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Chemical fronts propagating in horizontal liquid layers with a free surface can induce localized
steady Marangoni flow. Numerical integration of the Stokes equations coupled to a
reaction-diffusion-convection equation for the concentration of the surface-active reaction product
shows that the system reaches an asymptotic dynamic state characterized by a deformed front
surrounded by a steady convection roll traveling at a constant speed. To understand the basic
balances determining this steady dynamics, we present here an asymptotic analysis of the system
based on the numerically obtained scalings at high Marangoni numbers M quantifying the
interaction between reaction-diffusion processes and Marangoni convection. M is positive
�negative� when the product decreases �increases� the surface tension behind the front. We obtain a
semianalytical solution for the product concentration for large M �0, showing that the key balances
are between reaction, convection, and vertical �rather than axial� diffusion. For M �0, we present
evidence of a multiscale structure of the front resulting from more complex balances. © 2008
American Institute of Physics. �DOI: 10.1063/1.2956987�

I. INTRODUCTION

Chemical fronts resulting from the interplay between
diffusion and autocatalytic chemical reactions have long
been studied experimentally and theoretically: Such reaction-
diffusion �RD� systems are also well-known examples of pat-
tern formation.1–4 Such fronts usually propagate in gels at a
constant speed and with a steady shape. However, their
propagation in liquid layers can be affected by convective
motions driven by density, viscosity, or surface tension gra-
dients across the front arising from concentration and tem-
perature changes during the chemical reaction. Actually,
chemical fronts of well-known reactions such as the
Belousov–Zhabotinskii �BZ� reaction or the iodate-arsenous
acid reaction have long been noted to propagate with non-
constant velocities in horizontal thin layers of liquid in con-
tact with air.5–12 Such reactions involve variations of the so-
lution density and surface tension, which suggests that
convection resulting from a combination between buoyancy
and Marangoni effects may affect the dynamics of these
systems.13–16

By using simple models where only one type of convec-
tive flow is present, theoretical and numerical approaches are
essential in differentiating between the various effects com-
ing into play and in obtaining better understanding of the
complex dynamics of such coupled systems. Numerous the-
oretical and numerical studies have analyzed the influence of
pure buoyancy-driven flows on chemical fronts propagating
in horizontal solution layers, showing that buoyancy effects
can lead to steady convection, deformation, and acceleration
of these fronts �see, for instance, Refs. 17 and 18 and refer-
ences therein�. On the other hand, there are relatively fewer
studies of the interaction between pure Marangoni convec-

tion and chemical reactions. Numerical integration of modi-
fied Oregonator model equations coupled to Navier–Stokes
equations have been performed to understand the experimen-
tal observations of convective flows at the passage of BZ
waves.19–21 In addition, studies of autocatalytic reactions oc-
curring solely at the surface of a thin layer in contact with air
show that Marangoni flow can stabilize interfacial solitary
wave structures generated by the chemical reaction.22–25

Pereira et al.26,27 have further studied, using the lubrication
approximation, the two-variable Fitzugh–Nagumo chemical
model coupled to Marangoni stresses on a thin liquid film
free surface, analyzing the stability and nonlinear behavior
resulting from such a coupling.

In a previous study, we numerically studied the spa-
tiotemporal dynamics of an isothermal chemical RD front
propagating in the presence of a solutal Marangoni flow in a
thin horizontal layer with a nondeformable interface28,29 �see
Fig. 1�. The reaction takes place in the bulk and produces a
surface-active species while the solution density is assumed
constant. One of the reaction products is surface active so
that it triggers a surface tension gradient across the front,
which induces a Marangoni flow deforming and accelerating
the front. This interaction between RD processes and con-
vection is quantified by a solutal Marangoni number M de-
fined and discussed in more detail below. Our sign conven-
tion is such that when M �0, the reaction product decreases
the surface tension behind the front so that the flow induced
at the surface toward the largest surface tension region, in
this case the reactants, is parallel to the propagation speed of
the chemical front invading those reactants. On the other
hand, the surface flow is antiparallel to the front propagation
direction when M �0.

