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Viscous fingering �VF� is a hydrodynamical instability that occurs in porous media when a less viscous fluid
displaces a more viscous one. We investigate here numerically how such an instability can be triggered by a
simple A+B→C reaction when a solution of one reactant is displacing linearly a miscible solution of another
reactant of same viscosity producing a more viscous product C at the interface. The properties of the fingering
pattern observed in the zone where the less viscous reactant pushes more viscous products are studied as a
function of the relevant parameters of the problem. These are the Damköhler number, the viscosity contrast
between reactants and product, the ratio of initial concentrations of A and B, and the diffusion coefficients of
each species. Our study shows that the fingering pattern can in some cases be different whether A displaces B
or vice versa, enlightening recent experimental observations of such asymmetries in micellar systems. In
particular, we show that in this asymmetric case, VF is more intense when the invading chemical solution is
either the less concentrated one for equal diffusivities or when it contains the slower diffusing reactant for fixed
equimolar initial concentrations.
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I. INTRODUCTION

Fingering patterns occurring when a less viscous fluid dis-
places a more viscous one in a porous medium have long
been studied in nonreactive systems �1–3�. In reactive sys-
tems, the fingering dynamics depends whether the chemical
species are passively advected by the flow or whether they
are actively influencing it. In the case of passive scalars, the
fingering properties of the interface remain those of nonre-
active fluids even though the flow has clearly an influence on
the spatiotemporal distribution of the chemicals �4–7�. The
situation of interest here is the other case where the chemical
reaction plays an active role on the viscous fingering �VF�
instability.

The dynamics of chemically driven VF depends then
whether the two fluids at hand are miscible or not and
whether the chemical reaction modifies the physical proper-
ties of the porous matrix or not. It has been known for quite
a long time in the literature focusing on “reactive infiltration
instabilities” that viscous fingering patterns can be induced
by a dissolution reaction affecting the porosity of the porous
medium �8–10�. More recently, the reverse case of a reaction
involving precipitation decreasing mobility inside a Hele-
Shaw cell �11� or adsorption phenomena upon the porous
matrix �12� has also been shown to affect fingering. For prac-
tical purposes, it is, however, interesting to understand active
influence of chemistry on VF without affecting the properties
of the porous medium itself. This can be done thanks to
chemical reactions changing the surface tension of immis-
cible interfaces or the viscosity of the fluids.

In this regard, the influence of a simple acid-base neutral-
ization reaction on the Saffman-Taylor instability has been
studied experimentally between two immiscible fluids show-
ing that the reaction changes the surface tension at the inter-
face, which in turn modifies the viscous fingering pattern
�13–15�. In the case of miscible viscous fingering, numerical
work has analyzed the fingering pattern when viscosity is

modified with concentration across an autocatalytic bistable
traveling front �10,16–18�. Besides frontal polymerization
fronts �19�, no clear evidence of viscosity changes across
autocatalytic fronts has been obtained experimentally as
these redox reactions are more prone to yield density differ-
ences in the course of reaction �20� rather than viscosity
jumps. As suggested in �21�, simple chemical reactions of the
type

A + B→
k

C �1�

are more prone to provide viscosity differences needed to
trigger VF phenomena. In this regard Nagatsu et al. �22�
have recently succeeded in actively modifying miscible VF
properties by such a bimolecular reaction. The chemical re-
action can either decrease or increase the viscosity at the
miscible interface, modifying in this way the properties of
the fingering pattern. In this case, however, the reaction is
modifying an already existing fingering instability as the re-
actant injected into the other one is genuinely chosen to be
less viscous.

