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When a sample of fluid of finite size is displaced in a porous medium by another miscible fluid, viscous
fingering may occur when the two fluids have different viscosities. Depending whether the sample is more or
less viscous than the carrier fluid, the log-mobility ratio R �defined as R=ln��2 /�1� where �2 and �1 are the
viscosities of the sample and of the carrier� is respectively positive or negative. In the case of a linear
displacement of a finite slice of fluid, R�0 leads to fingering of the rear interface of the sample where the less
viscous carrier invades the more viscous sample. If R�0, it is on the contrary the frontal interface of the
sample that develops fingers where the less viscous sample displaces the more viscous bulk solution. We
investigate here numerically the differences in fingering dynamics between the positive and negative log-
mobility ratio cases leading to the growth of fingers against or along the direction of the flow, respectively. To
do so, we integrate Darcy’s law coupled to a convection-diffusion equation for the concentration of a solute
ruling the viscosity of the finite-size sample. The statistical moments of the solute’s concentration distribution
are analyzed as a function of dimensionless parameters of the problem such as the length of the slice l, the
log-mobility ratio R, and the ratio between transverse and axial dispersion coefficients �. We find that, on
average, the mixing zones and the width of the sample broadening due to fingering are larger for negative R
than for positive R. This is due to the fact that fingers travel quicker in the flow direction than against the flow.
Relevance of our results are discussed for interpretation of experimental results obtained in chromatographic
separation and for understanding conditions of enhanced spreading of contaminants in aquifers.
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I. INTRODUCTION

When a less viscous fluid of viscosity �1 displaces a more
viscous one of viscosity �2��1 in a porous medium, the
interface between the two fluids becomes unstable and de-
velops fingers. Such a viscous fingering �VF� instability of
one interface has been studied extensively in porous media
over the last few decades, both experimentally and theoreti-
cally �see �1,2� for a review�. When only one interface be-
tween such two fluids of different mobility is considered, VF
occurs when the log-mobility ratio R is positive where R is
defined as R=ln��2 /�1�.

Beyond traditional applications in petroleum engineering,
viscous fingering has been recognized more recently also to
be of possible importance in the spreading of pollution zones
in aquifers or in mixing during brine transport in aquifers
�3–9� and in band broadening in liquid chromatography used
to separate the chemical components of a given sample by
passing it through a porous medium �9–23�. The peculiarity
of these applications is to deal with a finite width sample of
fluid displaced in a porous medium by another bulk fluid.
The sample plug can be more viscous or less viscous than the
carrier. When a sample of viscous solution is injected into a
mobile phase of lower viscosity, the rear interface of the
sample band becomes unstable and the frontal interface acts
as a stable one. Conversely when a low viscosity sample
plug is injected into a higher viscosity mobile phase then the
viscous fingers develop at the frontal interface of the sample
while the rear interface remains stable.

In chromatography for instance, in the case of polymers
or proteins, the viscosity of solutions can strongly vary with
concentration. The possible resulting fingering is unpropi-
tious to the separation technique as it contributes to peak
broadening and distortions. Such conclusions have been re-
ported by several authors either experimentally �10–17� or
numerically �9,16–20�. In aquifer pollution problems, den-
sity or viscosity differences between water and localized sea-
water intrusions, radioactive waste disposal sites, or contami-
nant plumes can typically enhance spreading between two
miscible fluid bodies. This can give rise to enhanced disper-
sion �4,7� and deformed breakthrough curves �3,6,24�.

