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The nonlinear dynamics resulting from the interplay between diffusive and buoyancy-driven
Rayleigh–Taylor �RT� instabilities of autocatalytic traveling fronts are analyzed numerically for
fronts ascending or descending in the gravity field and for various values of the relevant parameters,
the Rayleigh numbers Ra and Rb of the reactant A and autocatalytic product B, respectively, and the
ratio D=DB /DA of the diffusion coefficients of the two key chemical species. The interaction
between the coarsening dynamics characteristic of the RT instability and the fixed short wavelength
dynamics of the diffusive instability leads in some parameter regimes to complex dynamics
dominated by the irregular succession of birth and death of fingers. Large single convective fingers
with a tip deformed by the short wavelength diffusive instability are also observed. If D is
sufficiently small and the RT instability is active, the concentration of the slower diffusing species
B can be convected to values above its fully reacted concentration. Experimental conditions that
would allow the observation of the dynamics predicted here are described. © 2009 American
Institute of Physics. �DOI: 10.1063/1.3077181�

I. INTRODUCTION

The nonlinear dynamics resulting from transverse insta-
bilities of propagating chemical fronts have been studied
both theoretically and experimentally in many situations.
Typically fronts can become unstable either due to differen-
tial diffusion processes or because of buoyancy-driven insta-
bilities. In the case of a diffusive instability, the front de-
forms because the reactant A involved in the autocatalytic
process underlying the reaction-diffusion propagation dif-
fuses sufficiently faster than the autocatalytic product B of
the reaction. A key parameter of this instability is then the
ratio of diffusion coefficients D=DB /DA of autocatalyst B
and reactant A which has to be lower than some critical value
Dc for the diffusive instability to set in Refs. 1–3. In the
nonlinear regime, a diffusive instability is characterized by
the cellular deformation of the front as observed experimen-
tally for both the iodate-arsenous acid4 �IAA� and
chlorite-tetrathionate5–8 �CT� reactions. The pattern has a
wavelength of the order of a centimeter and appears on a
time scale of 2–3 h. Numerically, Horváth et al.1 showed that
the spatiotemporal dynamics of the diffusive instability can
develop into chaos as the width of the system is increased.
Malevanets et al.2 performed a numerical study of the diffu-
sive instability on a cubic scheme near and far from the onset
of the front instability. Close to onset there is one length
scale and the dynamics can be described by a Kuramoto–
Sivashinsky �KS� equation while far from onset, the dynam-
ics feature two characteristic lengths and cannot be modeled
by the KS equation.2

Fronts can also become unstable through a buoyancy-

driven Rayleigh–Taylor �RT� instability occurring when a
heavier solution lies above a lighter one in the gravity field.
This hydrodynamic instability occurs typically much faster
as fingers with a wavelength of the order of 1 millimeter
appear in less than half a minute.9,10 In Hele–Shaw cells �two
Plexiglas plates separated by a thin gap width� which are
laterally sufficiently spatially extended so that several fingers
can appear at onset, the nonlinear dynamics of RT fingers
shows merging and a general coarsening trend toward larger
wavelengths with time. Such a coarsening tendency has long
been noted in viscous and density fingering in nonreactive
fluids.11 It has also been observed experimentally in the RT
fingering of autocatalytic fronts both in the IAA reaction12,13

and in the CT system14–16 where it is seen that some slightly
more advanced fingers can shield their neighbors leading to
an overall decrease in the wavelength with time. In some
regimes tip splitting, through which large fingers split into
two smaller ones, are observed as well.12–16 From a numeri-
cal point of view, nonlinear simulations on both a cubic
scheme modeling the IAA reaction17,18 and a kinetic scheme
of order four modeling the CT reaction19,20 show coarsening
toward one single asymptotic finger featuring self-similar
properties.17,20 For large Rayleigh numbers, this coarsening
trend is counterbalanced by tip splitting events.