In parallel, Podgorski et al. have also performed recently
experiments on VF fully triggered by a simple A+B→C
reaction at the interface between two solutions of A and B of
same viscosity �23�. In this system, the two fluids are aque-
ous solutions of different reactants that form a viscoelastic
micellar product upon contact and reaction �24�. As the two
reactant solutions have the same viscosity, no VF can be
observed in the absence of reaction and the VF patterns re-
sult thus truly from the reaction at the miscible “interface”
where the two reactants meet, triggering a hydrodynamic in-
stability. An interesting result of this study was the observa-
tion that the VF pattern is different depending whether reac-
tant A is injected into reactant B or vice versa. The authors
conjectured that this could be due to a difference in diffusion
coefficients of the various chemical species.
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In this context, it is our objective to enlighten to what
extent a simple A+B→C reaction is able to trigger VF when
two miscible solutions of reactants A and B of same viscosity
are put into contact. We further analyze to what extent the
properties of the VF pattern depend on the values of the
parameters of the problem. To do so, we numerically study a
porous system in which one reactant is linearly injected into
a miscible solution of the other reactant of same viscosity,
producing at the interface a more viscous product. We ana-
lyze the properties of the resulting VF pattern as a function
of the Damköhler number of the problem, of the viscosity
ratio between product and reactants, of the diffusion coeffi-
cients of the species, and of the ratio of initial concentrations
of A and B. We show that the VF pattern is different whether
A displaces B or vice versa only when the underlying
reaction-diffusion concentration profiles are not symmetric in
time with regard to the initial position of the interface. This
happens when the reactants A and B have different diffusion
coefficient or are put in contact with different initial concen-
trations.

The paper is organized as follows: In Sec. II, we introduce
the model describing VF induced by a simple A+B→C re-
action, recall the properties of the underlying reaction-
diffusion system, and explain our numerical procedure. In
Sec. III, the results of the nonlinear simulations with a dis-
cussion of the influence of the various parameters of the
system on the dynamics are presented before conclusions are
drawn in Sec. IV where suggestions of experiments to test
our predictions are given.

II. MODEL SYSTEM

A. Basic equations

We consider a homogeneous two-dimensional porous me-
dium of length Lx and width Ly with constant permeability �.
Alternatively, this system also describes dynamics in a Hele-
Shaw cell �two glass plates separated by a thin gap width l�
when l�Lx, Ly in which case �= l2 /12. In this system, a
solution of reactant B with initial concentration b0 is sand-
wiched between miscible solutions of another reactant A
with initial concentration a0 �see Fig. 2�. The two solutions
are both considered diluted and to have the same viscosity
�0. A simple chemical reaction

A + B→
k

C �2�

takes place at the interface where A and B meet producing a
product C more viscous than the reactants. We consider here
that b0�a0 so that the final concentration of the product if
the reaction would be conducted in a stirred reactor is c0
=a0. We seek to understand how the interface between the
reactants and the product can be destabilized by viscosity
differences when the reactive solutions are displaced linearly
in the porous medium or Hele-Shaw cell at constant injection
speed U. Indeed, in that case, viscous fingering will occur at
the interface where the less viscous reactant pushes the more
viscous product. As the system is considered neutrally buoy-
ant, the dynamics can be described by the following system
of reaction-diffusion-convection �RDC� equations:

� · u = 0, �3�

�p = −
��c�

�
u , �4�

�a

�t
+ u · �a = DA�2a − kab , �5�

�b

�t
+ u · �b = DB�2b − kab , �6�

�c

�t
+ u · �c = DC�2c + kab , �7�

where a, b, and c denote, respectively, the concentrations of
the two reactants A and B and of the product C, k is the
kinetic constant, p is the pressure, and u= �u ,v� is the two-
dimensional velocity field, while DA,B,C are the diffusion co-
efficients of the species A, B, and C, respectively. Equation
�4� is Darcy’s law relating the velocity field u to the gradient
of pressure �p, with � the permeability. The viscosity
�=��c� of the fluid is supposed to be a function of the local
concentration c�x ,y , t� of the product only, the viscosity of
the reactant solution when c=0 being �0, the viscosity of the
solvent. We assume furthermore that the viscosity of the fluid
varies exponentially with the concentration c so that

��c� = �0eR�c/c0�, �8�

where R is the log-mobility ratio defined as

R = ln���c = c0�
�0

� . �9�

The parameter R is thus a measure of the ratio between the
viscosity of the final product solution �where c is in concen-
tration c0=a0� and that of the reactant solutions A and B
where �0=��c=0�. If the product solution has the same vis-
cosity �0 than the reactants, the log-mobility ratio R=0 and
no VF takes place. We recover in that case the pure
A+B→C reaction-diffusion system, which has been the sub-
ject of numerous studies �25–28�. If R�0, then the chemical
reaction produces a more viscous product C at the interface
between the less viscous reactants. Depending whether A is
injected into B or vice versa VF will develop at the interface
where A invades C or where B displaces C, respectively—
i.e., at the interface where the less viscous reactant pushes
the more viscous product. The choice of an initial configu-
ration of B sandwiched between A �Fig. 2� allows one to
follow both cases at the same time.