Miscible viscous fingering of a high viscosity finite width
sample displaced by a lower viscous fluid �R�0� has been
studied numerically quantitatively recently �9,18,20�. It was
found that fingering of finite samples is a transient phenom-
enon contributing nevertheless to increase the variance of the
output peaks �9,20�. The dynamics of reverse fingering �18�,
previously studied by Manickam and Homsy �25� in their
simulations of fingering of nonmonotonic viscosity profiles,
is found in the finite sample case for R�0 due to the fact
that the frontal stable zone acts as a barrier preventing the
growth of the fingers in the flow direction. From the experi-
mental point of view, Cherrak et al. �12� have studied vis-
cosity effects in a methanol-isopropanol system and have
discussed the influence of VF on separation through the
analysis of the statistical moments of the elution profiles.
They have observed a significant loss of separation effi-
ciency due to fingering whenever sample and eluent viscosi-
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ties differ by more than 10%. Recently Catchpoole et al. �14�
have performed experiments to visualize VF in chromatog-
raphy columns. They have used a mobile phase as well as
solute plugs as a mixture of dichloromethane, toluene, and
cyclohexanol in a proportion depending on the viscosity re-
quired to have sample plugs of viscosity larger or smaller
than that of the eluent. This has allowed them to compare
fingering of a plug less viscous than the mobile phase, where
fingers appear at the forward front, with that of a high vis-
cous solute plug in which the rear front shows the fingering
�15�. They concluded that the fingering process observed at
the rear front is the negative image of the process of finger-
ing occuring at the forward front.

From these studies, the following question arises: is VF of
the frontal or rear interface of a finite-size sample leading to
a similar distortion of the output peaks or is there an asym-
metry in the dynamics such that one of them would be more
detrimental to the widening of the peaks than the other one?
In other words, is the fact that, in one case the fingers de-
velop in the direction of the flow while in the other case they
grow against it, has an overall influence on the extent of the
fingering zone in time?

To obtain insight into these questions, the objective of this
particle is to compare the nonlinear dynamics and the aver-
aged properties of miscible VF of finite width slices when
the log-mobility ratio R is respectively positive or negative,
which leads to VF of the rear or frontal interfaces, respec-
tively. To do so, we have numerically integrated a two-
dimensional model of VF coupling Darcy’s law to the evo-
lution equation of a solute, the concentration of which rules
the viscosity of a finite-size sample. We have compared non-
linear dynamics of the system as well as averaged quantities
for both positive and negative R starting from the same ini-
tial conditions. We find that VF is more effective in spread-
ing the sample when VF occurs at the frontal interface of a
sample rather than at the rear interface. Significant differ-
ences on fingering are observed when varying the width l of
the slice, the intensity of the log-mobility ratio R or the ratio
� between the transverse and longitudinal dispersion.

The present paper is organized as follows: We first present
in Sec. II our model system as well as our numerical inte-
gration technique. Section III compares qualitatively the
properties of nonlinear fingering of a miscible sample for
both positive and negative R. Quantitative analysis of these
dynamics are made in Sec. IV before a parametric study is
conducted in Sec. V. Conclusions are drawn in Sec. VI.

II. MODEL SYSTEM

Our model system �see Fig. 1� is a two-dimensional po-
rous medium of length Lx and width Ly in which a slice of

fluid, hereafter referred to as “the sample,” is injected. This
sample has a length W and a viscosity �2 dependent on the
presence of a solute in concentration c=c2. It is displaced by
a carrier fluid of viscosity �1 initially filling the porous me-
dium and in which the solute concentration is c=0. The dis-
placing fluid is injected uniformly with a mean velocity U
along the x direction. Following previous works
�1,9,20,26–28�, the viscosity of the fluids is assumed to be an
exponential function of c such that

��c� = �1eRc/c2, �1�

where the log-mobility ratio R is defined as mentioned pre-
viously as R=ln

�2

�1
. Such an exponential dependence of vis-

cosity on concentration characterizes, to a good approxima-
tion, mixtures of a large number of nonassociating liquids as
well as of diluted aqueous solutions �29–31�. If R�0, then
�2��1: the sample is more viscous than the displacing fluid
and the rear interface of the sample is unstable towards vis-
cous fingering while the frontal interface is stable and
evolves initially only via dispersion. If R�0 then �2��1:
the sample is less viscous than the carrier fluid, the rear
interface is stable while viscous fingering operates at the
frontal interface. It is the goal of this paper to compare the
nonlinear properties of fingering of finite width slices for R
�0 and R�0.

