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Using examples from surface science, we consider in this article problems of non-
equilibrium pattern formation in reactive soft matter. An interplay of reaction, diffusion
and energetic interactions between adatoms can produce a variety of non-equilibrium nanos-
tructures, both stationary and traveling. These structures are similar to the patterns found
in phase-separating binary mixtures under the influence of reactions. Because of their small
sizes, such nanostructures are significantly affected by fluctuations. The derivation of meso-
scopic stochastic equations for fluctuating concentrations, starting from the microscopic mas-
ter equation of the lattice approximation, is discussed. Special attention is paid to surface
chemical reactions involving a promoter species, where experimental observations are avail-
able.

§1. Introduction

Catalytic surface reactions maintained far from equilibrium are well known to
contain all the necessary ingredients in order to generate complex phenomena and
dissipative structures. Experimentally, a rich variety of spatiotemporal patterns has
been discovered1),2) (such as waves, spirals, turbulence, ...) for which the character-
istic length scales lies in the range of tens of micrometers and that can therefore be
considered as effectively macroscopic phenomena. The recent development of exper-
imental tools providing a nearly atomic spatial resolution has however revealed that
non-equilibrium structures can also appear at much shorter scales, ranging from a
few micrometers down to the order of the nanometer.3)–5) The large-scale proper-
ties corresponding to such reactive systems, like the global reactivity or selectivity
of the process, are in general expected to depend strongly on such a nanoscopic
pattern formation. In this view, it appears that controlling the onset and the prop-
erties of self-organized nanostructures through an appropriate choice of macroscopic
parameters can lead in general to a better engineering of surface reactions. It is
necessary in order to achieve this goal to develop theoretical approaches allowing for
the understanding of the essential underlying processes.

Recent theoretical developments have led to the idea that the combination of
non-equilibrium chemical reactions and energetic interactions between the particles
can give birth to structures whose characteristic size lies well beyond the diffusion
length of the species involved.6)–9) This has been seen, for example, in simulations of
phase-separating binary mixtures of reactants and in experiments involving polymer
blends. In the specific case of surface chemical reactions, potential interactions are in
general expected to be present, and often result from direct and indirect (substrate-
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mediated) contributions. These interactions are usually strong and can extend from
several Angströms to a few nanometers, providing thus cohesion between particles
at short distances.10),11)

There exist several levels of description in order to describe the dynamical be-
haviors associated with such systems. Since surface chemical reactions involve the
rearrangement of electrons between adsorbed atoms or molecules, a first-principle
approach would be of course desirable, so that the global dynamics of these systems
can be deduced directly from quantum mechanics. This is nothing but the ultimate
goal of non-equilibrium statistical mechanics; despite recent impressive theoretical
advances in this field and increasing available computer capability, this “state-of-
the-art” approach cannot however be considered yet as a practical tool in the case
of complex systems. Alternatively, one can consider a simplified microscopic picture
of the reality in which the molecules are involved in elementary chemical events seen
as are fluctuating, Markov processes.

In this view, the dynamics of surface reactions can be characterized by a Glauber-
type master equation giving the time evolution for the probability to find the surface
in a given configuration. The transition probabilities between surface states typi-
cally depend on the local configuration of adsorbates and on the details of energetic
interactions between particles. Starting from this master equation, a coarse-graining
of the surface can be introduced by dividing it into boxes, for which a local and
fluctuating concentration can be defined [see Ref. 13)]. The spatiotemporal evolu-
tion of the surface concentrations obeys then a Langevin-like equation which forms
the starting point of our description. This approach has been applied to numerous
examples of surface reactions, revealing the spontaneous formation of nanostruc-
tures.13)–15),17),19) When the size of the sub-domains becomes significant, these
stochastic equations take the form of mesoscopic reaction-diffusion equations for the
coverages12),16),18) where the effects of energetic interactions are still present and
directly deduced from the microscopic picture of the master equation.