Since the solutions are injected with a constant velocity
U, we switch to a reference frame moving with U taking
x�=x−Ut and u�=u−Uex where ex is the unit vector along
direction x. The field equations become �2�

�� · u� = 0, �10�

��p = −
��c�

�
�u� + Uex� , �11�
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�a

�t
+ u� · ��a = DA��2a − kab , �12�

�b

�t
+ u� · ��b = DB��2b − kab , �13�

�c

�t
+ u� · ��c = DC��2c + kab . �14�

We then nondimensionalize the equations by the charac-
teristic velocity U, hydrodynamical time �h=DC /U2, length
Lh=DC /U, and concentration a0. The dimensionless concen-
trations a�=a /a0 and c�=c /a0 vary thus between 0 and 1,
while b�=b /a0 varies between 0 and � where �=b0 /a0. Vis-
cosity is normalized by �0 and pressure as p�= p�

�0DC
. We

further introduce the ratios between diffusion coefficients of
the reactants and the products, 	A=DA /DC and 	B=DB /DC,
as well as the dimensionless Damköhler number

Da =
DCka0

U2 , �15�

which corresponds to the ratio between the hydrodynamic
time �h and the chemical time �c=1 /ka0. After dropping the
primes, we obtain the following dimensionless equations in
the moving frame:

� · u = 0, �16�

�p = − ��c��u + ex� , �17�

�a

�t
+ u · �a = 	A�2a − Daab , �18�

�b

�t
+ u · �b = 	B�2b − Daab , �19�

�c

�t
+ u · �c = �2c + Daab . �20�

Taking the curl of Eq. �17� and introducing the stream func-
tion 
�x ,y� defined such that u=�
 /�y and v=−�
 /�x, we
have

�2
 = R�
xcx + 
ycy + cy� , �21�

at + ax
y − ay
x = 	A�2a − Daab , �22�

bt + bx
y − by
x = 	B�2b − Daab , �23�

ct + cx
y − cy
x = �2c + Daab . �24�

Note that in absence of any reaction �Da=0�, Eqs. �21� and
�24� correspond to the classical VF model �2,3� of a less
viscous solution with c=0 displacing a more viscous one
where c=c0 when the viscosity varies with c. In our dimen-
sionless scales, the dimensionless domain width and length
are Peclet numbers

Pe = ULy/DC, �25�

Pe� = ULx/DC, �26�

where Pe determines the number of fingers present across the
domain, while Pe� controls the maximum time of the simu-
lations.

B. Reaction-diffusion A+B\C system

The reaction-diffusion �RD� properties of a simple A+B
→C system where the reactants A and B, with initial con-
centration ratio �=b0 /a0, are put in contact at t=0 at a lo-
cation x=0 have been studied in numerous articles since the
pioneering work of Gálfi and Rácz �25�. When A and B meet
by diffusion, they react producing C at the miscible interface.
In the course of time, A and B are consumed by the reaction
and hence the reaction rate decreases while more and more C
is produced. At long times—i.e., in the diffusion-limited
regime—it has been shown �25� that the width of the front
scales in time like �t1/6 and the maximum reaction rate �de-
fined here as the maximum of the reaction rate curve
R�x�=Da a�x�b�x�� goes like �t−2/3.

The reaction front position defined as the location where
R is maximum stays at x=0 if A and B have the same dif-
fusion coefficient and are initially present in the same con-
centration ��=1� as shown in Fig. 1�a�. If this is not the case
�explicitly if a0

2DA�b0
2DB� �25–28�, the diffusive flux of A

differs from that of B towards the reaction zone and the front
moves towards the region which has the smallest diffusive
flux. As an example, for 	A=	B, it is the more concentrated
solution that invades the other one �Fig. 1�b��, while when
�=1, the front invades the reactant of lowest diffusion coef-
ficient �Fig. 1�c��. Depending on the parameters, the RD con-
centration profiles of reactants A and B and of the product C
can thus be either symmetric or asymmetric with regard to
the initial position of the front. From these profiles, it can be
anticipated that, in the symmetric case, the VF pattern will be
the same whether A displaces B or vice versa because the
gradients of concentration �and hence of viscosity� between
A and C will be the same as between B and C �case of Fig.
1�a��. On the contrary, VF is expected to be different in the
asymmetric case—i.e., as soon as a0

2DA�b0
2DB. This is fully

borne out by numerical simulations as we will show it in the
remainder of the paper.