It has been suggested recently that these two instabilities
could interact if their characteristic time and spatial scales
become of the same order.21,22 In combustion, nonlinear
simulations have shown, based on a model coupling the
compressible Navier–Stokes equations with energy and spe-
cies conservation equations that irregular and complicated
cellular flame front dynamics can result from the interaction
between these instabilities.23–25a�Electronic mail: amtjhm@maths.leeds.ac.uk.
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In this context, it is the objective of this article to ana-
lyze numerically the spatiotemporal dynamics that result
from the interaction between the diffusive and RT instabili-
ties of autocatalytic isothermal chemical fronts. In Part I of
this two paper series,22 we have set up the model equations21

describing the problem and undertaken a systematic linear
stability analysis �LSA� to see how the interaction between
diffusive and fingering modes can modify the dispersion
curves with regard to the pure instabilities considered sepa-
rately. Here numerical simulations of the full nonlinear
model show that the predictions of the LSA �Ref. 22� are
fully borne out by the dynamics of the nonlinear model at
early times. Moreover, in the nonlinear regime where fingers
are interacting, properties of the cellular modulation of the
front are different depending on whether the pure diffusive or
RT instabilities are acting alone or are interacting. Nonlinear
long-time dynamics are analyzed for characteristic values of
the relevant parameters, namely, D, the ratio of diffusion
coefficients of the autocatalytic species B over that of the
reactant A controlling the diffusive instability, and Ra and Rb,
respectively, the Rayleigh numbers of the two key species A
and B controlling the RT instability. We show, in particular,
that, when both mechanisms of instability are cooperating to
destabilize the front, the spatiotemporal dynamics of the con-
centrations become particularly complex.

This article is organized as follows: in Sec. II we discuss
the nonlinear model we are studying and introduce the nu-
merical scheme used to integrate the relevant equations. In
Sec. III, we recall the spatiotemporal dynamics of the pure
diffusive and pure RT instabilities before tackling in Secs. IV
and V the dynamics resulting from their interaction. Finally
some general conclusions are drawn in Sec. VI.

II. MODEL AND NUMERICAL SCHEME

Our model is based on the cubic autocatalytic reaction

A + 2B → 3B , �1�

where a and b are, respectively, the concentrations of reac-
tant A and autocatalyst B and k0 is a constant. The nonlinear
dimensionless model describing reaction–diffusion–
convection dynamics developing around traveling fronts
generated by these kinetics is21,22

�2� = − �Raay + Rbby� , �2�

at + �yax − �xay = �2a − ab2, �3�

bt + �ybx − �xby = D�2b + ab2, �4�

where � is the stream function and a and b are the concen-
trations of the reactant A and autocatalytic product B, respec-
tively. The subscripts t , x, and y denote the derivative with
regard to time t, longitudinal x, and transverse y spatial co-
ordinates, respectively, with x pointing upward in the gravity
field. The problem is controlled by three parameters, D
=DB /DA, the ratio of diffusion coefficients of the two key
species important for discussing the diffusive instability, and

the two Rayleigh numbers Ra and Rb of the reactant and
product, respectively, controlling the buoyancy effects. The
system is diffusively unstable for the cubic kinetics �1� if
D�Dc�0.424.21,22 A RT instability arises if a heavier solu-
tion lies on top of a lighter one, i.e., for ascending fronts
when Ra�Rb, as is the case for the IAA reaction, or for
descending fronts when Rb�Ra, as, for example, in the CT
reaction.

The nonlinear simulations are performed using a numeri-
cal code based on the pseudospectral technique developed by
Tan and Homsy26 and adapted with previous success to
tackle reactive problems.17 The simulations are started with a
product zone where �a ,b�= �0,1� centered around Lx /2 and
sandwiched in a reactant zone where �a ,b�= �1,0�. This al-
lows us to trigger simultaneously both an ascending and a
descending front. The longitudinal extent of the product zone
is chosen sufficiently wide so that the convective flows that
develop on one front do not interact with the other front.27

This is checked by verifying that at each time there is a zone
where �=0 between the two fronts �as is illustrated in Fig. 6
below�. In effect, the dynamics of both the ascending and
descending fronts remain totally independent. At the initial
transition zones between a and b a random noise of 0.1% in
amplitude is added to an intermediate line a=b=0.5. Initially
there is no flow and hence the stream function �=0. Periodic
boundary conditions are applied in both directions. We inte-
grated the system in a two-dimensional �2D� domain of di-
mensionless width Ly =512 and length Lx=8192 and we var-
ied the three key parameters of the problem namely D , Ra

and Rb. As done in our previous LSA study21,22 we take the
ratio Rb /Ra as fixed, namely, Rb=0.5Ra when discussing
cases for which Ra�Rb and Rb=2Ra for cases when Rb

�Ra. The spatial and time discretization are respectively
dx=dy=2 and dt=0.04.