Assuming the fluid is incompressible and the flow inside
the porous medium is governed by Darcy’s law, the govern-
ing equations for the system are �27,28�

�� · u� = 0, �2�

�� p = −
��c�

K
u� , �3�

�c

�t
+ u� · �� c = Dx

�2c

�x2 + Dy
�2c

�y2 , �4�

where K is the permeability of the porous medium, p is the
pressure, u� = �u ,v� is the two-dimensional velocity field. Dx
and Dy are the macroscopic dispersion coefficients of the
porous medium along the x and y directions, respectively
�20,32–35�.

We then nondimensionalize the governing equations by
using U as the characteristic velocity, Lc=Dx /U as the length
scale, and tc=Dx /U2 as the time scale. Switching to a frame
moving with speed U, the governing equations �2�–�4� with
the concentration-dependent viscosity equation �1� become
�27�

�� · u� = 0, �5�

�� p = − ��c��u� + e�x� , �6�

�c

�t
+ u� · �� c =

�2c

�x2 + �
�2c

�y2 , �7�

x

y

Lx

Ly

U µ2

µ1 ,c =0c2
µ1 ,c =0

W

FIG. 1. Sketch of the system.
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��c� = eRc, �8�

where e�x is the unit vector along the x direction, �=Dy /Dx,
and the variables denote now dimensionless quantities.
Physically, the anisotropic dispersion arises from the fact that
the flow, which strongly influences the dispersion process, is
not isotropic �32–35�. Here we take � as a constant in the
simulations, except for the specific investigation of its influ-
ence in Fig. 15. More general velocity dependent anisotropic
dispersion coefficients have been used in other studies of
viscous fingering �26,36,37�.

Introducing the stream function ��x ,y�, such that u
=�� /�y and v=−�� /�x, and following Tan and Homsy �28�,
the momentum and concentration equations �5�–�7� become

�2� = − R� ��

�x

�c

�x
+

��

�y

�c

�y
+

�c

�y
� , �9�

�c

�t
+

��

�y

�c

�x
−

��

�x

�c

�y
=

�2c

�x2 + �
�2c

�y2 , �10�

where Eq. �9� has been obtained by eliminating the pressure
gradient taking the curl of Darcy’s law.

Equations �9� and �10� are numerically solved using the
pseudospectral method introduced by Tan and Homsy �28�
and successfully adapted in various fingering studies
�9,38,39�. The boundary conditions are periodic in both x
and y directions. The nondimensional domain is of size ly
� lx, where ly =ULy /Dx and lx=ULx /Dx. Furthermore l
=UW /Dx is the dimensionless length of the sample. For
chromatographic columns and aquifers, lx and ly can vary in
a relative wide range depending on flow velocity, packing
particle diameter and system’s geometry as discussed in
�9,20�. Typical values are here taken as ly =512 and lx
=4096. The initial condition corresponds to a convectionless
fluid embedding a rectangular sample of concentration c=1
of size ly � l in a c=0 background. The middle of the sample
is initially located at x=4lx /5 and x= lx /5 for R�0 and R
�0, respectively. For the numerical simulations, the initial
condition corresponds to two back-to-back step functions be-
tween c=0 and c=1 with an intermediate point where c
=1 /2+Ar on the rear front and c=1 /2−Ar on the frontal
one. Here r is a random number between 0 and 1 and A is the
amplitude of the noise of order 10−3. This noise is necessary
to trigger the fingering instability on a reasonable computing
time. The larger the noise intensity A, for example A of order
10−1 rather than 10−3, the quicker the onset of the instability
�9�. In other words, the curves presented in different figures
of Secs. III and IV with time in abscissa can be shifted by a
constant time on the left for larger noise intensity. It is nec-
essary to seed the leading front with �1−c� if the rear front is
seeded with an initial condition c if we want to ensure that
the triggered fingered pattern is the same on the leading front
for R�0 than the one which develops on the rear front for
R�0. This will allow us to compare how fingers initiated out
of the same noise develop respectively when they grow
along the direction of the flow �R�0� or against it �R�0�.
In the present simulation spatial discretization step dx=4,

dy=4 is considered. Convergence studies of the numerical
method shows that the fingering dynamics is not affected
when using smaller time and space steps.