In both cases, as the flow is incompressible and occurs in
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a bounded geometry, a bulk motion, or so-called “return
flow,” is induced in the opposite direction to the surface flow.
This flow induces a distortion of the chemical front within
the layer, with the deformation zone initially increasing in
time. The system next reaches an asymptotic dynamic state
characterized by a deformed chemical front with constant
shape and a localized and steady convection roll traveling at
a constant speed with this front. Increasing the value of the
Marangoni number28 or the layer thickness29 results in an
increased deformation of the front, with the propagation
speed of the steady regime and the fluid velocity being in-
creasing functions of the absolute value of M. However there
is an asymmetry between the results obtained for positive
and negative M, with the flow structure becoming more com-
plicated for large negative M. Even so, independently of the
flow direction at the surface, the front always propagates at a
constant speed and this propagation speed scales as M1/2 for
large M.

The main objective of this paper is to gain further insight
into the basic physical balances determining the attainment
of a constant propagation speed and steady dynamics at large
M. In particular, we show that a simplified equation for the
concentration of the surface-active product, based on a
rescaling and a semianalytical solution for the flow field, can
be derived for positive M. This equation reveals that the
asymptotic regime with constant wave speed propagation re-
sults from a balance between three effects: The Marangoni
convection, the chemical reaction, and the vertical diffusion
rather than axial diffusion. For negative M, the rescaling fails
to capture the essential physical balances: The flow and con-
centration fields are more complex, resulting in a multiscale
structure of the front at high M.

Section II introduces the mathematical formulation of
the problem and reiterates the numerical observations and
scalings obtained for positive and negative M. In Sec. III, we
present the results of the asymptotic analysis at large positive
Marangoni numbers. Section IV concerns the analysis of
large negative M dynamics, and Sec. V concludes the paper
with a short summary of the main findings.

II. BASIC EQUATIONS AND NUMERICAL
OBSERVATIONS

A. Problem formulation and basic equations

Figure 1 shows the schematic representation of the prob-
lem. A miscible mixture is contained within a two-
dimensional �2D� domain. Initially an isothermal sharp RD
front separates reacted from unreacted fluid and propagates

along the x direction. The reaction produces a surface-active
species so that the surface tension of the products �1 differs
from that of the reactants �0. In order to focus on Marangoni
effects, the solution density is assumed constant and the sur-
face is assumed to be nondeformable. The assumption of
nondeformability is a common one and rests on the fact that
a suitably defined capillary number is small so that surface
tension dominates over pressure and normal viscous stress
effects. We comment further on this assumption in Sec. V.
We consider a low Reynolds number fluid with a finite Péclet
number so that the dimensionless equations of this 2D RD-
convection system are obtained by coupling the incompress-
ible Stokes equations to a conservation equation for the
surface-active product concentration c,

�c

�t
+ v� · �� c = �2c + f�c� , �1�

�� p = �2v� , �2�

div v� = 0. �3�

Here v� = �u ,w� is the 2D fluid velocity vector and p denotes
the pressure. The chemical production term f�c� is a simple
one-variable monostable kinetic expression given by f�c�
=c2�1−c�. We chose this kinetic expression because it is one
of the simplest that is capable of sustaining traveling fronts
between two different states when coupled to diffusion and
in the absence of convection. Furthermore, it provides a good
description of autocatalytic chemical systems such as the
iodate-arsenous acid redox reaction.1,6 As will be seen in the
ensuing analysis, we expect that most, if not all, of our con-
clusions will be robust with respect to the choice of kinetic
expression. The basic balances that are established between
convection, diffusion, and reaction for positive and negative
M do not depend sensitively on the exact form of f�c�: All
that is necessary is that there be a finite steady speed of
propagation of a chemical wave without change of form in
the absence of convection.

The equations have been made dimensionless using the
characteristic scales of the RD system: For time, �c=1 /ka0

2,
for length, Lc=�D�c, for velocity, Uc=�D /�c, and for pres-
sure, pc=� /�c, with k as the rate constant of the autocatalytic
reaction, a0 as the initial reactant concentration, D as the
molecular diffusion coefficient of the product, and � as the
fluid viscosity �for further details see Ref. 28�.