We first tested that our nonlinear simulations correctly
reproduce the predictions of the linear stability analysis. To
compute the most unstable growth rates, we follow over time
the longitudinally averaged concentration profiles defined as

�a�y,t�� =
1

Lx
�

0

Lx

a�x,y,t�dx �5�

for a, with a similar definition for b. We then Fourier trans-
form this profile and identify the most unstable wavenumber
kmax as the one with the largest power Amax in the Fourier
spectrum. In the linear regime, the amplitude Amax of the
modes grow exponentially with a growth rate �max. This
growth rate of the most unstable mode is therefore obtained
as the slope of a linear fit to the curve log�Amax� as a function
of time. The related most unstable wavenumbers k=kmax and
growth rates �max computed using this technique show, for
all values of parameters tested, good agreement with values
computed by our LSA.22 This validates both the LSA and the
present nonlinear simulations. Furthermore, we have
checked that we correctly reproduce the most unstable wave-
number and the growth rate for the pure diffusive case as
presented in Ref. 3.

The nonlinear dynamics are followed by displaying at a
given time 2D concentration fields a�x ,y , t� or b�x ,y , t� in a
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gray scale ranging from zero in white to the maximum value
�which is equal to one unless stated otherwise� in black. The
width of the plots are always Ly =512 while the length along
x varies but can easily be found as the same scales for both x
and y are kept in all 2D concentration plots. Moreover we
compute transversally averaged concentration profiles de-
fined as

�a�x,t�� =
1

Ly
�

0

Ly

a�x,y,t�dy . �6�

These one-dimensional profiles allow us to follow the tem-
poral evolution of concentrations averaged over the width of
the system. The spatiotemporal evolution of the dynamics of
the fingers can also be followed by plotting space-time maps
of the location of the maxima �in black� and of the minima
�in gray� of the longitudinally averaged profiles �5�.

III. DIFFUSION-DRIVEN AND RAYLEIGH–TAYLOR
INSTABILITIES

Before focusing on the more complex situations due to
the coupling between the buoyancy- and diffusive-driven in-
stabilities we wish to draw the base line of the problem by
recalling the nonlinear dynamics of each of the pure insta-
bilities, namely, the diffusive instability for different values
of the parameter D�Dc but with Ra=Rb=0 and the RT in-
stability for Ra and Rb nonzero but with D=1.

A. Diffusion-driven instability

For the cubic scheme considered in Eq. �1�, the pure
diffusive instability develops on both the ascending and de-
scending fronts when D�Dc�0.424 and Ra=Rb=0. This
pure diffusive case is presented in Fig. 1 for four different
values of D�Dc by space-time maps of the extrema of the
longitudinally averaged profile �a�y , t��. At early times, the
amplitudes of the initial perturbations grow and fingers ap-
pear with a wavelength and onset time corresponding to the
one predicted by the LSA.3,21,22 We note that this wavelength
decreases with D in agreement with the fact that the system
is getting more unstable �i.e., kmax increases� when D is pro-
gressively decreased below the critical threshold Dc of the
diffusive instability. For D=0.4 slightly below the critical
value, a regular cellular pattern of seven fingers with fixed
wavelength sets �Fig. 1, bottom right panel�. If D is progres-
sively decreased, nonlinear interactions between fingers can
lead to merging phenomena whereby two neighboring fin-
gers coalesce into one which translates in the space-time map
by a line ending at one point. Counter to this, some fingers
can also split into two which is seen in the space-time map
by the birth of a new line. These events are rare for D=0.3,
however, their occurrence becomes more frequent as D is
further decreased �see the plots for D=0.1,0.2�. In all cases
the deformation to the planar reaction front keeps its short
amplitude and short wavelength character, as can be seen on
the inset of Fig. 1 featuring a gray-level plot of the a con-
centration at time t=8000. These numerical results reproduce
experimental findings obtained with the IAA �Ref. 4� and CT
reaction.5,6 The observation that the number of space-time

defects associated with the birth and death of the fingers
increase with decreasing D is also consistent with the fact
that spatiotemporal chaos has been shown to set in for large
spatial systems when the diffusivity ratio is decreased.1,2

B. Rayleigh–Taylor instability

In the absence of any differential diffusion effect, i.e.,
for D=1, a pure RT instability may develop as soon as the
Rayleigh numbers Ra and Rb are different. There is a range
of unstable wavenumbers, dependent on Ra, where this insta-
bility is operative and domains of sufficient size to accom-
modate these unstable wavenumbers are required to activate
an RT instability.27,28 Our numerical simulations are per-
formed in spatial domains large enough to allow RT insta-
bilities to form. When Ra�Rb, the upward propagating front
for which heavier reactants A lie on top of lighter products B
is unstable with regard to buoyancy-driven flows ���0�,
whereas the descending front remains stable as it features a
statically stable density stratification. Figure 2 shows the