C. Numerical procedure

To numerically integrate Eqs. �21�–�24� we follow the nu-
merical scheme described in detail in Ref. �3� and adapted to
take the chemical reaction into account �10,16�. It consists of
a pseudospectral method using periodic boundary conditions
in both longitudinal and transverse directions. As initial con-
dition we consider a constant linear velocity U correspond-
ing to a zero velocity relative to the translating frame—i.e.,

=0 everywhere. For the concentrations, we start from the
situation depicted in Fig. 2; i.e., we take two step fronts
between the reactive solutions of A and B with random noise
added in the fronts to trigger the instability on reasonable
computing time. It is known that the nonlinear fingering pat-
tern will be different for each different realization of the
noise for a fixed given amplitude �29�. Hence, to compare
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the dynamics of the interface where A is injected into B with
the reverse case where B pushes A, we seed the fronts with a
noise triggering the same pattern. To do so we take as initial
condition c=0 and 
=0 everywhere with

�a,b� =�
�1,0� for 0 � x � x1,

„0.5 + �r,�0.5 − �r��… at x = x1,

�0,�� for x1 � x � x2,

„0.5 − �r,�0.5 + �r��… at x = x2,

�1,0� for x2 � x � Pe�,
	

�27�

with r a random number between 0 and 1 and � an amplitude
of value 10−2. x1 and x2 are the initial positions of the two
interfaces of Fig. 2.

To validate our code, we have checked that, when R=0
and no fingering takes place, we recover the scalings of the
stable RD profiles known in the literature �25–27�. The re-
sults of our simulations are displayed as density plots of the
concentration fields with a gray scale ranging from black for
�a ,b ,c�= �1,� ,1� to white when the concentrations are zero.

III. REACTIVE VISCOUS FINGERING DYNAMICS

A. Symmetric vs asymmetric nonlinear dynamics

Figure 2 presents a typical reactive VF dynamics for
R=3 and Da=1 in a system where B is sandwiched between
A in the symmetric case where the reactants have the same
diffusion coefficients �	A=	B=1� and are present in the same
initial concentrations ��=1�. In our reference frame moving
with injection speed U, fingering develops around the fixed
initial position of the interface where A and B meet. As the
chemical reaction produces a more viscous product, the in-
terface is unstable both where A pushes the product C and
where B displaces C. As the RD concentration profiles are
symmetric in this case around the locations x1 and x2 and for
our choice of noise seeding the initial condition, the VF pat-
tern is exactly the same on both interfaces. At onset, several
fingers appear, which start to interact at later times. As in
nonreactive VF, fingers elongate more in the region of the
invading less viscous solution, more advanced fingers shield
their neighbors, and coarsening is observed in the course of
time due to merging phenomena �3,31�. Figure 2 also dis-
plays the reaction rate

R�x,y,t� = Daa�x,y,t�b�x,y,t� . �28�

It can be seen that reaction occurs only where A and B meet
and that, even if fingers of the product C are developing
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FIG. 1. One-dimensional RD concentration profiles of A
�dashed lines�, B �dotted lines�, and C �solid lines� for Da=1,
	B=1 and, respectively, �a� 	A=1, �=1, �b� 	A=1, �=2, and �c�
	A=5, �=1 at times t=0, 1000, 2000, 3000, 4000, and 5000. x0 is
the position of the front at t=0.