To illustrate this we first present in §1 some simple examples of systems in-
volving adsorbates with lateral interactions. For the case of a single species on a
lattice,13) we discuss the derivation of the stochastic evolution equation from the
knowledge of the microscopic details and the limits of validity for which we expect
this approach to be correct. The deterministic limit of this equation corresponding
to the mean field approximation is also obtained, in which the energetic interactions
influence the rates of the elementary processes. A particular emphasis is placed on
the unusual diffusion term emerging from this derivation and on the phase transition
leading to the coexistence of a dense and a dilute phase. In a second example, an
annihilation reaction involving two interacting reactants is considered.17) Interest-
ingly, much more complex spatiotemporal phenomena are observed in this case, such
as stationary and travelling nanostructures whose length scale can be analytically
estimated.

In the second section, we consider the case of surface reactions in the presence
of a co-adsorbed, non-reactive additional species.20),21) This situation is often met
in real-world heterogeneous catalytic systems: promoters or poisons are co-adsorbed
species that do not react directly but can locally enhance or decrease the reaction
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Nanoscale Pattern Formation 121

rates and usually have strong lateral interactions with the other particles.22) This
class of systems forms an important illustration of the combination of far from equi-
librium reactions and energetic interactions and recent experimental results confirm
the formation of structures of a few micrometers under reaction condition.21),23)–25)

To illustrate the origin of this phenomenon, we show, using a simple general model,
that these kinds of systems can in general spontaneously organize themselves into
such microstructures, resulting in a strong modification of the global activity of the
surface reaction. In the third section, the effects associated with different mecha-
nisms of diffusion are discussed and exemplified with the case of promoted surface
reactions. We will finish by discussing how important it is in our view to control the
formation of patterns at such a nanoscopic level in the case of surface processes and
how mesoscopic approaches like the one we use can help in doing so.

§2. Towards a mesoscopic description of surface processes

Before considering some examples of specific surface processes, we first focus on
the generic properties of the microscopic lattice model forming the basis of the meso-
scopic theory. In this approach the surface is seen as a lattice with a specific geometry,
the nodes of which can be occupied by an adsorbed molecule. Multiple occupation
of the sites is forbidden, so that the local occupation numbers nα(R) can only take
the values 0 or 1. The dynamical evolution of this boolean variable is dictated by the
occurrence of different possible events: adsorption, desorption, diffusion, reaction,
etc. These processes are considered here as stochastic and Markovian, so that one
expects the time evolution of the joint probability distribution P ({nα(R)}, t) for a
microscopic configuration {nα(R)} to be given by a Glauber-type master equation
of the form

d

dt
P ({nα(R)}, t) =

∑
{n′

α(R)}

∑
ρ

[
wρ

({n′
α(R)} → {nα(R)}) P ({n′

α(R)}, t)

− wρ

({nα(R)} → {n′
α(R)}) P ({nα(R)}, t)] , (2.1)

where the sums run, respectively, over configurations and events. The choice the
transition probabilities wρ is of course not arbitrary: they must reflect what is known
about the microscopic mechanism of the corresponding elementary event, take into
account the presence of energetic interactions and must in addition respect detailed
balance at equilibrium.

Generally speaking, an analytic resolution of such a master equation is only
rarely feasible. Usually, it is possible to derive under certain approximations quanti-
ties such as the time evolution of the (spatially averaged) coverage or any probability
to find on the lattice clusters of a given size. The approach used here is slightly dif-
ferent, as will be now exemplified on a first, simple example.

2.1. Phase separation for a single interacting adsorbate

We first analyze the case of a single gaseous species A capable of adsorbing,
desorbing and diffusing on the nodes of a surface.13) As we mentioned before,

 by guest on A
ugust 3, 2016

http://ptps.oxfordjournals.org/
D

ow
nloaded from

 

http://ptps.oxfordjournals.org/


122 Y. De Decker and A. S. Mikhailov

the rates of the different elementary processes must reflect the fact that any ad-
sorbed particle A(ads) located at R experiences a global interaction potential U(R) =
−∑R′ u(R′−R)n(R′) where u(R′−R) is the binary interaction potential and n(R′)
the local occupation by A(ads) at site R′. The exact form of the pairwise interaction
potentials in a given reactive system should be specific and determined by a corre-
sponding microscopic analysis. For the sake of illustration, we will consider in this
case and in the following examples Gaussian interactions of the form

u(R − R0) =
u0(

π r2
0

)d/2
exp

(
−|r − r0|2

r2
0

)
. (2.2)

In this equation, r0 is a characteristic interaction radius and the coefficient u0 speci-
fies the interaction intensity. Note that positive values of u0 correspond to attraction
and negative values to repulsion between the considered particles. The parameter
d = 1, 2 is the medium dimensionality (some of our numerical simulations shall be
performed for a one-dimensional system).