FIG. 1. Space-time map of the extrema of �a�y , t�� for the pure diffusive
instability with Ra=Rb=0 and D=0.1,0.2,0.3,0.4 �from left to right and top
to bottom�. The horizontal axis is the y direction ranging from 0 to Ly

=512 while the vertical axis represents time from t=0 to t=8000 �t increas-
ing in the downward direction�. The inset on top shows a zoom on the front
deformation by plotting the concentration of a at t=8000 for D=0.1 on a
scale ranging from black �a=1� to white �a=0� with Lx=200, Ly =512.
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space-time map of extrema of �a�y , t�� for the buoyantly un-
stable ascending front with Ra=0.5, Rb=0.25, D=1. After
the appearance of five fingers at onset in good agreement
with the LSA for these values of parameters,22 the nonlinear
RT dynamics is characterized by a general coarsening trend
resulting from the merging of fingers in the course of
time.14,17 Eventually, there is only one single finger left in the
system as seen on the upper part of Fig. 2. The isothermal RT
fingering of fronts is known to feature tip splitting for large
systems and/or large Rayleigh numbers.12–14,17,20 Heat losses
through the walls of the reactor have also been shown to
favor tip splittings.13,29 However, for the width Ly, the small
values of the Rayleigh numbers and the isothermal condi-
tions chosen here, no tip splitting is observed. Note that the
same dynamics are obtained for a pure downward propagat-
ing front when Rb�Ra.

Having recalled the nonlinear dynamics of both pure dif-
fusive and pure RT instabilities, we now examine the dynam-
ics that are obtained when these two instabilities interact.

IV. COUPLED BUOYANCY/DIFFUSION-DRIVEN
INSTABILITIES FOR Ra>Rb

Our LSA analysis of the problem has shown that differ-
ent phenomena are to be expected depending whether
Ra�Rb or Rb�Ra. The expected trends predicted by this
LSA are summarized in Table I of Ref. 22. We first analyze

the case Ra�Rb where the reactant A is heavier than the
product B and the density decreases in the course of reaction
as, for example, in the IAA reaction.

A. D>Dc

For D�Dc, the system is diffusionally stable and only
the ascending front is buoyantly unstable, the descending one
remaining planar. Our nonlinear simulations confirm this
with an instability appearing only on upward propagating
fronts. We illustrate this in Fig. 3 with the plots for D
=0.6,1.0. The initial small perturbations start to develop
with wavelengths and growth rates in agreement with those
of the corresponding LSA.22 These perturbations grow in
amplitude and coalesce into the long wavelength single re-
action finger normally associated with the pure RT case seen
above. Differential diffusion is however playing a subtle ef-
fect as having D�1 is stabilizing the hydrodynamic unstable
modes for Ra�Rb �see Fig. 3 of Ref. 22� while Dc�D�1 is
having a destabilizing effect �see Fig. 4 of Ref. 22�. This can
be checked on the space-time maps of the nonlinear simula-
tions in Fig. 3 where the number of fingers at onset is larger
for D=0.6 than for D=1 confirming that the system is more
unstable at lower values of D. In the nonlinear regime, the
buoyancy forces are here strong enough to retain the coars-
ening characteristic of the buoyancy-driven instability. How-
ever, subtle effects are at play as the coarsening is more
efficient for D=0.6 than for D=1.0. This can be explained by

FIG. 2. Coarsening nonlinear dynamics of the pure RT instability �Ra

=0.5, Rb=0.25, D=1�. Same plot as in Fig. 1 except final time is t=7500.

(a)

(b)

FIG. 3. Space-time maps of the extrema of �a�y , t�� for ascending fronts
with Ra=0.5, Rb=0.25 from t=0 to t=7000 for D=0.1, 0.2, 0.3, 0.4, 0.6,
and D=1.0 �from left to right and top to bottom�. The three lower panels
show from left to right the concentration a in the front at t=7000 for
D=0.1,0.6,1.0 on a scale ranging from black �a=1� to white �a=0� with
Lx=200, Ly =512.
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the fact that the reaction-diffusion speed of the front is de-
creasing with D. Thus the front propagates slower for D
=0.6 than for D=1 which allows convection to be more ef-
ficient. When reaching the final single finger �lower panel of
Fig. 3�, the amplitude of the finger is also slightly larger for
D=0.6 than for D=1.

B. D<Dc

When D�Dc the system is also diffusively unstable and
both ascending and descending fronts will feature cellular
deformations. We analyze the dynamics when coupled to
buoyancy-driven convection separately.