FIG. 2. Concentration of the product C �left� and reaction rate R
�right� for R=3, Da=1, �=1, and 	A=	B=1 at times t=100, 1000,
2000, 3000, 4000, and 5000 from top to bottom.
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more in the displacing reactant—i.e., to the left here—the
reaction zone travels on average more to the right. This is
due to the fact that convection entrains fresh invading reac-
tant more rapidly to the right in the middle of fingers than
diffusion transports the invaded reactant to the left. Even if
the fingering zone extends thus on a large distance, the reac-
tion rate distribution remains very localized around the right
part of the extended product C distribution.

Let us note that all variations of parameters that maintain
the symmetry of the one-dimensional �1D� RD profiles as
seen in Fig. 1�a� will feature the same VF pattern at x1 and
x2; i.e., fingering properties will remain the same whether A
invades B or vice versa. This is typically the case if the
log-mobility ratio R or the Damköhler number Da are varied.
Indeed, a change in R does not affect the RD system, but
affects only the intensity of fingering, which increases with
R. If Da is modified, the amplitude of the 1D RD concentra-
tion curves is modified in the scaling used here, but not their
symmetry with regard to x=0 as Da rescales only the time of
the reaction process with regard to the convective time. Fur-
thermore, the diffusion coefficient of C is also unimportant
for the symmetry �see Fig. 8� as the absolute value of DC can
affect the intensity of fingering by modifying the intensity of
	A and 	B, but not the symmetric or asymmetric character of
the RD profiles with regard to x=0, which depends solely on
DA, DB, a0, and b0.

We understand thus that asymmetric VF between the left
and right interfaces where A displaces B and vice versa, re-
spectively, can be obtained only if 	A�	B or ��1.

B. Quantitative analysis

The properties of this reaction-driven VF can usefully
been examined by computing several quantities. First of all,
the two-dimensional concentration profiles c�x ,y , t� can be
averaged along the transverse coordinate y to yield the one-
dimensional transversely averaged concentration profile


c�x,t�� =
1

Pe
�

0

Pe

c�x,y,t�dy . �29�

For R=0, these profiles are equivalent to the 1D RD pro-
files shown in Fig. 1 as no VF takes place and the concen-
tration fields remain homogeneous in the transverse direc-
tion. In the presence of VF, these transversely averaged
profiles feature bumps characteristics of the presence of fin-
gers �see Fig. 3� and have their center of gravity that is
displaced to the back as observed in nonreactive fingering of
finite-size samples �29,30�. Such transversely averaged pro-
files can also be obtained for the reaction rate distribution
�28� to obtain 1D curves 
R�x , t�� as shown in Fig. 4. From
the transversely averaged concentration profiles, one can
next compute the length of the fingering zone defined here as
the length of the zone where 
c�x , t�� is above 0.01. In the
absence of convection, the fingering length grows as 
t char-
acteristic of a diffusive process, while it grows quicker in the
presence of convection. This can be seen in Fig. 5 that dis-
plays the temporal evolution of the mixing length for various
values of parameters. The default values are R=3, Da=1,
	A=	B=1, and �=1. To perform a parametric study, one
parameter at a time is then changed to the value in the inset
of the figure.
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FIG. 3. Transversely averaged concentration profiles of A
�dashed lines�, B �dotted lines�, and C �solid lines� for the simula-
tions of Fig. 2 at times t=0, 1000, 2000, 3000, 4000, and 5000 with
x0 being the position of the front at t=0.
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FIG. 4. Transversely averaged profiles of the reaction rate R for
the simulations of Fig. 2.
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FIG. 5. Temporal evolution of the fingering length for different
parameters. The default values used to obtain the solid curve are
R=3, Da=1, 	A=	B=1, and �=1. The other curves are obtained by
changing one parameter at a time to the value given in the inset.
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The center of mass mc of this 1D product concentration
distribution can also be computed as the first moment of the

c�x , t�� curves �29� �Fig. 6�a��. It is observed to move to-
wards the back—i.e., towards negative values of x−x0 �x0
being the initial position of the interface—i.e., x1 or x2�—in
agreement with what is observed visually in the transversely
averaged profiles of Fig. 3. We also follow in time the first
moment mR of the 1D transversely averaged production rate

R�x , t�� �Fig. 6�b��. Contrary to mc, we see here that mR is
moving in time to the right �positive x−x0� where convection
is pushing the reactants.