The initial condition corresponds to a planar RD front
propagating in the absence of any fluid flow. Hence, the ini-
tial fluid velocity and hydrostatic pressure gradient are equal
to zero and the initial condition for the surface-active product
concentration is the convectionless RD profile, given by the
analytical solution1,6

c�x,t� =
1

1 + e�x−vt�/�2
=

1

2
�1 + tanh�−

�2

4
�x − vt��	 , �4�

where v=�2 /2 is the constant dimensionless speed of the
front in the absence of flow.

The system has rigid sidewalls, a rigid bottom, and a free
upper surface. At each boundary of this domain we require

γ1 γ0 ≠ γ1

products

interface

L x

L z

0z

x

chemical front

reactants
fresh

liquid/air

FIG. 1. Schematic of the system.
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zero-flux boundary conditions for the chemical concentration
c. The hydrodynamic boundary conditions at the rigid
boundaries are no-slip conditions u=0 and w=0. At the free
surface we require w=0 and we use a Marangoni boundary
condition for the horizontal fluid velocity u to include the
changes in surface tension induced by the concentration gra-
dient of the surface-active product along the interface. Thus,

x = 0, x = Lx,
�c

�x
= u = w = 0, �5�

z = 0,
�c

�z
= u = w = 0, �6�

z = Lz,
�c

�z
= w = 0, �7�

�u

�z
= − M

�c

�x
. �8�

The last boundary condition expresses the balance of tangen-
tial stresses and, of course, is the only way in which the
velocity and concentration fields are coupled. Here M, the
solutal Marangoni number, is defined as

M =
− 1

��Dk

d�

dc
, �9�

where d� /dc is the coefficient of surface tension, assumed to
be constant.

The Marangoni number quantifies the intensity of the
coupling between RD processes and hydrodynamics. It is
positive if the surface-active product decreases the surface
tension behind the front and negative otherwise. When M
=0, the surface tension is not affected by the chemical reac-
tion so that no convective motion is present. The solution of
Eqs. �1�–�3� is then a planar RD wave propagating at a con-
stant RD speed v and with a constant shape �see Eq. �4�� in
the absence of flow. When M �0, convection is initiated in
the solution due to the surface tension gradient across the
front, which in turn results in a deformation of the planar
front. The dynamics of the system is determined by an intri-
cate interaction between reaction, diffusion, and Marangoni
convection.

B. Numerical observations

The numerical integration of Eqs. �1�–�3� with boundary
conditions �5�–�8� performed in a previous study28 shows
that, for both positive and negative M, the system reaches an
asymptotic state characterized by a vertically deformed front
propagating at a constant speed and surrounded by a local-
ized steady velocity field. The evolution to this steady state is
illustrated in Fig. 2, for positive M =500 and Lz=10, using
2D density plots of the product concentration ranging from
c=0 �white� to c=1 �black� at various times. The front is first
accelerated at the surface and deformed across the layer. The
horizontal extent of the deformed zone first increases and
then saturates to a constant while the transient velocity field
evolves to an asymptotic convection roll surrounding the de-
formed front. The RD-convection structure shown in Fig.
3�a� propagates at a constant speed and remains steady in the
comoving frame. The same kind of solution also develops for

FIG. 2. Propagation of a chemical front in the presence of chemically in-
duced Marangoni convection for M =500, shown from top to bottom from
t=0 up to t=50 with a time interval of �t=5. The aspect ratio between Lx

=600 and Lz=10 is preserved.
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FIG. 3. Focus on the asymptotic con-
vection roll traveling with the de-
formed front for M =500 �a� and M
=−500 �b�. The z direction has been
magnified in order to see the details of
the velocity field �Lz=10�, but the ve-
locity vectors are displayed at the
same scale in both plots.
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negative M but, as shown in Fig. 3�b� for M =−500, the
structure of the concentration and velocity fields is more
complex with an inner vortex around an additional deforma-
tion of the concentration field.