III. VISCOUS FINGERING WITH POSITIVE AND
NEGATIVE R

The purpose of our study is to compare the properties of
VF of the frontal �R�0� and rear interface �R�0� of a
sample for the same viscosity ratio between the sample and
the displacing fluid. To visualize the difference between both
cases, fingering dynamics of such finite samples are shown
on Fig. 2 for R= +3 and R=−3, respectively. The evolution
is shown in a frame of reference moving with the nondimen-
sional constant speed of the unperturbed sample. Black and
white correspond to concentrations c=1 and c=0, respec-
tively. In the case of a positive log-mobility ratio �R�0, Fig.
2�a�� the rear interface of the sample �where the less viscous
white bulk fluid displaces the more viscous sample in black�
becomes unstable due to the unfavorable viscosity gradient.
The other interface at the front where the viscosity gradient
is reversed is stable. The opposite occurs �unstable frontal
interface and stable rear interface� for the case R�0 �Fig.
2�b��. The fingering dynamics for R�0 in the case of finite
width samples has already been studied quantitatively nu-
merically in the past �9,18,20�.

For both R�0 or �0, the VF pattern which develops out
of the same noise is similar at early times until t=600 which
can be seen through a visual inspection of Fig. 2 and will be
discussed quantitatively in Figs. 3–16. Indeed, until t=600,
the pattern of the white fingers of the rear interface of Fig.
2�a� is similar to that of the black fingers of the frontal in-
terface of Fig. 2�b�. This fingering dynamics is the same as
that which would be obtained until this time in the classical
VF of one single unstable interface between two semi-
infinite regions �28�. Fingers carrying the less viscous fluid
move in the downstream direction while reverse fingers car-
rying more viscous fluid move in the upstream direction of
the flow. We define them as forward and backward fingers,
respectively. After t=600, the specificities related to the fact
that we deal here with a finite-size sample come into play:
fingers meet the stable interface and the dynamics ceases to
be that of one single interface. The two interfaces �one un-
stable and one stable with regard to VF� start to interact. In
the case R�0, the stable frontal zone acts as a barrier pre-
venting the forward fingers to further propagate downstream
and forces them to reverse their orientation backward once
the two fronts start to interact �18�. This kind of reverse
displacement can be seen in Fig. 2�a� after t=600. For R
�0 the stable zone at the rear interface acts as a barrier for
backward fingers to propagate further in the direction reverse
to the flow favoring then the dynamical growth of forward
fingers, as seen in Fig. 2�b� after t=600. The mixing in the
sample enhances during this transition stage due to the reori-
entation of fingers. At later times, dispersion begins to dilute
the sample into the bulk which weakens the viscosity gradi-
ents and thus the source of the VF instability preventing the
growth of further fingering phenomena. VF is thus a transient
phenomenon in the case of finite samples on the contrary to
the case of one single interface.
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Let us focus now on the differences between backward
and forward fingers. Reverse fingering has been discussed by
Manickam and Homsy �25� in the context of nonmonotonic
viscosity profiles and their results for strong frontal stable
zones are similar to our findings for VF of a finite sample
when R�0. A visual comparison of Figs. 2�a� and 2�b� at
later times reveals that forward fingers have stretched farther
to the right for R�0 than backward fingers to the left for
R�0, while the initial condition was the same for both simu-
lations. This shows on this specific example that VF of a
finite-size sample with positive R is eventually not exactly
analogous to the one obtained when R�0. To further discuss
these differences, we will now turn to a quantitative analysis
of the simulations shown in Fig. 2 before tackling statistical
averages on several simulations.

IV. QUANTITATIVE ANALYSIS

In order to compare the results for both positive and nega-
tive R quantitatively, we introduce several quantities useful
to characterize the properties of fingers �26,28�.