Eventually, in reactive systems, it is interesting to have
insight into the influence of convection on the yield of the
reaction. To do so, we compute the total amount ctot of prod-
uct C �Fig. 7�a�� or the total reaction rate Rtot �Fig. 7�b��
obtained in the course of time by integrating along both di-
rections, respectively c�x ,y , t� or R�x ,y , t�, on the domain of
interest—i.e., on the left or right half, respectively, of the
system. Concerning the total reaction rate Rtot, we note that,
for RD systems �dotted line, R=0�, the reaction rate is strong
at the start and decreases next in time when the system enters
a diffusion-limited dynamics �25�. For RDC systems, on the
contrary, the onset behavior is identical because it takes time
to the instability to appear, but once convection is active,
Rtot grows again. This is due to the fact that, at the unstable
side, convection brings continuously fresh reactants to the
front and keeps thus feeding the reactive process. Because
the reaction rate is larger with convection than without it, the
total amount of product is also increasing more in systems
which finger as seen in Fig. 7.

On the basis of the various quantities introduced here, let
us now examine the influence of the various parameters of
the problem on the reactive VF dynamics.

IV. PARAMETRIC STUDY

This problem depends on two different types of param-
eters: some parameters affect all the species in the same way
like R, Da, and 	C �used to nondimensionalize diffusion co-
efficients�. Their variation affects therefore equally fingering

on both left and right interfaces, and they keep the dynamics
symmetric; i.e., the fingering should be the same on average
whether A pushes B or vice versa. Other parameters affect
only one species at the time like �, 	A, and 	B. Their varia-
tion induces therefore an asymmetry in the underlying RD
concentration profiles of the base state and hences lead to
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FIG. 6. Temporal evolution of �a� mc the location of the center of mass �first moment� of 
c�x , t�� and �b� mR the first moment of the
reaction rate 
R�x , t�� distribution for different values of the parameters along the same convention as in Fig. 5.
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FIG. 7. Temporal evolution of �a� the total product concentration
ctot and �b� the total reaction rate Rtot for different values of the
parameters along the same convention as in Fig. 5.
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asymmetries in the fingering response whether A pushes B or
vice versa. Let us therefore examine their influence sepa-
rately.

A. Symmetric fingering

If the viscosity ratio R is increased, the system is more
unstable, VF more vigorous, and fingers more elongated just
as in nonreactive systems. This has for effect to increase the
width of the zone where the product is present and hence to
increase the fingering length. This influence of the change in
R can be appreciated in Figs. 5–7 by comparing the curves
for fixed Da=1, 	A=	B=1, and �=1, but increasing R. In
parallel, the center of mass of the product distribution is
further shifted to the left when R increases �Fig. 6�a��, while
the first moment of the reaction rate distribution is further
shifted to the right �Fig. 6�b��. From the point of view of the
chemist, increased convection has a beneficial effect as ctot,
the total amount of C produced in time, as well as the total
production rate Rtot are all increasing functions of R �Fig. 7�.

If the Damköhler number Da is decreased, it means that
the reaction time is increased with regard to the hydrody-
namic time; i.e., fewer reaction steps and thus less C is pro-
duced per unit of dimensionless time which does not favor
the VF instability. This can be seen in Figs. 5–7 by compar-
ing curves for fixed R=3, 	A=	B=1, and �=1 and Da
=0.001, 0.1, and 1, respectively. A decrease of Da decreases
the fingering length �Fig. 5�, ctot, and Rtot �Fig. 7�, while the
center of mass of the product distribution is less shifted to
the left �Fig. 6�a�� and the instability starts later.

Eventually we can also vary the diffusion coefficient of
the product C, which is done here in our dimensionless units

by changing simultaneously 	A and 	B in the same way. If
	A=	B is increased �i.e., DC is decreased�, the viscous prod-
ucts escape slowlier the reaction zone, viscosity gradients are
sharper, and the front is more unstable. To see this, compare
Figs. 2 and 8, which shows that fingers appear quicker and
extend farther away at a given later time for 	A=	B=5 than
for 	A=	B=1. On the contrary, if C is the fastest diffusing
species, 	A=	B�1 and the system is more stable as the vis-
cous product C diffuses quicker out of the interface and the
viscosity gradients are hence weaker. This is confirmed with
the fact that the fingering length �Fig. 5�, ctot, and Rtot �Fig.
7� are all increasing functions when 	A=	B are increased as
can be seen comparing the full curve for R=3, Da=1, �=1,
and 	A=	B=1 with those for which 	A=	B=0.2 or 5, respec-
tively.