On the basis of this model, one can construct the transition probabilities asso-
ciated with the different elementary processes. For adsorption, we choose to adopt
the simple Langmuir-type rate wa(R) = ka p (1 − n(R)) where ka is the sticking
coefficient and p is the constant partial pressure in the gas phase. Accordingly, in
order to respect the detailed balance when reaching thermal equilibrium, the des-
orption rate takes the form wd(R) = kd,0 n(R) exp [β U(R)] with β = 1/kB T (kB is
Boltzmann’s constant and T is the absolute temperature). For diffusion, we admit
that a molecule can jump from a site R to a site R′ according to the Metropolis rule

wdiff(R, R′) = Γ if U(R′) < U(R), (2.3)
Γ exp

[−β(U(R′) − U(R))
]

if U(R′) > U(R), (2.4)

which amounts to assuming that the activation energy for hopping is simply the
difference between the energy in the final and the initial states.

In order to reduce the master equation to a multivariate Fokker-Planck equation,
a coarse graining of the surface must be achieved by dividing it into boxes contain-
ing a relatively large number Z of sites. If the mixing properties are sufficient, the
state of each box located at a macroscopic position r is entirely determined by a
local fluctuating concentration c(r, t) defined as the fraction of occupied sites inside
a box. Moreover, if Z is large, this quantity is only slightly modified by the dif-
ferent elementary processes, so that a Kramers-Moyal expansion of the probability
P [c(r), t] in powers of the inverse number of sites is possible inside each box.26) The
Fokker-Plank equation obtained in this way [for details, see Ref. 13)] is equivalent
to a Langevin-type stochastic differential equation for the coverage, reading in this
case

∂c

∂t
= ka p (1 − c) − kd,0 exp [β U(r)] c + D∇2c + β D∇ [c (1 − c)∇U(r)]

+ξa(r, t) + ξd(r, t) + ξdiff(r, t), (2.5)

where we have dropped, for simplicity, the explicit space and time dependence for
c. The mesoscopic interaction potential U(r) is given by − ∫ u(r′ − r) c(r′) dr′,
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Nanoscale Pattern Formation 123

the diffusion coefficient D is defined as Γ a2 where a is the lattice constant; all the
other parameters have the same meaning as before. The internal noises ξa(r, t),
ξd(r, t) and ξdiff(r, t) take into account fluctuations due to adsorption, desorption
and diffusion respectively. This approach is expected to be valid if the size of each box
is smaller than the interaction radius, representing the smallest characteristic length
in the system. Since the kind of interactions encountered between adsorbed particles
usually extend over a few lattice lengths, the mesoscopic approach used here is not
always fully justified, and one could rather think of relying on the results of Monte
Carlo simulations. We believe however that the mesoscopic level of description allows
for a qualitative analytical understanding of the spatiotemporal dynamics, which is
rarely the case when simulations are in use. Moreover, Vlachos et al. have recently
shown27),28) that such a mesoscopic description quantitatively describes the diffusion
of interacting particles even if the interaction range is very short (nearest neighbors
interactions).