A. Transversely averaged profiles

Transversely averaged profiles of concentration are a clas-
sical measure done in experimental �3,24� and theoretical
studies of VF �9,20,26,28� and allow to gain insight into
properties of the dynamics averaged on the cross section of
the reactor. They are defined as

c̄�x,t� =
1

ly
�

0

ly

c�x,y,t�dy �11�

and can be related to typical information measured by detec-
tors placed along a chromatographic column for instance
�24�. Figure 3 depicts c̄�x , t� at successive times for the simu-
lations presented in Fig. 2. The deformation with bumps at
the rear interface �frontal interface� for R=3 �R=−3� wit-
nesses the presence of fingering at the unstable interface. On
the contrary, the frontal �rear� interface for R�0 �R�0�
shows at early time the standard error function characterizing
the simple dispersion of a stable front. After a while, both
fronts start to interact, a feature specific to VF of finite slices.
It is then observed that, as a consequence of dispersion and
fingering of the sample, the maximum of c̄�x , t� ceases to be
equal to one. We arbitrarily define the time at which the two
fronts start to interact as the time for which this constant
concentration plateau c=1 ceases to exist. It can be seen
from Figs. 3�a� and 3�b� that the constant concentration pla-
teau of c=1 stays longer for negative R, i.e., the interaction
between the two interfaces occurs at a later time for R�0
than for R�0 for a same magnitude of R.

B. Interfacial length

The time at which the rear and frontal interfaces meet can
be measured very accurately from another interesting quan-
tity which is the interface length I of the deformed interfaces
defined as �40�

(b)(a)

FIG. 2. Density plots of concentration at successive dimensionless times in a frame moving at the velocity of the displacing fluid with
ly =512, lx=4096, l=256, �=1 for a log-mobility ratio �a� R=3 and �b� R=−3. From top to bottom: t=0, 400, 500, 600, 800, 1000, 2000, and
4000.
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I�t� = �
0

ly �
0

lx �� �c

�x
�2

+ � �c

�y
�2	1/2

dxdy . �12�

This quantity is a measurement of the temporal variation of
the axial and transverse gradients of concentration. The in-
terfacial length I is plotted as a function of time in Fig. 4 for
the simulations shown in Fig. 2. The length I remains con-
stant in the initial diffusive regime then grows strongly with
the onset of viscous fingers.

For a pure diffusive displacement along x �R=0, �c /�y
=0�, the base state profile corresponds to two back-to-back
error functions separated by a distance l which start to inter-
act at a time t= l2 /32 �20�. The corresponding interfacial
length is then a constant value of 2ly as long as the two
interfaces of the finite sample do not interact, i.e., as long as
t� l2 /32. This time depends on the sensitivity level of de-
tecting the deviation of the maximum concentration c̄max
close to a difference of 2% from the initial value of 1 and it
corresponds to all the values of the normal distribution lying
within two standard deviations �2	� of the mean. In practice,
for a normal distribution, one often consider that the data are

within 2	 of the mean as this accounts for about 96% of the
distribution and we observe that our simulation is more ap-
propriate for this assumption. For l=256, the onset time of
interaction of both interfaces is l2 /32=2048 and close after
this time a decrease of the interfacial length for R=0 is ob-
served �see Fig. 4�.

On the other hand, it can be seen that the onset time of VF
instability at which I departs from its value in the stable case
is the same for both R=3 and R=−3. Then the length I grows
exactly the same way at early times for both cases. This is
due to the fact that the fingering dynamics gives the same
pattern in both cases until roughly t=600 �see Fig. 2�. Mean-
while, however, when the left and right interfaces touch each
other the length I starts decreasing suddenly at roughly t

500 for R=3 and t
700 for R=−3. These times corre-
spond to the times when fingers reorient themselves �Fig. 2�
and when c̄max becomes lower than 1 �Fig. 3�. The measure-
ment of I�t� shows that VF speeds up the meeting of the two
interfaces with regard to the pure diffusive case and that this
meeting occurs earlier for positive than for negative R.

C. Mixing lengths

The length of the fingering zone, also classically referred
to as the “mixing length” in the viscous fingering literature
�1�, is an important measure in the study of VF quantifying
the extent of the zone where the two miscible fluids mix one
into the other. In order to quantify the spreading of the for-
ward and backward fingers we define two types of mixing
lengths. The forward mixing length Ld

+ is defined as the in-
terval between the initial position of the forward interface
and c̄=
 at its right. The backward mixing length Ld

− is taken
as the interval between the initial position of the rear inter-
face and c̄=
 at its left with 
=0.01. These two mixing
lengths give insight into the dynamics of forward and back-
ward fingering in a way similar to that used by Manickam
and Homsy in their analysis of VF of nonmonotonic profiles
�25�. The variations of forward Ld

