base state is not a front but a pulse as the heat produced during the
reaction is lost through the walls [34].

Fig. 7. (left) Location of the tip and rear of the fingering zone and (b) correspondingmixing length as a function of time for six different initial conditions for Le = 3,Da = 0.5
and α = 0.01.
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Fig. 8. Nonlinear fingering dynamics of c (left) and T (right) for conducting walls
(α = 0.01) and four different values of the Lewis numbers Le = 1, 3, 5 and 10 (from
top to bottom) with Ly = 768,Da = 0.1, γT = −3. From left to right the system is
shown at respectively t = 0 (i.e. the initial condition) then at every �t = 500 up
to the time when the two fronts are close to meet.

The density ρ = (1−c)+γT T is decreasing during the reaction
from ρr = 1 in the reactants to ρp = γT (with γT < 0) in the
products. This induces the fact that upward propagating fronts are
unstable as ρp < ρr . Eqs. (1)–(5) are integrated numerically on a
spatial domain of length Lx and width Ly using a pseudo spectral
method developed by Tan and Homsy [43] and modified to take
the chemistry into account [22,34]. We use dx = dy = 4 when
Da = 0.1 and dx = dy = 2 when Da = 0.3 or 0.5, the time
step is dt = 0.1. We have tested that our nonlinear simulations
correctly reproduce the predictions of the linear stability analysis
[34]. The boundary conditions are periodic in both directions. The
reaction is initiated at the same time at both the top and the bottom
of the reactor allowing us to follow simultaneously the dynamics
of both the downward and upward propagating fronts. Specifically,
the initial condition consists in two step functions switching from
c = 1 to c = 0 through one intermediary line where c =
0.5(1 + 0.001r) with r being a random number between 0 and 1.
The two steps are located at the axial position x1 and x2 respectively
sufficiently far apart in both directions along x so that the fluid

Fig. 9. Nonlinear fingering dynamics of the concentration c for six different values
of the cooling coefficient α = 0, 0.001, 0.005, 0.01, 0.05 and 0.1 (from left to right
and top to bottom). The other parameters are Ly = 768, Le = 10,Da = 0.1 and
γT = −3. On one figure, the various panels from left to right show the system at
respectively t = 0 (i.e. the initial condition) then every �t = 500 up to the time
when the two fronts are close to meet.

Fig. 10. Same as Fig. 9 but for the temperature.

flow on each front does not interact when fingering sets in. The
concentration c is plotted in a scale of grey ranging from c = 0
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(white) to c = 1 (black). The temperature profile on the other hand
is plotted in a gray scale ranging from white when T = 0 to black,
for itsmaximumvaluewhichmaybe larger than one in the absence
of heat losses or smaller than one when heat is dissipated through
the walls.

2. Nonlinear dynamics with and without heat losses

We first show two typical non linear dynamics illustrating the
main differences between the spatio-temporal evolution of c and
T depending whether the system is insulated or not (Fig. 1).

In the case of insulating walls (α = 0), we obtain a stable
descending front while, for the upward moving front, a rapid
merging and coarsening of the fingers leads eventually to one
single finger traveling with a constant shape and speed (Fig. 1
top). This trend is logically similar to the one observed numerically
for isothermal IAA ascending fronts [21,22]. Indeed, if α = 0,
the concentration and temperature front profiles both lead to a
homogeneous decrease in density across the front. For the small
value of Le excluding here differential diffusive effects [23], the
descending front features thus a stable stratification of solute
light and hot products above solute heavier reactants at room
temperature. On the contrary, the ascending front is buoyantly
unstable as the heavier and colder reactant solution is now on
top. We further note in Fig. 1 for α = 0 the presence of
hot spots in the valley of the finger where the temperature T

is measured to be larger than one i.e. larger than the adiabatic
temperature. This temperature excess has been checked to be
intrinsic to the reaction-diffusion-convection dynamics as it is
robust towards numerical mesh and time-step refinements. In
addition, the presence of such hot spots has been evidenced
experimentally recently in the case of the chlorite-tetrathionate
reaction and results from an increased transport of fresh reactants
by advection towards the valleys of the fingers [32].

For conducting walls i.e when α �= 0 we see that, as predicted
theoretically [34], the downward propagating front is unstable
due to a locally unstable stratification of cooled products behind
the front above hotter products inside the front. The cellular
deformation of the front features frozen fingers of a small and
constant amplitude and fixed wavelength (Fig. 1 bottom). The
instability remains confined inside the temperature pulse because
of the presence below the front of a stable region where the
products heated inside the front lie above the cool reactants.
This is coherent with the fact that the corresponding dispersion
curves witness a fixed band of unstable modes with the long
wave modes being stable [34]. This has already been shown
previously to freeze the pattern and inhibit coarsening [15]. For the
upward propagating front, the asymptotic dynamics of the finger
is totally different with the heat losses through the walls leading
to enhanced tip splitting.