A parametric study for Lz=10 shows that the front de-
formation �characterized by the mixing length W defined as
the distance between the tip and the rear of the concentration
profile averaged along the z direction28�, the propagation
speed V, and the maximum horizontal fluid velocity umax all
increase with M, but with important differences for M �0.
For M �0, they increase as M1/2 for large M, as shown in
Fig. 4. Figure 5 shows the same properties for negative
Marangoni numbers. Since the maximum u is located at the
surface for both positive and negative M, umax is positive for
M �0 and negative for M �0. Therefore, Fig. 5�c� represents
−umax as a function of −M. In the case of M �0, we had to
consider much larger values of 
M
 to determine the
asymptotic scaling of these properties. W and V still increase
as M1/2 while umax is a linear function of M. Besides this

difference in the scalings, there is an asymmetry in the re-
sults between positive and negative M. Indeed, for the same
measure of the coupling between convection and RD pro-
cesses �same 
M
�, the front deformation and propagation
speed are larger for positive M than for negative M while the
reverse is true for the maximum fluid velocity. This differ-
ence comes from the fact that the flow induced at the surface
is parallel to the direction of front propagation for M �0,
while it opposes the front propagation for M �0. Conse-
quently, different detailed balances come into play in each
case to determine the system dynamics and the constant
propagating structure. In Secs. III and IV, we use the numeri-
cally determined scalings to obtain a better understanding of
the physical balances involved for positive and negative M.

Finally, we comment that although these numerical re-
sults and asymptotic scalings have been obtained for a
monostable autocatalytic cubic kinetics f�c�=c2�1−c�, we
have checked that they are also valid for monostable kinetics
with different orders of autocatalysis, i.e., for f�c�=cn�1−c�,
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FIG. 4. Asymptotic mixing length W �a�, nonlinear propagation speed V �b�,
and maximum horizontal fluid velocity umax �c� as a function of positive
Marangoni numbers for Lz=10. The broken lines represent square root fits to
the numerical data shown as filled circles.
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FIG. 5. Asymptotic mixing length W �a�, nonlinear propagation speed V �b�,
and maximum horizontal fluid velocity −umax �c� as a function of negative
Marangoni numbers for Lz=10. The broken lines represent power law fits to
the numerical data shown as filled circles.
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where n is a positive integer. In particular, the case n=1 is
similar to the cases with n�1 in contrast to buoyancy-driven
flows around chemical fronts.30

III. ASYMPTOTIC ANALYSIS: M>0

In this section, we rescale the equations and boundary
conditions using the numerically determined scalings, which
allows us to derive a simplified version of Eqs. �1�–�3� valid
in the limit of M→�. First of all, we eliminate the pressure
gradient term by introducing the streamfunction 	 defined as

u =
�	

�z
, w = −

�	

�x
, �10�

and the incompressible Stokes equation is hence rewritten as
a biharmonic equation for the streamfunction 	,

�4	 = 0. �11�

The numerical scalings displayed in Fig. 4 show that the
horizontal velocity u and the deformation of the front W,
characterizing the horizontal extent of the asymptotic struc-
ture, both increase like M1/2, which means that the deriva-
tives along x, � /�x, decrease like M−1/2. Therefore, we
rescale u and x with M1/2, while w, z, and c remain O�1� in
order to be consistent with the continuity equation �Eq. �3��
and the Marangoni boundary condition �8�. This gives the
following rescaled variables:

u� =
u

�M
, w� = w, 	� =

	

�M
, �12�

x� =
x

�M
, z� = z, c� = c . �13�

In this new scaling, the equation for the product concentra-
tion and the biharmonic equation become, dropping the
primes,

�c

�t
+ u

�c

�x
+ w

�c

�z
=

1

M

�2c

�x2 +
�2c

�z2 + f�c� , �14�

1

M2

�4	

�x4 +
2

M

�4	

�x2 � z2 +
�4	

�z4 = 0. �15�

In the limit of M→� for which these scalings are valid, Eqs.
�14� and �15� simplify to the following set of reduced equa-
tions:

�c

�t
+ u

�c

�x
+ w

�c

�z
=

�2c

�z2 + f�c� , �16�

�4	

�z4 = 0. �17�

This simplified set of partial differential equations indicates
that the viscous force due to vertical shear dominates the
fluid mechanics while the evolution of the concentration field
is determined by a balance between Marangoni convection,
vertical diffusion, and reaction. �We note that these equations
are identical to what would be expected from a lubrication
theory-type set of scalings with the main hypotheses that the

derivatives along x are much weaker than the derivatives
along z, while the vertical component of the velocity field w
is much smaller than the horizontal component u.�

So far, our analysis has been based on numerically ob-
tained scalings, but it is easy to see that there is only one
possible set of scalings. Indeed, if we use a general scaling,
i.e.,

u� =
u

M
 , w� =
w

M� ,

x� =
x

M� , z� =
z

M� , c� = c ,

we find, by expressing the continuity equation and the
Marangoni boundary condition in these rescaled variables,
two general relations between the four power law exponents,


 = 1 − � + � , �18�

� = 1 − 2� + 2� , �19�

which show that we cannot fix 
 and � independently. Ex-
pressing the RD-convection equation in the rescaled vari-
ables, we obtain

M
−�u�
�c

�x�
+ M�−�w�

�c

�z�
=

1

M2�

�2c

�x�2 +
1

M2�

�2c

�z�2 + f�c� .

�20�

As we know that the chemical reaction term f�c�, of order 1,
is driving the localized and steady Marangoni flow, we can
assume all the other terms in Eq. �20� to be at most O�1� and
that at least one of them has to be of that order to balance the
chemical reaction term. We first note that the two convective
terms are of the same order and that the diffusion term along
x is of lower order than the convective terms �
−�=1−2�
+��−2� since �0 to avoid the diffusion along z to be of
larger order than f�c��. Hence, only three different balances
for achieving a steady propagation wave are left to consider:
�i� Convection balances reaction, which would give a hyper-
bolic equation leading to shocks and no steady propagation;
�ii� vertical diffusion balances reaction, which would give no
propagation along x; and �iii� vertical diffusion and convec-
tion both balance the reaction, which implies that 
=� and
�=0. Substituting this into Eqs. �18� and �19� gives the nu-
merically observed scalings 
= 1

2 =� and �=0=�.
The solution of Eq. �17� is subject to the following

rescaled boundary conditions along z:

z = 0, 	 = 0 =
�	

�z
, �21�

z = Lz, 	 = 0, �22�

�2	

�z2 = −
dcS

dx
, �23�

where cS=c�x ,z=Lz� is the surface concentration of the re-
action product. Simple integration of Eq. �17� gives the semi-
analytical expression for the streamfunction,
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	 =
Lz

2

4

dcS

dx
z2�− z + 1� , �24�

where the vertical coordinate z has been rescaled by the layer
thickness Lz to vary between 0 and 1. The horizontal and
vertical components of the fluid velocity are therefore given
by

u =
Lz

2

dcS

dx
�−

3

2
z2 + z� , �25�

w =
Lz

2

4

d2cS

dx2 �z3 − z2� , �26�

which provides expressions for the return flow observed in
Fig. 3�a�. This velocity field corresponds to a quasiparallel
return flow with an amplitude depending on the streamwise
coordinate. These results combine to give a single equation
for the surface-active product concentration

�c

�t
+

Lz

2

dcS

dx
�−

3

2
z2 + z� �c

�x
+

Lz

4

d2cS

dx2 �z3 − z2�
�c

�z

=
1

Lz
2

�2c

�z2 + f�c� . �27�

This equation describes the system dynamics in the
asymptotic regime when the RD-convection structure is
propagating at a constant speed V. This constant propagation
speed is also proportional to the square root of the Ma-
rangoni number �see Fig. 4�b�� so that we can rewrite Eq.
�27� in the comoving frame x̂=x−�t, moving at the constant
rescaled propagation speed �=V /�M. Dropping the hat, we
have