In the macroscopic limit, the noise terms can be neglected and Eq. (2.5) reduces
to a deterministic form identical to the evolution law derived using the mean field
approximation or by referring to phenomenological arguments.12) The specificities
of the microscopic level nevertheless reflect themselves at this level of description:
the desorption rate and diffusion are functions of the interaction potential. Diffu-
sion in particular is the sum of a traditional Fickian term and a nonlinear term
which describes the viscous surface flow of the adsorbate A in the presence of a
force induced by a surface gradient of this particle. The factor c (1 − c) is repre-
sentative of the fact that the flow of particles A can only pass through the empty
sites on the surface. Note that this reaction-diffusion equation is different both from
the Ginzburg-Landau equation for a first-order transition with non-conserved order
parameter and from the Cahn-Hilliard equation describing phase transitions with
a conserved order parameter.∗) The homogeneous equilibrium solution(s) is (are)
given by solving

ka p (1 − cst) − kd,0 exp (−β u0 cst) cst = 0. (2.6)

For high values of the temperature, this equation admits only one (dilute) equilibrium
coverage while beneath a given critical temperature Tc = u0/4 kB, a first order
transition takes place and dense and a dilute phase with coverages c1 and c2 can
coexist if u0/kB T ≥ 1/c(1 − c) with c = c1 or c2.

If a spatially extended system is considered, one expects that inside the paramet-
ric region of bistability, any interface separating the two homogeneous steady states
will evolve so that the metastable state is invaded by the stable one. Such moving
interfaces are governed by the complete reaction-diffusion equation where the diffu-
sion coefficient is present and is expected to play an important role. The numerical
integrations reveal that these interfaces are indeed characterized by a precursor and
a tail extending over distances comparable to the diffusion length Ldiff = (D/kd)

1/2 .
Moreover, there is usually a depletion of the adsorbates near the dense phase, which

∗) The flows induced by adsorption and desorption phenomena do not indeed conserve the total

coverage.
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124 Y. De Decker and A. S. Mikhailov

acts like a sink emptying the neighboring low density region. On the other hand,
standing interfaces are also be observed when both states are equistable. If the
coverage does not vary significantly within the interaction radius, the condition for
equistability reads

−u0 c + kB T ln
(

c

1 − c

)
− χ

∂2c

∂x2
= µ0 (2.7)

with u0 =
∫

u(r) dr and does not include the diffusion coefficient D but rather
χ = 1

2

∫
r2u(r) dr ≈ u0 r2

0 so that one expects the width of the standing interface to
scale as the interaction radius r0. In contrast to the case of moving fronts, the width
of the standing interface is thus expected to be very narrow, i.e. much shorter than
the corresponding diffusion length, as confirmed by numerical integrations.

These specificities of the profiles will affect the spontaneous nucleation and
growth of the stable phase inside the metastable one, which we will discuss now.
The dynamics of phase transition usually consists in the spontaneous nucleation and
subsequent growth of the stable phase into the metastable one. As demonstrated
by integrating the stochastic differential equation (2.5), fluctuations of various sizes
are indeed spontaneously created in the system (see Fig. 1); among these, nuclei
of a sufficient size∗) start to grow and invade the surface which becomes eventually
completely covered by the new phase. The growth of nuclei of the dense phase is
influenced by the nonlinear diffusion of the adsorbate and a region of local depletion
of the adsorbate around each dense cluster is rapidly formed. As a consequence,
two moving interfaces begin to interact at distances much larger than the interac-
tion radius so that the formation of small clusters between the islands of the dense
phase is prevented. This slows down the propagation of the interfaces and as a con-
sequence one can expect the transition to be completed only after a long time, in
a manner very similar to the Ostwald ripening, which is described at its late stage
by the Lifshitz-Slyozov theory. In our case, however, the total mass of adsorbate is
not conserved because of the flux of matter induced by adsorption and desorption.
The final stage of the phase transition, leading to the fusion of the islands, should
here be dictated by interactions between the moving fronts as their relative distance
approaches the diffusion length.

Since it is the amplitude of local fluctuations that will allow or not a supercritical
nucleus of the stable phase to appear, the properties of the internal noise are of prime
importance. The explicit form of the noise terms introduced in Eq. (2.5) is given by

ξa(r, t) =
(

ka p (1 − c)
Z

) 1
2

fa(r, t), (2.8)

ξd(r, t) =
(

kd,0 c

Z

) 1
2

exp [β U(r)/2] fd(r, t), (2.9)

ξdiff(r, t) =
1

Z1/2
∇
{

[2Dc(1 − c)]1/2 f(r, t)
}

, (2.10)