Seeing that thermal effects have a drastically different influence
on the dynamics dependingwhether the system is insulated or not,
our goal is here to compare quantitatively the fingering character-
istics in the presence of thermal effects (with and without heat
losses) to the isothermal case presented in [22]. This comparison
can be made thanks to various types of measurements [22] that
we now explain.

2.1. Averaged profiles

During the course of time, the two-dimensional concentration
field c(x, y, t) can be spatially averaged along either the x or
y coordinate yielding one-dimensional averaged profiles. The
transversely averaged profile is defined as

�c(x, t)� = 1
Ly

�
Ly

0
c(x, y, t)dy (7)

and is shown on Fig. 2 for the nonlinear simulations of Fig. 1.

Fig. 11. Mixing length as a function of time for different values of α. The other
parameters are Ly = 512, Le = 5,Da = 0.1 and γT = −3.

Fig. 12. Nonlinear fingering dynamics of c and T for differentwidths Ly = 256, 512
and 768 (from top to bottom) with α = 0.005, Le = 10,Da = 0.1 and γT = −3.
From left to right the system is shown at respectively t = 0 (i.e. the initial condition)
then every �t = 500 up to the time when the two fronts are close to meet.

If the traveling front is stable, as for the descending front at
α = 0, we recover in this profile, the hyperbolic tangent front
solution (6) for c and the corresponding traveling temperature
front. On the contrary, as soon as fingering starts as for the
ascending front, bumps appear in �c(x, t)� as can be seen in Fig. 2
at large x. The asymptotic single finger reached eventually when
α = 0 appears in these transversely averaged profiles as a
deformed traveling front moving with a constant shape and speed
as for isothermal systems [22]. In the corresponding 1D averaged
temperature profile, the presence of the hot spot seen in Fig. 1 is
witnessed by the fact that the maximum value of �T (x, t)� is larger
than one.

The presence of heat losses modifies these various properties.
For the downward moving fronts, the small amplitude fingering is
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Fig. 13. Asymptotic value of the mixing length W and of the propagation speed V as a function of α for three different widths Ly = 256, 512 and 768 from top to bottom,
four different Lewis numbers Le = 1, 3, 5 and 10 and six different values of α = 0, 0.001, 0.005, 0.01, 0.05, 0.1. The other parameters are set to Da = 0.1, γT = −3. For all
values represented by the dashed line, the system has not saturated to one single finger but undergoes repetitive tip splitting.

too weak to be seen on the transverse profiles, however the switch
in the temperature profiles from fronts to pulses is clearly obtained
when α is non zero any longer. The maximum temperature value
is lower than one and decreases once convection sets in. For the
upward moving front, the averaged profiles are strongly deformed
by convection. The succession of tip splitting events is such that
no constant deformation is reached, but an irregular succession of
bumps remains in the course of time both in the concentration
and temperature 1D transversely averaged profiles (Fig. 2 right
column). Moreover, convection spreads out the heat as we observe
a lower amplitude of the thermal pulse when the front is strongly
buoyantly unstable.

The longitudinally averaged profiles defined as

�c(y, t)� = 2
Lx

�
Lx/2

0
c(x, y, t)dx (8)

illustrate on the other hand how fingers on an ascending front can
interact, spread and shield their neighbors or merge to ultimately
lead to one asymptotic single finger (see Fig. 3 for α = 0) or to a
finger featuring tip splitting (Fig. 3 for α = 0.01). An analogous
definition is obtained for the descending front where now the
integral runs from Lx/2 to Lx. In the same Fig. 3, we see that
the downward propagating front features on such profiles a weak
deformation and a constant wavelength when heat losses are able
to destabilize it.

A good way to appreciate the changes in the wavelength
of the dynamics independently of the amplitude of the cellular
deformation is to plot a space–time diagram of the locations of the
maxima and minima of the transverse averaged profile �c(y, t)�

in the course of time (see Fig. 4) [44]. Such a diagram shows the
mechanism of shielding of fingers by their spreading neighbor and
the subsequent reordering of the positions of the extrema until the
remaining of oneultimate single finger for the ascending front in an
insulated reactor. For conducting walls, it allows us to appreciate
the constant wavelength character of the downward moving front
modulation and the strongly irregular dynamics due to splittings
of the ascending ones.