1. Ascending fronts

Figure 3 also shows space-time maps of the dynamics
for Ra�Rb and various values of D�Dc. Hence both diffu-
sive and RT instability modes are simultaneously at play.
Again the perturbations develop initially with growth rates
and wavelengths consistent with those given by the LSA.
The RT dynamics has a coarsening trend �see Fig. 2� while
the diffusive instability features a more constant number of
fingers on average �see Fig. 1�. When both instabilities are

operative, the dynamics will therefore depend on the relative
weight of each instability. The smaller the value of D for a
fixed set of Rayleigh numbers, the less efficient the coarsen-
ing dynamics, the more coalescence and splitting of the per-
turbations and the larger the amplitude of the fingers as can
be seen in Fig. 3.

Similarly at a fixed D=0.2, the coarsening dynamics is
taking over when Ra is increased as shown in Fig. 4. For
Ra=0.1, perhaps less so for Ra=0.25, there is repeated coa-
lescence and splitting of reaction fingers and the instability
retains the short wavelength character of a diffusion-driven
instability. For larger values of Ra, the destabilizing effect of
buoyancy becomes increasingly important and coarsening
takes over. There is then also increased convection strength
in the system. This cannot be appreciated on space-time
maps of the concentration dynamics but is better evidenced
by analyzing the temporal evolution of the mixing length W
�defined as the length of the zone where �a�x , t�� is larger
than 0.01 and smaller than 0.99�.17 The mixing length is
plotted in Fig. 5 which shows that there is very little increase
in the longitudinal extent of the finger from Ra=0.1 to Ra

=0.25 both taking small values between 35 and 45 �in di-
mensionless units�. However, the extent of the reaction in-
creases considerably in going to Ra=0.5, approximately 150
now showing strong fluid convection, and keeps increasing
for the larger values of Ra, showing the strong effects of the
destabilizing influence of buoyancy which also starts earlier
when Ra is increased.

Another feature which differentiates the cases for
D�Dc and D�Dc is a difference in the concentration pro-
files of the two species A and B. This can be seen in Fig. 6
featuring density plots of the 2D concentration fields a and b
as well as the stream function �. This figure shows that the
convective flow is localized to a region around the reaction
front. The spatial distribution of both species is similar for
D=0.6 while the dynamics of B extends on larger scales and
is more affected by convection than A for D=0.1. Moreover,
for D=0.1, there are regions where the concentration of B
achieves values above the fully reacted state b=1 that arises
behind the planar reaction front. This can be seen in the
�b�x , t�� plots in Fig. 7 where bumps of concentration burst-

FIG. 4. Influence of the Rayleigh number on the diffusive instability shown
with space-time maps of the extrema of �a�y , t�� for ascending fronts with
D=0.2 and Ra increasing as Ra=0.1,0.25,0.5,1.0 from left to right and top
to bottom shown from t=0 to t=8000. When Ra increases, the buoyant
effects become more dominant and impose a coarsening trend.
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FIG. 5. Mixing length as a function of time for ascending fronts with D
=0.2 and various values of Ra=2Rb.

114503-5 Buoyancy and diffusion instabilities J. Chem. Phys. 130, 114503 �2009�

Downloaded 18 Mar 2009 to 164.15.128.33. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/jcp/copyright.jsp



ing over 1 and troughs where the concentration is lower than
1 are observed while a keeps ranging from 1 to 0. The fact
that locally b is increased over 1 is due to a convective
concentration of this species which is insufficiently balanced
by its slow diffusion. This feature disappears when D=0.6
for which the averaged profiles of a and b both range be-
tween 0 and 1. These results show that there is a strong
interaction between the local reaction and the convective
flow for this case. The transport of reactant A by the convec-
tive flow enables the concentration of B to build up in some
regions above the normal fully reacted state and the transport
of the autocatalyst by the flow leads to its depletion in other
regions. This behavior is consistent with the LSA which
shows that a stronger instability should develop when
D�Dc.

2. Descending fronts

The LSA predicts that downward propagating fronts will
remain stable when Ra�Rb and D�Dc and this is confirmed
by our nonlinear simulations. However, for D�Dc the LSA
suggests that, for these smaller values of D, the effects of
buoyancy can make the instability stronger than in the pure
diffusive case, even though the density stratification is stati-
cally stable. For instance for Ra�Rb and D=0.15, the LSA
shows that both ascending and descending fronts can become
unstable, the latter having the largest growth rate �see Figs. 1
and 3 in Refs. 21 and 22�.