∗) The critical nucleus, capable to produce both growing and shrinking domains, is determined

by the unstable stationary solution of Eq. (2.7) (with c(r) → c∗ for r → ∞ where c∗ is the metastable

state). Its size only depends thus on the interaction radius r0 which is usually short for adsorbates.
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Nanoscale Pattern Formation 125

Fig. 1. Numerical simulation of the stochastic equation (2.5) showing the spontaneous nucleation

of the dense phase in a 2d system (dark regions correspond to a high coverage). The time

interval between the snapshots (from top left to bottom right) is 5/kd,0, while the grid size is

∆x = 0.1(D/kd,0)
1/2 and the system linear size is L = 16(D/kd,0)

1/2. The other parameters are

u0 = 6kBT , kap = 0.0753kd,0, r0 = 0.2(D/kd,0)
1/2 and Z = 2103(kd,0/D). Since the simulation

of the stochastic equation in 2d requires a large amount of computational time, only the early

stage of the transition is depicted here.

with fa, fd and f being independent white noises of unit intensity and Z the number
of lattice sites per unit area. Obviously, adsorption, desorption and diffusion will
not contribute in a similar way to the global noise. All the random forces, fa, fd

and f having the same intensity, it suffices to compare the pre-factors of these sto-
chastic terms to evaluate their respective contribution. Remarkably, they all scale
as the inverse of the lattice density Z, a quantity that is not present in the deter-
ministic evolution laws. The intensity of the noise inside each box is thus inversely
proportional to the number of particles contained in it. Despite this similarity, there
exist substantial differences between the adsorption-desorption noise and the fluc-
tuations associated with diffusion. The diffusion noise for example is the derivative
of a random flux j(r, t) which can be decomposed as a superposition of fluctuating
modes with a different wavelength l: j(r, t) =

∫ +∞
0 Cl φl (r, t). For a characteristic
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wavelength, we can estimate that

Cl ∼ 1
l Z1/2

[2D c (1 − c)]1/2 . (2.11)

On the other hand, the intensity of the adsorption and desorption noises do not
depend on the wavelength. For short length scales l < Ldiff , we can thus expect the
noise induced by diffusion events to dominate over the ones associated with the other
processes; for larger domains the situation is of course reversed. Note also that only
the desorption term depends explicitly on the potential interactions, while the noise
associated with desorption or diffusion depend on it through the local coverage c.

The mesoscopic approach used for this simple model involving a single adsorbate
can also serve as a basis for the study of more complex surface reaction systems.
To understand what sort of behaviors can emerge from the interplay of fluctuating
surface reaction kinetics and phase transitions, we will now consider the case of a
two-species model of non-equilibrium reaction involving interacting adsorbates.

2.2. Non-equilibrium microstructures in a two-species model of surface reaction

We now consider a hypothetical surface chemical reaction involving two species
in a non-equilibrium annihilation process17)

∗U + U(g) � U(ads), (2.12)
∗V +V(g) → V(ads), (2.13)

U(ads) + V(ads) → ∗U + ∗V + P (g), (2.14)

where the adsorbed species U and V occupy different adsorption sites, ∗U and ∗V

respectively. V is assumed to be strongly chemisorbed so that it cannot diffuse across
the surface nor desorb thermally. In comparison, U is weakly bound to the surface, is
thus highly mobile and can easily desorb. We consider moreover that particles U are
strongly attracting each other so that a first-order phase transition similar to what
has been discussed before is expected to take place. Attractive interactions between
particles U and V are also considered, while for the sake of simplicity interactions
between two particles V are from now on neglected.