2.2. Tip, rear and mixing length of the fingered zone

The transversely averaged profile is next used to define the tip
and rear of the fingered zone as the location along the x axis for
which �c(x, t)� is respectively smaller than 0.01 and larger than
0.99. These points correspond respectively to the most and less
advanced locations of the fingered zone. Fig. 5 shows the temporal
evolution of the position of the tip and rear for the two ascending
fronts of Fig. 1. Starting from a step function as initial condition,
the planar reaction-diffusion front establishes first inwhich tip and
rear move in parallel separated by a fixed distance w at the same
speed v. This reaction-diffusion dynamics is only present at the
beginning. After a given induction time, fingering sets in and the
tip starts to move at a still constant but larger nonlinear speed V

resulting from the nonlinear interaction between the convection
rolls and the traveling front. The rear of the front is entrained by the
chemical front. The observed bumps correspond to disappearances
of the tail of white (c = 0) fingers in the black (c = 1) background
as the traveling front is moving up. For insulated systems, after all
fingers have merged and only one single finger remains, the rear
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Fig. 14. Concentration c , temperature T and streamlines from top to bottom for the
insulated case α = 0 and Le = 3,Da = 0.5, γT = −3. On one line, the snapshots
show the dynamics at successive times t = 200, 600, 1000, 1400 and 1800. In the
final single finger limit, the velocity field features two counter-rotating vortices.

travels in parallel again with the tip at the nonlinear speed V . The
mixing length L, defined as the distance between the tip and the
rear, reaches then a constant value W larger than the reaction-
diffusion width w of the stable planar front. When α �= 0, the tip
still travels at a constant speed but the rear position repetitively
varies depending on the splitting events giving rise to a mixing
length L changing irregularly in time. Let us note that fingering
shows a shorter induction time and a higher slope of the initial
linear growth of the mixing length for α = 0 compared to the case
whenheat is dissipated through thewalls. This is coherentwith the
linear stability analysis results that show that the system is more
unstable for isolated systems in the case of ascending cooperative
fronts [34].

2.3. Power averaged mean wavenumber

In absence of tip splittings, the nonlinear dynamics of the
system is dominatedby coarsening of the fingers [22]. A convenient
quantitative measure of this phenomenon is provided by the

power averaged mean wavenumber defined as

�k(t)� =

�
i

kiPi

�
i

Pi

(9)

where ki are the Fourier modes of the Fourier transform ĉ(k, t) of
the transversely averaged profile �c(y, t)� and P(k) = |ĉ(k)|2 their
amplitude in Fourier space. The averagedwavelength of the fingers
is then simply �λ(t)� = 2π/�k(t)� and the power averaged mean
number of fingers in the system is then defined as �n� = Ly/�λ(t)�.

Fig. 6 shows the temporal evolution of �n� as well as of the
discrete value of n corresponding to the mode of largest amplitude
for the simulations of Fig. 1. These values decrease in time as
a consequence of coarsening. In the absence of heat losses, the
most unstable mode evolves from 9 fingers initially in the width
of the system to 2 and eventually only one single finger as in
isothermal systems [22]. The power averaged mean number of
fingers �n� on the other hand oscillates around the value of 2, the
oscillation being related to the oscillatory motion of the position
of the minimum seen in the space–time map of Fig. 4 (left). When
heat is evacuated through thewalls, even though themost unstable
mode is also eventually equal to 2, �n� evolves erratically because
of the succession of tip splitting and merging events.

It is now clear that heat losses influence both qualitatively and
quantitatively the properties of fingering of exothermic fronts. Let
us now analyze the different trends that arise when varying the
thermal parameters Le and α as well as the nondimensional width
of the system Ly.

3. Parametric study

Before varying parameters, let us mention that the noise seed-
ing the initial condition is important for the specific dynamics of
fingering when tip splitting exists while it is not so important
when coarsening towards one single finger is observed. The ran-
dom noise seeding the initial conditions affects indeed the tran-
sient towards the single finger but not its asymptotic properties.
However, in presence of tip splittings, the succession of events re-
main different for each specific initial condition as can be seen on
Fig. 7 where six different realizations of the same simulations have
been performed changing not the amplitude but the initial spatial
distribution of the noise.

As the influence of the Da and γT parameters has already been
analyzed previously [15,22,26,35,38,41], we keep them constant in
this section to the values Da = 0.1 and γT = −3. We first vary the
Lewis number Le, then study the impact of the heat losses via the
parameter α and eventually we focus on the effect of the width of
the system Ly.