+ and backward Ld
− mixing

lengths with time for the simulations of Fig. 2 are presented
in Fig. 5�a�. Until the onset of VF, these lengths propagate at
a diffusive rate such as in the case R=0, i.e., Ld

+, Ld
−��t.
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FIG. 3. Transversely averaged concentration profiles c̄�x , t� corresponding to the simulations of Fig. 2 at successive times t=0, 400, 500,
600, 800, 1000, and 2000. �a� R=3, unstable rear interface with stable frontal interface and �b� R=−3, unstable frontal interface with stable
rear interface.
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FIG. 4. Temporal evolution of the interfacial length I for the
simulations of Fig. 2. R=3 �solid line� and R=−3 �dashed line�.
R=0 corresponds to the pure dispersion.
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When VF sets in, this length then grows faster with a larger
slope. It can clearly be seen that the forward fingers at the
unstable frontal interface for R=−3 travel faster than the
backward fingers at the rear interface for R=3 as the corre-
sponding mixing length is larger at the same time �Fig. 5�a��.
A similar behavior has been observed by Manickam and
Homsy �25� for nonmonotonic viscosity profiles. We note
that this phenomenon is here non-negligible as for t=5000
for instance, the mixing length is more than 30% larger for
R=−3 than for R=3. This explains why the interaction of
both rear and frontal interfaces occurs earlier for R=3 than
for R=−3 as forward fingers take less time to reach the fron-
tal interface �for R=3� than the backward fingers to reach the
rear interface �for R=−3�.

The mixing length of the dispersive regime at the stable
interfaces �leading front for R�0 and rear front for R�0�
varies at a diffusive rate �t, until both interfaces of the finite
sample interact. After the onset of interaction between the
two interfaces it varies with a power-law exponent smaller
than 1 /2 �see Fig. 5�b��, with the stable front for R=3 trav-
eling slower than the one for R=−3. So we find that the
dispersive dynamics at the stable interface undergoes a tran-
sition from a pure diffusive regime to another diffusive one
after the onset of interaction with the viscous fingering tak-
ing place at the other unstable interface.

Although the above definitions of the mixing lengths may
lead to multivalued quantities, it is not so for the simulations
shown in Fig. 5, even at the largest times.

D. Statistical moments

In order to further quantify viscous fingering effects for
both larger and lower viscosity samples we next compute the
first three statistical moments of the transversely averaged
concentration distributions c̄�x , t� using the definitions of
central normalized moments �9�. The first moment

m�t� = �
0

lx

xf�x,t�dx �13�

is the center of mass of the distribution, where f�x , t�
= c̄�x,t�

�0
lxc̄�x,t�dx

is the probability density function of the continu-

ous distribution c̄�x , t�. With the development of fingers the
center of gravity of the sample is displaced towards the back
with respect to its initial position for high viscous samples
�R�0� and the reverse happens, i.e., the center of gravity is
displaced towards the right for less viscous samples �R�0�.
The modulus of the first moment of the distributions shown
in Fig. 3 is plotted as a function of time in Fig. 6�a� to
compare the speed of the displacements for both R=3 and
R=−3. The center of gravity for R=3 moves at the same
speed as for R=−3 until the forward fingers meet the stable
front �near t=600 see Fig. 6�b�, enlarged graph of Fig. 6�a��
when it then migrates slower for R=3. This observation of a
center of gravity migrating slower �away from the initial po-
sition in the moving frame of reference� for more viscous
samples than for less viscous ones has already been pointed
out by Cherrak et al. �12�. For a while, between t
600 and
t
5000, forward fingers growing in the flow direction �for
R=−3� do it faster than backward fingers growing upstream
�for R=3�. This faster growth is accompanied by a quicker
dilution of the sample which reduces the strength of the VF
process and may explain that the asymptotic dispersion-
dominated regime, where both kinds of fingers move again at
the same speed, is reached quicker for R=−3 than for R=3.