This trend predicted by the LSA is confirmed by our
nonlinear simulations: for descending fronts, differential dif-
fusion is destabilizing the otherwise buoyantly stable front

FIG. 6. Concentrations of a, b, and the stream function �, from left to right,
for D=0.1 �first row� and for D=0.6 �second row� for Ra=0.5, Rb=0.25
shown at t=7000 in a zoom of size Lx=400, Ly =512 around the front.
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FIG. 7. Transversally averaged profiles �a�x , t�� �left� and �b�x , t�� �right� for D=0.1 �first line� and D=0.6 �second line� corresponding to the simulations of
Fig. 6 from t=3400 to t=7000 with time intervals �t=200.
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but the density difference across the front then triggers con-
vection. The resulting nonlinear dynamics as seen in Fig. 8
�upper section� feature a smaller wavelength �larger most
unstable wavenumber� than the corresponding pure diffusive
cases shown in Fig. 1. There is also a clearly marked differ-
ence in character between the buoyantly unstable upward
�see Fig. 3� and the downward propagating fronts �Fig. 8�.
Instead of the one or two long wavelength reaction fingers
developing at large times on ascending fronts, no regular
structures appear to develop on the downward propagating
fronts. The irregular structures that do develop on the down-
ward propagating fronts with successions of birth and deaths
of fingers retain their short wavelength character, reminiscent
of a diffusion-driven instability, as can be seen more clearly
in Fig. 8 �lower part� where we plot the a and b concentra-
tions. They are more pronounced with the reaction zone hav-
ing a much greater lateral extent for the larger values of D
and are irregular in behavior. For D=0.1 the plot of b shows
that the convective flow gives appreciable variations in the
concentration of b even at large distances behind the reaction
zone having a much greater lateral extent for the larger val-
ues of D and are irregular in behavior. For D=0.3 and larger,
we found the downward propagating fronts remained stable,
consistent with the LSA, which gives a value of D�0.284 at
which stability is restored by buoyancy when Ra=0.5.22

To understand this, we recall the destabilization mecha-
nism due to the coupling between differential diffusion and
buoyancy effects by considering a displaced particle argu-
ment on a downward propagating front. A perturbation ahead
of the front fills in faster with heavier A than losing lighter B
when DB�DA. Thus the perturbation becomes heavier than
the surrounding fluid containing only A and hence continues
to sink driving an instability of the otherwise buoyantly

stable density stratification. Similarly, a perturbation behind
the front loses heavier A by diffusion faster than gaining
lighter B hence the perturbation is lighter than its surround-
ings and can rise. This mechanism is related to solutal
double-diffusive effects30–32 with, however, the dynamics be-
ing influenced by the diffusive instability when the density
difference across the front tends to zero. It is reinforced by
the fact that the RD front propagation speed c decreases with
D which favors the development of buoyant flows.

The LSA also identified a value of D�0.284 when Ra

=0.5 above which sufficiently strong buoyancy effects can
restore stability. For D=0.3 and larger, we find, indeed, that
the downward propagating fronts remain stable, consistent
with the LSA. Below this value of D�0.284, i.e., here for a
fixed value of D=0.2, we find that the system is more un-
stable when increasing Ra as seen in Fig. 9. The initial per-
turbations again develop with wavelengths and growth rates
predicted by the LSA. For smaller values of Ra these evolve
into regular, short wavelength structures indicative of a
diffusion-driven instability. For these smaller values of Ra,
there is only a small amount of splitting and coalescence of
the perturbations. For larger values of Ra, the splitting and
coalescence is much more marked and irregular behavior re-
sults as time increases. A stronger convection flow develops
in this case and, as a consequence, the longitudinal extent of
the reaction region is much increased.

V. COUPLED BUOYANCY/DIFFUSION-DRIVEN
INSTABILITIES FOR Rb>Ra

If Rb�Ra, as in the CT reaction, for example, the den-
sity increases in the course of reaction and, in this case, it is
the downward propagating fronts that are buoyantly un-
stable, with the upward moving fronts being stable with re-

FIG. 8. Upper section: space-time maps of the extrema of �a�y , t�� for de-
scending fronts with Ra=0.5, Rb=0.25 and D=0.1,0.15,0.2 �from left to
right� from t=0 to t=8000, Ly =512. Lower section: concentrations of a �left
column� and b �right column� for D=0.1 �top row� and D=0.2 �bottom row�
at t=8000.