3.1. Role of Le

Fig. 8 compares the dynamics for values of the Lewis number
Le = 1, 3, 5 and 10 for α = 0.01 and Ly = 768. For Le = 1
the front propagating upwards features strong tip splitting while
the one propagating downwards shows only a weak deformation.
When Le is increased, splitting events occur less often but are
nevertheless still present evenwhen Le = 10. Fig. 8 also shows that
the propagation speed is a decreasing function of Le, indeed the
front can propagate on longer time scales for increasing Le before
meeting the downward propagating front.

3.2. Role of α

We now turn to the impact of α quantifying the intensity of
heat losses. The concentration and temperature fields are shown
respectively in Figs. 9 and 10 for Le = 10 and Ly = 768 for six
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Fig. 15. Similar as in Fig. 14 for conducting walls with α = 0.005. On one line, the snapshots show the dynamics at successive times t = 200, 600, 1000, 1400, 1800 and
2200. The velocity field is here characterized by four vortices within each finger.

different α. First of all, increasing α decreases the growth rate as
the pattern appears later. This is coherent with the linear stability
analysis results [34]. In the nonlinear regime, we see that splitting
occurs only for intermediate values of α. If α is too small or too
large, the dynamics asymptotes to one single finger the extent of
which is longer for α = 0 as the total density jump is then larger
than for α = 0.1 which is closer to the isothermal case. In Fig. 10
we present the corresponding T profiles. Increasing α leads there
to more and more heat losses through the walls so that finally
only a very thin black stripe of heat is observed around the front
when α = 0.1. The corresponding dynamics for such large α’s is
then in effect the same as the one for an isothermal system [22].
The corresponding mixing length converges hence to a constant
for both small or large values of α while it changes erratically in
timewhen splitting events are observed for intermediate values of
α (see Fig. 11).

3.3. Role of Ly

The role of Ly is shown in Fig. 12 where three different widths
of the system are considered. Larger systems lead to a faster
propagating front and to tip splitting while only one single finger
is obtained for smaller widths. This is coherent with the nonlinear

dynamics in the isothermal case where larger systems only are
shown to exhibit tip splitting [22]. The difference is here that,
due to the heat losses through the walls, narrower systems are
sufficient to observe tip splitting.

All these effects are summarized in Fig. 13where the asymptotic
value W of the mixing length and the non linear propagation
speed V are plotted as a function of α for different values of Le. As
alreadymentioned, even in the presence of tip splitting, it is always
possible to extract a propagation speed although this one will
slightly vary depending on the initial condition of the simulation.
An asymptotic value of the mixing length in the presence of tip
splitting is on the other hand difficult to define (see Fig. 7). The
graphs of the mixing length in Fig. 13 thus present no quantitative
value of W for the values of α leading to tip splitting. We see that
increasing Ly leads to more intense splitting, while increasing Le

makes the finger less prone to split. For Ly = 256 splitting only
occurs when Le = 1 while for Ly = 768, fingers split for nearly all
parameter values. Fig. 13 shows moreover that increasing α and
Le tends to give fingers of constant length and propagation speed,
which of course depend on Ly. These asymptotic values, when
compared with the ones obtained for the isothermal case [22], are
seen to be a bit larger showing that although the heat effects are
very weak for great α they still have some importance.
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Fig. 16. Similar as in Fig. 14 for conducting walls with α = 0.1.

Fig. 17. Similar as in Fig. 14 for conducting walls with α = 0.5. On one line, the snapshots show the dynamics at t = 600, 1000, 1400, 1800 and finally t = 4000.

Let us now focus on the evolution of the flow field during the
fingering phenomena enlightening the differences between the
conducting and non conducting wall cases.

4. Properties of the fluid flow

In the absence of thermal leaks i.e. for α = 0 and cooperative
reactions, the nonlinear dynamics has been shown to lead as for
isothermal systems [22] to one single finger inside which the
velocity field is organized around two counter-rotating vortices as
shown in Fig. 14.