B. Asymmetric fingering

Let us now examine the difference in VF of the left inter-
face initially located at x1 where A displaces B with the right

FIG. 8. Concentration of the product C for for the same param-
eters as in Fig. 2 except 	A=	B=5 at times t=100, 1000, 2000,
3000 and 4000.

FIG. 9. Concentration of the product C for the same parameters
as in Fig. 2 except �=2 at times t=100, 1000, 2000, 3000, and
4000.
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FIG. 10. Transversely averaged concentration profiles 
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for the simulation of Fig. 9.
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FIG. 11. Temporal evolution of the fingering length for different
values of parameters following the convention of Fig. 5. The solid
curve noted as “R=3” in the inset corresponds to the values of
parameters R=3, Da=1, 	A=	B=1, and �=1. The extent of L in
time is different on the left and right interfaces located at x1 and x2,
respectively, when ��1 or 	A�	B.
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one where B invades A around the initial location x2 in the
case where the underlying RD system is asymmetric—i.e., if
��1 or 	A�	B. Let us analyze these two cases succes-
sively.

1. Influence of the ratio of initial reactant concentrations �

The results presented up to now were all obtained with
�=1 �i.e., a0=b0� and gave identical fronts whether A is
injected into B or vice versa. If now ��1, it is observed that
the VF patterns �Fig. 9� and the related transversally aver-
aged concentration profiles �Fig. 10� are different whether A
invades B or vice versa. As can be seen in the concentration
profiles of the corresponding RD system �Fig. 1�b��, if �
=2 like in Fig. 9, the RD front is displaced into the zone of
reactant A in time because B is more concentrated and in-
vades thus the rate-limiting chemical species A. As one reac-
tant is more concentrated than the other one, a first conse-
quence is that more products can be formed per unit of time
because the reaction rate is directly proportional to the reac-
tant concentrations—i.e., R�ab. In presence of VF—i.e., if

R�0—this increase of product concentration per unit of
time is destabilizing the system. This can be appreciated by
comparing in Figs. 11–13 the solid curve obtained for R=3,
Da=1, 	A=	B=1, and �=1 with the curves obtained for the
same parameters except �=0.5 or 4. The dynamics is then
different whether the focus is on the left or right interface. It
is seen that, when � is increased, the corresponding fingering
length increases �Fig. 11� and the center of mass of the prod-
uct distribution is further displaced to the left �Fig. 12�, while
the total amount of C produced per unit of time increases
�Fig. 13�.

A second consequence of the asymmetry in the RD con-
centration profiles �Fig. 1�b�� is that the viscosity gradient at
the interface located in x1 �left� where A pushes C is sharper
than the one on the interface at x2 �right� where B displaces
C. VF is thus more intense and extends further around x1
than around x2. Note that, at early times before VF sets in,
the RD dynamics is such that B invades A and hence, during
the first 200 units of time, the locations of mc and mr invade
symmetrically with a square-root dependence the reactant A
�see Fig. 12�. In particular, for the front initially located in x2
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FIG. 12. Temporal evolution of �a� mc the location of the center of mass �first moment� of 
c�x , t�� and �b� mR the reaction rate 
R�x , t��
distribution for different values of the parameters along the same convention as in Fig. 5. These evolutions are different for the left and right
interfaces if ��1 or 	A�	B.
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FIG. 13. Temporal evolution of �a� the total product concentration ctot and �b� of the total reaction rate Rtot for different values of the
parameters along the same convention as in Fig. 5. These evolutions are different for the left and right interfaces if ��1 or 	A�	B.
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�right�, mc travels first towards positive x �B invades A to the
right� before turning back towards negative x when VF takes
over. When ��1 such that the RD front moves towards A,
the concentration gradient is sharper for A than for B and
thus VF is more intensive on the front where A displaces the
product C than where B fingers into C. The reverse is ob-
tained for ��1. We can therefore conclude that as soon as
��1 for 	A=	B, VF will be more intense in the situation
where the less concentrated solution is injected into the more
concentrated one.