Starting from the master equation associated with this system, one can derive
the fluctuating mesoscopic evolution equations for the coverages cU and cV in a
manner very similar to what has been done for the case of a single adsorbate [see
Ref. 17) for details]:

∂cU

∂t
= kU

a pU (1 − cU ) − kU
d,0 exp [β W (r, t)] cU − kr cU cV + D∇2cU

+β D∇ [cU (1 − cU )∇W (r, t)] + ξU (r, t), (2.15)
∂cV

∂t
= kv

a pV (1 − cV ) − kr cU cV + ξV (r, t), (2.16)

where we have once more omitted, for clarity, the explicit temporal and spatial
dependence for the variables. Note that, because of lateral interactions, the diffusion
of species U is nonlinear. In these equations, k

U(V )
a and pU(V ) are, respectively, the
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Nanoscale Pattern Formation 127

sticking coefficient and the partial pressure of the particle U (V ); D = ΓU a2 is the
diffusion coefficient of U (ΓU is the hopping probability, a the lattice constant and
Metropolis diffusion is assumed) and kr the reaction constant. Like in the previous
case, the desorption rate for U depends on the local interaction potential

W (r, t) = −
∫

wUU (r′ − r) cU (r′)dr′ −
∫

wUV (r′ − r) cV (r′)dr′

which is now the sum of all the energetic contributions arising from the pairwise
attractive interactions between particles U and between particles U and V . We
assume for simplicity that both binary interactions wUU and wUV have Gaussian
profiles similar to Eq. (2.2) with the same characteristic length r0 but with differ-
ent strengths w0

UU and w0
UV . The random terms ξU (r, t) and ξV (r, t) reflect the

intrinsically stochastic nature of the adsorption, desorption, reaction and diffusion
processes. They can be expressed as

ξU (r, t) =
(

kU
a pU (1 − cU )

Z

) 1
2

fa(r, t) +

(
kU

d,0 eβ W (r,t) cU

Z

) 1
2

fd(r, t)

+
(

kr cU cV

Z

) 1
2

fr(r, t) +
1

Z1/2
∇
{

(2D cU (1 − cU ))1/2
}

f(r, t),

ξV (r, t) =
(

kV
a pV (1 − cV )

Z

) 1
2

ga(r, t) +
(

kr cU cV

Z

) 1
2

fr(r, t),

with Z having the same signification as before.
While this model does not correspond to a realistic real-world system, it has

the advantage to represent a simple, generic and essentially irreversible example of
surface reaction. In this view it is expected to give rise to generic non-equilibrium
behaviors, which can be quantified in the deterministic limit. In order to avoid
cumbersome notations, we will use from now on the dimensionless parameters α =
kU

a pU/kU
d,0, κ = kr/kU

a pU , γ = kV
a pV /kr, ε = β w0

UU , ε′ = β w0
UV and ρ = r0/Lr,

Lr = (D/kr)1/2 being the reactive diffusion length of particles U . Neglecting thus
fluctuations, the homogeneous steady state coverages u0 and v0 are found as the
solutions of

1 − cU − α−1 cU exp
[−ε cU − ε′cV (cU )

]− κcU cV (cU ) = 0

with cV (cU ) = γ/(γ + cU ). This equation can admit one or three real positive
solutions; in the latter case, there is coexistence between a dilute and a dense phase.
The stability of these states can be tested by adding inhomogeneous perturbations of
the form δU(V ) exp(ik r + ωk t). Keeping only the linear terms, the problem reduces
to finding the eigenvalues ω+

k and ω−
k
∗) of the corresponding linearization matrix.

Any uniform stationary state is stable as long as all the perturbation modes are
decaying with time. As soon as Re(ω+

k ) = d/dk2 Re(ω+
k ) = 0 for a given critical

∗) The eigenvalue ω+
k being the one with the largest real part.
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wavenumber kc, an instability characterized by the corresponding wavenumber will
begin to grow. In this example, two distinct situations can then be encountered.

First, ωk can be complex at the instability point that can thus be assimilated to
a Hopf bifurcation. The wavenumber of the first unstable mode is non-zero, so that
the Hopf bifurcation is accompanied by a symmetry breaking in space, i.e. traveling
or standing waves should develop. An example of such waves is depicted in Fig. 2.
The wavelength of these structures can be easily estimated at the boundaries of the
unstable region (where u0 = uD = (1 ±√1 − 4/ε)/2) if the interaction radius is
much smaller than the characteristic reaction length. Indeed, in such conditions
ρ0 = r0/Lr � 1 and

λw ≈ (2π2
)1/2

[
γ

(1 − uD) (γ + uD)

]−1/4 √
r0 Lr. (2.17)

Since this characteristic length is proportional to
√

r0 Lr, it would generally lie in
the submicrometer range for surface chemical reactions.