The situation is quite different in the case of conductive walls
shown in Fig. 15. Here, all parameters are the same as in Fig. 14
except that now α = 0.005. First of all, the coarsening trend is

slower and two large fingers are maintained at a later time before
the most advanced one starts to split. The temperature profile is
not a front anymore but a pulse surrounding the concentration
front. As the simulations begin with a step function and as α =
0.005 is pretty weak, we see in the two first snapshots that the
heat is not completely dissipated yet behind the front. However,
quite rapidly when the temperature is larger only in the vicinity of
the front, the velocity field features a structure containing four rolls
with two counter-propagating vortices behind the front. The origin
of this quadrupole of vortices is related to the fact that, across the
front, the change of the temperature from T = 0 to a positive
T inside the front and then back to T = 0 far behind the front
generates two changes in the sign of the spatial derivative of T ,
yielding two additional convection rolls [12].
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Fig. 18. Streamlines for the insulated and conducting cases for α = 0, 0.001, 0.005, 0.01 and 0.05 from left to right and Ly = 512, Le = 5,Da = 0.1, γT = −3 shown at
t = 7000. The corresponding mixing lengths are given in Fig. 11.

When α is increased in Figs. 15–17 from 0.005 to 0.5, we see
a progressive decrease of the longitudinal extent of the flow and
of the intensity of convection in the sense that, to represent the
isolines we have progressively changed the step between two
isoline values from 20 to 5 and then 2. Although the convection
strength is getting weaker, splitting phenomena are still present
with α = 0.1 (Fig. 16). When α = 0.5 however, we recover one
single finger and two vortices only as most of the heat has now
escaped and the system behaves as an isothermal one (Fig. 17).
Comparing Figs. 14 and 17, we see that the finger has a smaller
extent for large α than for α = 0. This is due to the fact that for
such cooperative fronts, the total density jump (�ρ = �ρc +�ρT )
is larger for α = 0 than for large α where in practice �ρ ∼ �ρc .

Eventually, let usmention thatwe have found in our parametric
study that, insulated systems do not always lead to a bipole flow
structure but can, in the presence of hot spots for which the
temperature locally exceeds one, also feature four vortices. This is
the case for the first panel of Fig. 18 obtained for Le = 5,Da =
0.1, γT = −3, Ly = 512 and α = 0. The local presence of the
hot spot leads to two changes in the derivative of the temperature
across the front, which is responsible, as for temperature pulses
due to heat losses, to a quadrupole flow structure.

When α is varied successively from α = 0 to α =
0.001, 0.005, 0.01 and finally α = 0.05, tip splitting occurs only
for the intermediate values when the four vortices are squeezed
one against the other. Four elongated vorticesmaintained apart for

α = 0 or only two convection rollswhen heat has escaped from the
system for α = 0.05 both give one single finger without splitting.
It seems thus that the important mechanism for splitting is the
squeezing of the two upper convection rolls and not the convection
strength.

5. Discussion and perspectives

The nonlinear fingering dynamics of an exothermic traveling
chemical front has been studied here numerically in order to
quantify the importance of heat losses through the walls of the
reactor on the occurrence of tip splitting and characteristics of the
velocity field. We have focused on the case of cooperative fronts
for which the thermal and solutal density contributions to the total
density jumpacross the front have the same sign and both decrease
the density during the reaction. We have in particular made a
parametric study of the influence on the dynamics of the intensity
of heat losses through the walls, of the Lewis number and of the
width of the system.

Our analysis emphasizes the marked influence of the heat
losses through the plates whereby the temperature profile is no
longer a front but a pulse centered around the front. The nonlinear
dynamics in the case of insulating walls features coarsening of
Rayleigh–Taylor unstable ascending fronts towards one single
finger propagating at a speed larger than the reaction-diffusion
one just as observed in isothermal systems [21,22]. Hot spots
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can then be observed. The situation is dramatically different for
conducting walls where we observe destabilization of descending
fronts by a small amplitude modulation and enhanced splitting
phenomena for ascending fronts. These tip splitting events are
observed to occur more frequently for intermediate values of α,
the single finger dynamics being recovered for large α’s corre-
sponding in effect to the equivalent of isothermal systems. At fixed
intermediate value of α, the asymptotic speed of the fingered zone
as well as the number of splitting events both decrease when Le

increases as the thermal field is then more spread out.
We have furthermore studied the properties of the flow field

evolution for various values of the heat loss rate α. The properties
of the flow field are different whether the walls are insulating or
conducting. In insulating systems, the flow field inside one finger
features only one pair of vortices but can in some cases show four
vortices if a hot spot is present. A quadrupole of flow vortices
arranged around a saddle-node structure is obtained as well in the
presence of heat losses of intermediate intensity [32].

Our results demonstrate an increased complexity in the prob-
lemwhen heat losses through thewalls are added.We have shown
that splitting phenomena can occur for large domains of param-
eters and that, although the convection strength decreases with
increasing α, this strength is not the only factor influencing the
splitting phenomena, the structure of the flow field is important
as well.
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