− �
�c

�x
+

Lz

2

dcS

dx
�−

3

2
z2 + z� �c

�x
+

Lz

4

d2cS

dx2 �z3 − z2�
�c

�z

=
1

Lz
2

�2c

�z2 + f�c� . �28�

This one-parameter equation gives great insight into the im-
portant balances that determine the asymptotic regime and
the constant speed of propagation at large M. It shows that
the front speed and structure result from a balance between
three effects: The Marangoni convection, the chemical reac-
tion, and vertical �rather than axial� diffusion. The chemical
reaction generates a concentration gradient. At the surface,
this gradient induces the Marangoni flow, which in turn starts
to advect the concentration profile in the horizontal direction,
increasing c when u is positive and decreasing it when u is
negative �cf. Fig. 3�a��. This sets up both a vertical velocity
as required for mass conservation and a vertical gradient on
which vertical diffusion starts to act, thereby limiting the
horizontal extent of the front. The role of the vertical veloc-
ity is to limit the convective propagation of the concentration
field, thus giving rise to a localized self-sustained structure.

To check the validity of this general picture �and rather
than solve Eq. �28� as a nonlinear eigenvalue problem for ��,
we numerically integrated Eq. �27� for various values of Lz

using a simple Euler method for time stepping and second

order finite central differences in space. We checked the con-
vergence with decreasing temporal and spatial step sizes and
used no-flux boundary conditions for the concentration at the
four boundaries of the system. The result of the numerical
integration, presented in Fig. 6, shows a deformed front
propagating at a constant speed with a steady mixing length.
For example, for Lz=10, the steady wave speed � is 0.427
and the mixing length is 8.94, which match the large M
numerical results for the integration of the full equations
�Eqs. �1�–�3�� shown in Fig. 4, in which the constants are
0.43 and 8.56, respectively. Moreover, the structure of the
return flow given by Eqs. �25� and �26� is independent of Lz

and the horizontal velocity u is zero, minimum, and maxi-
mum at z=0 and 2Lz /3, z=Lz /3, and z=Lz, respectively,
which has been observed in our previous numerical
results.28,29 We can therefore conclude that Eqs. �27� and
�28� not only recover the results obtained by integration of
the full model but also give insight into the important bal-
ances between autocatalysis, diffusion, and convection.

IV. ASYMPTOTIC ANALYSIS: M<0

In this section, we analyze the behavior of the system for
large negative Marangoni numbers. In this case, the reaction
product increases the surface tension so that the induced sur-
face flow is toward the region of the products, therefore op-
posing the front propagation. Focusing for the moment on
the length of the reaction zone, W, Fig. 5�a� indicates that it
grows asymptotically as 
M
1/2. Thus at first glance it might
appear that the same asymptotic equation �Eq. �27�� would
describe the M �0 case as well. However, attempts to inte-
grate Eq. �27� for M �0 as an initial value problem failed in
the following way. Starting with a relatively broad diffusive
zone, the Marangoni stress drives a surface flow opposite to
the direction of propagation of the RD system. This, together
with the requirement of a reverse flow in order to conserve
mass, quickly sharpens the front in the lower regions of the
channel, suggesting the formation of a shocklike solution
before numerical instability ensues. A crucial feature of these
simulations is the nearly complete absence of vertical con-
centration gradients. These do not occur near the interface
because of the opposition between the Marangoni and RD
velocities, nor do they occur in the lower regions due to the
convective sharpening of the front described above. Thus,
Eq. �27� becomes a nearly hyperbolic equation and the initial
value problem is apparently ill posed: The convective trans-
port does not produce the strong vertical diffusion, embodied
by the �2c /�z2 term, required to equilibrate with the chemis-
try. Thus, other scalings must be involved: Horizontal diffu-
sion must continue to play a role as M→−�.

FIG. 6. Concentration field in the moving frame obtained by numerical
integration of the simplified equation �Eq. �27�� for Lz=10. The aspect ratio
between Lx=30 and Lz is preserved.
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The opposition between the Marangoni and RD effects
lead to more complex dynamics than for positive M, but as
Fig. 5 shows, the system reaches a steady dynamic state
propagating at a constant speed V. Figure 7�a� shows the
concentration and velocity fields for a range of large negative
M. There is a convective distortion of the concentration field
that increases with 
M
 and is accompanied by a strong inner
vortex. The steady RD-convection structure is much more
compact than for positive M, with a sharper reaction zone
and a comparatively smaller horizontal extent �see Figs. 4�a�
and 5�a� to compare the mixing length in the two cases�. This
opposition also leads to the formation of a strong recirculat-
ing vortex whose intensity increases linearly with M. This
can be seen in two ways.