FIG. 9. Space-time maps of the extrema of �a�y , t�� for descending fronts
with D=0.2 and Ra=0.1,0.25,0.5,1.0 �from left to right� and Rb=Ra /2
from t=0 to t=8000.
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gard to buoyancy-driven convection. This is what is seen in
our nonlinear simulations when D�Dc. When D�Dc the
fronts are also diffusionally unstable. The LSA predicts that
it then requires only very small values of Ra and Rb to restore
the stability of upward propagating fronts as buoyancy ef-
fects have a strong stabilizing influence on ascending fronts
in this case and this is also confirmed by our simulations of
the full nonlinear problem.

The coupling effects between diffusive and RT instabili-
ties are interesting in the case of descending fronts which we
now examine in detail. To do so, we plot in Fig. 10, space-
time maps of the extrema of �a�y , t�� for descending fronts
with Rb=0.5, Ra=0.25 for values of D increasing from D
=0.16 to D=0.6. The wavelength of the perturbations seen at
large times increases as D is increased. For the smaller val-
ues of D the diffusion-driven instability characteristics of
small wavelength structures is retained at short times as seen
when comparing the results for D=0.16 with those for D
=0.2. However, for D=0.16 there is an irregular response,
with much repeated splitting and coalescence of reaction fin-
gers. The large time behavior that results is shown in more
detail in Fig. 11 with plots of the a and b concentrations for
D=0.16 at t=8000. The plot of b particularly shows that
irregular structures have developed, having a large longitu-
dinal extent. A special feature of this case is that the strong

FIG. 10. Space-time maps of the extrema of �a�y , t�� for descending fronts
with Rb=0.5, Ra=0.25 for D=0.16,0.19,0.2,0.4,0.6 �from top left to right
bottom�. Time is increasing downward from zero up to t=8000 except for
the last one where t=7700.
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FIG. 11. Top line: concentrations of a �left� and b �right� for Rb=0.5, Ra=0.25 and D=0.16 taken at t=8000. Bottom line: the transversally averaged
concentration profiles �a�x , t�� and �b�x , t�� plotted at equal time intervals.
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convective flows can concentrate B into some regions bring-
ing its concentration above the normally fully reacted state
b=1 while it can also deplete B in other regions. This is
possible even though there is no A present and the reaction
has terminated. This can be seen more clearly in the trans-
versally averaged profiles of �b�x , t�� in Fig. 11.

For the larger values of D �D=0.4,0.6� in Fig. 10, the
regular large wavelength finger characteristic of buoyancy-
driven RT instabilities are observed at large times. There is
the same general sort of behavior for D=0.19 and D=0.2,
although now small scale structures �related to the diffusion-
driven instability� appear on the larger scale reaction fingers
�arising from the buoyancy-driven instability�. This is mani-
fested by small undulations appearing on the space-time
maps of the maxima of �a�y , t�� in Fig. 10. The difference in
behavior of the reaction front seen at large times for different
values of D is made clearer in Figs. 12 and 13 where we plot
a and b concentrations, respectively, at t=7000. For D
=0.16 the front consists of small scale, irregular structures as
suggested by Fig. 10. For D=0.19 and D=0.2 there is an
obvious development of large scale reaction fingers with
small scale perturbations, seen most noticeably near the apex
of the reaction fingers. For D=0.4 �just below Dc� this be-
havior has mostly disappeared, with only a small perturba-
tion near the front of the interface, and for D=0.6 ��Dc�
only the buoyancy-driven instability is operative.

A possible explanation for the appearance of small scale
disturbances on the much larger reaction fingers is that these
large reaction fingers, as they develop, set up a propagating
reaction front that is almost planar over length scales large
compared to the much smaller length scales associated with
the diffusion-driven instability. Our LSA gives k�0.2, �
�30 for the maximum growth rate of the diffusion-driven
instability for D=0.15, whereas the reaction fingers have a
length scale approximately the width of the computational
domain, Ly =512. As the direction of propagation of the re-
action front is not important for diffusion-driven instabilities,
these RT fingers can then act as a sort of base state for the
initiation of small scale diffusion-driven instabilities caused

by slight perturbations that arise on them if D�Dc. This can
be seen in the a, b concentration plots for D=0.19 and D
=0.2 in Figs. 12 and 13. For the smaller values of D �D
=0.16,0.19,0.2�, the convection resulting from changes in
density across the reaction zone gives considerable variations
in the concentration of b in a region well behind where the
reaction takes place.