Figure 6�c� shows the temporal evolution of the variance
�second moment of the distribution�, defined as

	2�t� =
�0

lxc̄�x,t��x − m�t��2dx

�0
lxc̄�x,t�dx

. �14�

This quantity gives information on the width of the distribu-
tion. It is seen on Fig. 6�c� that, at a same time, the variance
of a less viscous sample can be up to 30% larger than that of
a more viscous sample. This is related again to the fact that
VF widens more the samples when fingers evolve in the
direction of the flow at the frontal interface without encoun-
tering any stable barrier ahead. In Fig. 6�d�, we eventually
plot the absolute value of the skewness a defined as
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a�t� =
�0

lxc̄�x,t��x − m�t��3dx/�0
lxc̄�x,t�dx

	3 . �15�

It shows that the mass of the distribution is displaced more to
the right for R=−3 while mass is rather displaced to the left
for R=3.

V. PARAMETER STUDY

A. Effects of the sample length l

The influence of the sample length l on fingering proper-
ties for high viscous samples �R�0� has already been ex-
plained in details previously �9,20�. Peak broadening satu-
rates above a given critical sample length lc such that the
diffusive growth of the asymptotic single finger is reached
before the left and right interfaces interact. Let us now com-
pare this phenomenon for both positive and negative log-
mobility ratios using the statistical moments of the distribu-
tion. To extract the contribution of fingering to peak
broadening, we plot on Fig. 7 as a function of time for dif-
ferent finite sample lengths l the quantity 	 f =�	2−	o

2,
which is the contribution of viscous fingering to the variance
	2. Here 	o

2= l2 /12+2t is the variance of a stable sample
�R=0�, where the first term corresponds to the contribution

due to the initial sample width l while the linear term in t
corresponds to the contribution of dispersive mixing. We see
that the onset of viscous fingering �time at which 	 f departs
from zero� is the same for both R=3 and −3, but deformation
due to fingering grows faster for less viscous samples �R
�0�. Furthermore, the asymptotic diffusive state �reached
here when 	 f becomes constant� is reached quicker for R
=−3 than for R=3. For a small sample length l=256, the
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fingering contribution to the variance 	 f is larger for R=3
than for R=−3 in the asymptotic diffusive regime. But this
difference reduces for sample lengths l=512, 1024 and there
is a critical length ld
3072 above which 	 f is almost the
same for both positive and negative R �see Fig. 7�. For l
� ld, the time at which the asymptotic diffusive state is
reached is larger than the time at which both interfaces of the
sample interact and the opposite happens for l� ld. This is
observed by comparing the time at which c̄max deviates from
the constant concentration plateau value 1 for different l
�Fig. 8� and the asymptotic diffusive time for different l of
Fig. 7.

The center of gravity migrates towards the back for R
=3 and towards the front for R=−3 with the same speed for
l=3072, 4096 different than the speed for smaller length l
=256, as seen in Fig. 9�a�. Hence, we find that fingering does
not have any noticeable different effect on the output peak
between a positive or negative R of same magnitude for any
finite extent of the sample l� ld. The lateral asymmetry of
the output peak for positive and negative R is just the sym-
metric one of the other for any l� ld in the asymptotic dif-

fusive regime which can be seen in Fig. 9�b�, as the absolute
value of the skewness is roughly the same for R=3 and −3
for l=3072, 4096 while it differs for l=128 in the diffusive
regime.

Figure 10 shows the influence of the sample length l on
the interfacial length I defined in Eq. �12�. The time of re-
orientation of the forward fingers for R�0 and of the back-
ward fingers for R�0 is nothing else but the time of the
interaction between the rear and frontal interfaces of the
sample. This onset time of the interaction of both interfaces
at which I starts declining appears later in a longer sample
than in a smaller one. This interfacial length also confirms
the observation of Fig. 8 that the interaction between both
interfaces appears at a later time for a less viscous sample
than for a more viscous one for l� ld. But for a sample
length l� ld, the interfacial length grows with the same value
for both R=3 and −3 and decays at the same time �see Fig.
10 for l=4096�. This is due to the emergence of a similar
pattern for the fingers as well as because the coarsening of
fingers occurs at the same time. In all cases, the fact that I
starts declining after a while corresponds to a decrease of the
gradient of concentration due either to the interaction be-
tween rear and frontal interfaces of the sample �length l
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� ld� or because of dispersion taking over before the onset of
the interaction between the interfaces �l� ld�.