We first examine the surface concentration gradient
shown in Fig. 8 as a function of M. As can be seen, the
gradient remains sharp and of the same maximum magni-
tude, and the horizontal distance over which the concentra-
tion gradient exists grows as 
M
 is increased. This large
gradient produces a rapidly recirculating vortex. Second, Fig.
5�c� shows that the maximum horizontal fluid velocity umax,
which is located at the surface, grows as M1. These perspec-

tives are consistent with one another and with the tangential
stress balance �Eq. �8��. The sharp concentration gradients
seen in Figs. 7�a� and 8 cause the maximum fluid velocity
umax to be much greater than the front propagation speed V,
opposite to the positive M case where V and umax are of the
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FIG. 7. �Color� �a� Asymptotic propagating structure shown in the frame moving with speed V for M =−1000, −2000, −2500, and −3000, top to bottom
�Lz=10�. The z direction has been magnified in order to see the details of the velocity field �Lz=10� but the velocity vectors are displayed at the same scale
in the four plots. �b� Rescaled concentration fields displayed at the same size for different M. The parameters are the same as in Fig. 7�a� and the effective
dimensions �lx , lz� of this structure are in our dimensionless length units: �98, 8.5� for M =−1000, �135, 9.1� for M =−2000, �148.5, 9.0� for M =−2500, and
�162, 9.3� for M =−3000.
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FIG. 8. Surface concentration gradient as a function of x for various
Marangoni numbers, M =−500,−700,−1000,−1400,−2000,−2500,−3000,
from left to right.
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same order �compare Figs. 4�b� and 4�c� with Figs. 5�b� and
5�c��. Moreover, two different regions in the fluid velocity
field can be discerned: �i� A sharp inner collision zone in-
volving large velocities in the recirculating vortex, and �ii�
away from this region, a return flow with apparently the
same structure as derived for positive M. Therefore, we can
conclude that the asymptotic structure for large negative
Marangoni numbers is multiscale and involves more com-
plex interactions between the physical mechanisms than for
positive M. The different scalings shown in Fig. 5 for large
negative M confirm this observation and make analytical
work more difficult.

To pursue these issues in more detail, we focus our at-
tention on the structure of the front and search for self-
similarity by examining rescalings in both x and z. The pan-
els of Fig. 7�b� show the concentration fields in the moving
frame stretched but displayed at the same heights and
lengths. We determine the stretchings based on concentration

levels: the left side and bottom are determined by the isocon-
centration level c=0.98, the right side by the level c=0.02,
and the surface remains the top boundary. The concentration
fields appear to exhibit self-similarity when displayed in this
way and the horizontal rescalings are consistent with the

M
1/2 scaling in Fig. 5�a�. However, the same rescaling ap-
plied to the streamfunction patterns still shows some M de-
pendence. This is illustrated in Fig. 9, showing streamline
plots of 	 rescaled between 0 and 1, and reinforces our as-
sertion that the asymptotic behavior at large negative M is a
multiscale structure.

A key element is the sharpening of the concentration
gradients in the lower part of the channel, which can be
understood as follows: When the surface velocity and the
front propagation velocity have different signs, there must
necessarily be a recirculation in the lower regions of the
channel with a velocity that is in the same direction as the
propagation speed, with the result that convection dominates
the transport of reactant until the immediate vicinity of the
front. In other words, the local Péclet number is large, mean-
ing that gradients are sharpened. The fact that the front is
nearly a vertical front is due to the nearly parallel nature of
the velocity field over most of the channel depth, as illus-
trated in Fig. 7�a�.