VI. CONCLUSIONS

The interaction between diffusive and RT instabilities of
autocatalytic propagating fronts can affect the stability and
nonlinear dynamics of the system. Here we have analyzed by
nonlinear simulations the long-time dynamics resulting from
such interactions. If the density decreases in the course of the
reaction �Ra�Rb� as in the IAA system, for example, then
ascending fronts are genuinely RT unstable while descending
fronts are buoyantly stable. When differential diffusion
comes into play, we find for ascending fronts a transition
between a coarsening dynamics typical of RT modes toward
a smaller wavelength diffusive instability mode when D is
progressively decreased. Descending fronts are seen to be
much more unstable when both modes interact with a small
wavelength pattern undergoing the complex dynamics of re-
peated birth and death of fingers.

If, on the contrary, the density increases in the course of
reaction �Rb�Ra� as in the CT system, for example, then
ascending fronts are RT stable and for these buoyancy effects
are able to stabilize diffusively unstable ascending fronts
even if relatively weak. Both convective and diffusive modes
are, however, destabilizing in the case of descending fronts
which feature complex spatiotemporal dynamics for low val-
ues of D�Dc. Large single convective fingers with a tip
deformed by the short wavelength diffusive instability are
observed for D smaller but close to Dc. Interestingly, the
coupling of differential diffusion and buoyancy effects en-
ables in some cases the dynamics of the two species A and B
to develop on different length scales for which the concen-

FIG. 13. Same as for Fig. 12 but for the concentration of b. �In this figure
the scale in the x �vertical� direction has been elongated slightly to enable
the variations in the concentration of B to be more easily seen.�

FIG. 12. Concentrations of a for the descending fronts of Fig. 10 with Rb

=0.5, Ra=0.25 and D=0.16,0.19,0.2,0.4,0.6 �top left to bottom right�
shown at t=8000 except in the last one for D=0.6 where t=7000.
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tration of the slower diffusing species B has been observed to
be convected in some regions above the fully reacted con-
centration b=1 of the planar wave.

We finally discuss experimental conditions necessary to
study the various dispersion curves studied in Part I �Ref. 22�
and the nonlinear dynamics presented here. Since the two
instabilities act on very different time scales of the order of
minutes for the buoyancy-driven one and of the order of
hours for the diffusive one, the key to observing the interac-
tion is to bring them back onto the same time scale. Experi-
mental demonstrations of the predicted instability scenarios
and dynamics could be tested using, for example, the auto-
catalytic IAA �Refs. 1, 9, and 12� or the CT �Refs. 6 and 10�
reactions. Both reactions have been used previously to study
separately cellular deformations due to diffusive instabilities
in gels1,4 where huge molecules were used to slow down the
autocatalytic species and to increase the diffusivity differ-
ence between the two key species. Fingering in these chemi-
cal systems in vertical Hele–Shaw cells has been extensively
studied9,10,12,14–16,21 and ways to decrease the strength of the
instability have been presented in Refs. 10, 14, and 15. In the
first10 the cell is inclined toward the horizontal to reduce the
strength of convection while in the second15 the viscosity of
the solution is varied resulting in a convection slow down
when increased. Precise experimental conditions will depend
on the autocatalytic reaction chosen. However, to fix ideas,
we recall that, for the IAA system, the cubic scheme �1� is
applicable which gives Dc=0.42 for the model we are using
here. To achieve such small values for D, we propose to
analyze the instability dynamics in the presence of large mol-
ecules binding the activator to obtain D�Dc in aqueous so-
lutions as done previously in experimental studies of diffu-
sive instabilities of IAA systems in gels.4 Instead of using
gels suppressing any convective motion, the reactive system
should be contained in a Hele–Shaw inclined to the horizon-
tal or containing a chemically inert viscous solute. This
would slow down the buoyant flows to bring their character-
istic time scales down to those necessary for them to interact
with the diffusive modes. As solutal Rayleigh numbers are of
the order of 3.8 for the IAA system33 in vertical Hele–Shaw
cells of gap width h0=1 mm, we need to decrease these
values roughly by a factor 10 to bring them into the range of
Ra	0.5 used here. As we have10,22 Ra	Kg cos � where � is
the angle made with the vertical and the permeability K of a
Hele–Shaw cell of gap width h0 is equal to K=h0

2 /12, this

can be done by either decreasing h0 by a factor 
10 or by
inclining the cell at an angle ��cos−1�0.1� to the vertical, or
by a combination of both.

From a theoretical point of view, an interesting perspec-

tive would be to study the onset of the complex splitting
dynamics, in order to catch the complexity and try to connect
this study to the one performed on the pure diffusive insta-
bility and known to feature spatiotemporal chaos.2
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