B. Effect of the log-mobility ratio R

The classical effect of R on viscous fingering, i.e., that the
systems is more unstable and hence the onset time of viscous
fingering decreases with increasing R is well known �1,27�.
In order to see the significant effects of R on the viscous
fingering of the finite samples for both positive and negative
values of R we have plotted c̄�x , t� at a fixed time t
=30 000 in Fig. 11 for ly =512, l=256, �=1. The initial
sample has the same center of mass for all R. For the stable
case R=0 it is a Gaussian displacement. For the sample with
R�0 the leading front �stable front� originates at the same
value as R=0 but the deformation is seen at the rear front
while the reverse appears for R�0. The maximum of the
peak is lower for R�0 than for R�0.

The asymptotic diffusive regime is reached earlier for
larger values of R �see Fig. 12� because forward or backward
fingers propagate faster for larger values of R than for
smaller R. This is also seen from Fig. 13 featuring the tem-

poral dependence of Ld
+ or Ld

− for different values of R. The
differences in the growth of the forward and backward mix-
ing lengths in the nonlinear regime reduce when R is de-
creased. To examine more clearly the symmetry of the peak
profile on the basis of the variance of the distribution, we
have plotted as a function of R the quantity �	� �see Fig. 14�
the averaged value of 	 �the value of 	 f in the asymptotic
diffusion regime �9�� for ten different noise realization simu-
lations. For lower values of R, �	� is more symmetric with
respect to R=0 and for larger R they are more asymmetric.

Such kind of observations enlighten the findings by Cher-
rak et al. �12� �see Figs. 3, 4, and 5�a� of their paper� in their
experimental investigation of viscosity effects in the spread-
ing of a sample of mixture of methanol and isopropanol of
different viscosities.

C. Effect of the ratio of dispersion coefficients �

Figure 15 shows the influence of the ratio of dispersion
coefficients � on fingering for ly =128, l=128, and various
log-mobility ratios R. It is observed that decreasing � in-
creases broadening of the peak, as larger �	� are obtained
for both negative and positive log-mobility ratios. It is due to
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the fact that smaller transverse dispersion assists the growth
of the forward fingers more than that of the backward fin-
gers. This is further seen on Fig. 16 in which the mixing
lengths Ld

+ for R=−3 and Ld
− for R=3 are plotted for nine

different noise realizations of simulations. For chromatogra-
phy application where � is expected to be very small, �

0.04, the effects of fingering are hence more vigorous for
R�0 than for R�0.

VI. CONCLUSION

In the case of one single interface between two semi-
infinite miscible fluids of different viscosities with a monoto-
nous viscosity-concentration profile, VF occurs only when a
less viscous fluid pushes a more viscous one, i.e., when the
log-mobility ratio R�0. The situation is different in the case
of finite slices of one fluid of given viscosity embedded in
the bulk of another displacing fluid. Depending on whether R
is positive or negative, it is then, respectively, the rear or
frontal interface of the sample that features viscous fingering.
We have shown here by numerical simulations of miscible
fingering of finite width slices that the properties of fingering
for, respectively, positive and negative R can be quite differ-
ent on average. For one given identical realization of the
noise seeding the instability, fingers grow eventually on a
longer distance for a given large time when R�0 than for

R�0. The difference can lead up to 30% larger mixing
length or variance for R�0. This is due to the fact that, for
R�0, fingers develop at the frontal interface in the direction
of the flow, while for R�0, fingers grow at the rear of the
sample against the flow. Quantitative measurements of trans-
versely averaged profiles, interfacial and mixing lengths, as
well as of the statistical moments of the distribution of the
sample concentration further show that the influence of VF
on the spreading of the sample is more important for R�0
than for R�0, all other conditions being equal. This shows
that VF is more detrimental to chromatographic separation
and to spreading of localized pollution zones when the
sample is less viscous than the carrier fluid than when it is
the displacing fluid which has the larger viscosity.
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