2. Influence of different reactant diffusion coefficient

For �=1, but when reactants have different diffusion co-
efficients, the RD front does not remain stationary either, but
the fastest diffusing species invades the other one �see Fig.
1�c��. Similarly, the gradients of concentrations are not sym-
metric and the VF pattern is different whether A invades B or
vice versa. If A diffuses faster �	A�	B�, then the concentra-
tion profile of A is more spread out �see Fig. 1�c�� than the
one of B. The gradient of A being therefore smaller, VF will
be less efficient at the interface where A is injected into B
than where B displaces A as is seen in Figs. 14 and 15.
Consequently, the fingering length is larger �Fig. 11� and mc

extends further away on the right interface located at x2 than
on the left one at x1 �Fig. 13�. These trends increase with 	A
at fixed 	B. Similarly, ctot is larger on the right interface than
on the left one �Fig. 12�. This reasoning leads us thus to
understand that, for an equimolar initial concentration of
both reactants ��=1�, VF will be more intense when the
slowest diffusing species is the one injected into the solution
of the fastest diffusing species.

V. CONCLUSIONS

The objective of this paper has been to analyze by a the-
oretical approach how a chemical reaction can trigger VF in
a system where the reactive displacing and displaced solu-
tions both have the same viscosity but the chemical product
produced at their interface is more viscous. To do so, we
have numerically integrated Darcy’s law in which the viscos-
ity depends on the product concentration c coupled to RDC
equations for the concentrations of the chemicals involved in
a simple A+B→C reaction. We find that VF can be pro-
duced at the interface where a less viscous reactant pushes
the more viscous product. This VF is symmetric whether A
pushes B or vice versa if the underlying 1D RD concentra-
tion profiles are symmetric, which is the case if the ratio of
initial reactant concentration �=1 and if the reactants diffuse
at the same rate 	A=	B. If this is not the case, then the VF
pattern is different whether A invades B or vice versa. Be-
tween these two cases, the most unstable VF situation is then
the one where the invading chemical solution is either less
concentrated or contains the slowest diffusing species.

These results allow us to understand why VF patterns
studied recently experimentally by Podgorsky et al. �23� are
not symmetric depending whether one reactive solution is
injected into the other one or vice versa when they used
equally concentrated reactive solutions. The present results
confirm that asymmetry is then due to the fact that the two
reactants have different diffusion coefficients as conjectured
by the authors. Let us note that the present work is only a
first step toward a full description of such experiments where
the viscoelastic properties of the product are important, while
these effects are not taken into account here.

Our numerical results allow us also to suggest possible
further experimental work. In particular, it would be nice to
test the possibility that a simple change of the initial concen-
tration of the reactants can drastically change the dynamics.
Up to now, the experiments conducted in �23� have ad-
dressed only equally concentrated reactants �i.e., �=1�. In
this case, if the concentrations a0 and b0 are both increased
equally to keep the ratio � a constant, the system should be
more unstable as more product C will then be produced. If
one of the initial concentrations—say, a0—is kept constant, a
change of b0 will vary � and will thus vary the VF properties
along the lines described in Sec. IV B 1. In this regard, the
present study suggests that the key parameter in understand-
ing the dynamics is the parameter 
=a0

2DA /b0
2DB=	A /�2	B,

which controls the direction of propagation of the underlying
RD front. For a given experimental choice of reactant A and
B and thus for a given ratio DA /DB, a change of initial

FIG. 14. Concentration of the product C for the same param-
eters as in Fig. 1 except 	A=5 at times t=100, 1000, 2000, 3000,
4000, and 5000.

0 1000 2000 3000 4000
time

0

0.1

0.2

0.3

0.4

0.5

0.6

<
c(

x,
t)

>

t=500
t=1000
t=1500
t=2000
t=3000
t=4000

FIG. 15. Transversely averaged concentration profiles 
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for the simulation of Fig. 14.
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concentration ratio � to bring 
 from a value smaller than 1
to another value larger than 1 switches the direction of
propagation of the RD front �25�. This should lead to visible
changes in the VF pattern properties as this will modify the
underlying RD gradients between the reactants and the prod-
uct.
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