It is difficult to make further definitive statements re-
garding M �0 because the asymptotic behavior in W and V
develops only for 
M
�500, leaving us with approximately a
decade variation in M with which to work. We will, however,
end with a few speculative comments. We recall key features
that distinguish the case M �0. First, the concentration field
exhibits stronger horizontal gradients due to the opposition
between the RD and the Marangoni-driven flow. Second, the
concentration field exhibits self-similarity when lengths are
rescaled by 
M
1/2. This suggests the same RD-convective
balance as for M �0 involving the same quasiparallel return
flow. Returning to the streamfunction plots in Fig. 9, these
suggest the existence of this quasiparallel flow of scale

M
1/2, but superimposed on it is a recirculating vortex of
strength greater than 
M
1/2 occupying an ever more compact
region near the front. These facts, taken together, lead to the
hypothesized structure sketched in Fig. 10 as the asymptotic
picture at infinite negative Marangoni number. Elucidation of
this structure awaits further analysis.

0.2

0.4 0.6

0.8

0.2

0.4

0.6

0.8

0.2

0.4
0.6
0.8

0.2

0.4

0.6
0.8

FIG. 9. Local streamfunction renormalized between 0 and 1 in the defor-
mation zone rescaled as in Fig. 7�b� and for M =−1000, −2000, −2500, and
−3000, top to bottom.
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V ~ M
1/2

Zone of length
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FIG. 10. Hypothesized structure as M→−�.
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V. CONCLUSION

When autocatalytic chemical fronts propagate horizon-
tally in the presence of a free surface, they can induce a
localized steady Marangoni flow traveling at a constant
speed with them. In the present paper, we have determined
the important balances between the different physical mecha-
nisms that result in a steady regime propagating at a constant
speed, identifying that Marangoni convection, reaction, and
vertical diffusion have to counterbalance each other when the
direction of the surface fluid flow is parallel to the RD propa-
gation and the resulting flow can be described uniformly by
a so-called return flow �M �0�. This description is valid for
large M, i.e., when the interaction between RD processes and
Marangoni convection is strong. Using the numerically ob-
tained scalings, we have shown that the full equations can be
replaced by the single simplified equation �Eq. �27�� that
captures all the quantitative features of the steady regime.

In the case of negative M, the opposition between the
surface flow and the front propagation leads to more com-
plex dynamics with a strong recirculating vortex inside the
main convection roll. The analysis at high M shows that the
structure of the front is multiscale, which renders analytical
work more difficult.

It remains to comment briefly on the range of validity of
the solutions presented here. We have been concerned only
with 2D solutions. Since all of our many initial value inte-
grations of the time-dependent equations have evolved to
steady solutions, we do not believe that there are any oscil-
latory 2D instabilities, at least over the range of parameters
considered. Three-dimensional instabilities that might limit
the range of applicability of the solutions are, of course, be-
yond the scope of the present paper. We have focused on one
kinetic expression. However as already mentioned in Sec. I,
the basic RD-convective balances that pertain at large Ma-
rangoni numbers are expected to be insensitive to the de-
tailed kinetic expression used: All that is required is a steady
propagating chemical reaction front in the absence of flow
and Marangoni effects. Two further assumptions were made:
those of low Reynolds number flow and of nondeformable
interfaces. Both of these require consideration of additional
physical effects and therefore additional dimensionless pa-
rameters. Inertial effects are of course measured by a Rey-
nolds number, Re=UcLz� /�, and interfacial deformation by
a capillary number, Ca=�Uc /�, where in both expressions
Uc is a characteristic speed. The assumptions of Stokes flow
and of nondeformability are therefore most likely to break
down for M �0, where the fluid velocities are the largest.
Using the dimensional scalings and the result that u�M1

allows one to express the local Reynolds and capillary num-
bers in the limit of large negative M. The expression for the
capillary number becomes, under these conditions,

Ca � a0
d�/dc

�
.

Thus we see that the capillary number has the simple inter-
pretation of being the fractional change in interfacial tension
in going from one concentration to the other. This quantity is
typically quite small but can become appreciable if the reac-

tants or products are highly surface active. While the corre-
sponding expression for Re is not as simple, requiring it to
be less than unity gives the conditions under which inertia
can be neglected. Should either of these effects be non-
negligible, we anticipate a modification of the asymptotic
scalings developed here. Inertia will generally slow the
strength of the circulation, and surface deflection will gener-
ally reduce the magnitude of the concentration gradient that
remains tangent to the interface, thus reducing the
Marangoni stress accordingly.
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