Second, ω+
k can be real at the instability point. This corresponds to a Turing-like

bifurcation and leads to the formation of stationary structures. For small interaction
radius, the wavelength of this first unstable mode reads

λT =
(
2π2

)1/2
[

γ

(1 − uD) (γ + uD)
− γ uD

(γ + uD)2

]−1/4 √
r0 Lr (2.18)

Fig. 2. Travelling patterns obtained by numerical integration of Eqs. (2.15) and (2.16) in 2 dimen-

sions in the absence of noise: the gray scale corresponds to the coverage of U , with darker

areas being higher concentrations. The frames (a), (b) and (c) correspond to times t = 18/kU
d,0,

t = 45/kU
d,0 and t = 72/kU

d,0 respectively; the figure (d) is the spatiotemporal plot along the

vertical dashed line for 18/kU
d,0 < t < 85/kU

d,0. The total linear size is 4.2Ldiff , ε = 5, ε′ = 3,

α = 0.5 γ = 3 and r0 = 0.07Ldiff .
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and these structures are expected, as before, to belong to the submicrometric domain.
It should be noted however that even in the case of a codimension-2 bifurcation,
the wavelength of the stationary and the travelling structures remain different: the
characteristic size of the stationary microstructures is always larger than that for the
travelling waves.

Varying the free parameters, the model, despite its apparent simplicity, proposes
a large variety of complex spatiotemporal phenomena as each state can become un-
stable through one of the aforementioned bifurcations. In the limit where ρ → 0,
the end points of the wave bifurcation are approximately given by
ε′c,w = ε κ

[
(γ + uD)3 + γ uD

]
/(γ k2

w) while for the Turing bifurcation we have
ε′c,T = ε κ

[
(γ + uD)3 + γ uD

]
/(γ k2

T ). Since ε′c,w < ε′c,T , the two types of insta-
bilities can be found separately or even coexist (see Fig. 3). In the latter case, the
choice of initial conditions determines whether stationary or travelling patterns are
formed. The selection and the stability of the different patterns in the vicinity of
the bifurcations can be determined by a weakly nonlinear analysis, but these topics
will not be discussed here.

We rather focus now on the effects of fluctuations, as the patterns that are
formed can be of the order of the interaction radius. While we observe, by numer-
ical simulations of Eqs. (2.15) and (2.16), that the formation of Turing structures
is usually robust with respect to fluctuations, the effects of noise on the travelling
waves are not negligible. In 1 dimension, we observe for example a never ceasing
spontaneous nucleation of travelling waves leading to a rather chaotic behavior and

Fig. 3. Bifurcation diagram in the parameter plane (α, ε′). The other parameters are ε = 4.2,

γ = 3, κ = 1 and r0 = 0.025(D/kU
d,0)

1/2. The solid line corresponds to the wave bifurcation

and the dashed one to the Turing instability. The uniform phase is unstable in the region

delimited by the left-most and the right-most of these lines. Dots represent the end points

of the bifurcations. The insets display the dispersion relations at the points marked by the

arrows; (a)–(d) correspond to α = 0.73 and ε′ = 0.368, α = 0.78 and ε′ = 0.315, α = 0.667

and ε′ = 0.415, and α = 0.679 and ε′ = 0.346, respectively. The bold solid lines in the insets

correspond to the real part of the eigenvalues ωk, the dashed lines to their imaginary parts.
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130 Y. De Decker and A. S. Mikhailov

Fig. 4. Travelling wave fragments observed by numerical integration of Eqs. (2.15) and (2.16) in-

cluding the noise terms with Z = 1.07 105L−2
diff . All the parameters are identical to those of

Fig. 2, except for α = 0.08, L = 1.7Ldiff and r0 = 0.028Ldiff . Snapshots (a)–(c) are separated

by time intervals ∆t = 0.89/kU
d,0 while the spatiotemporal plot is the time evolution along the

vertical dashed line for t = 44.6/kU
d,0.

non-harmonic profiles as the different zones begin to interact. In 2d, the individual
travelling stripes observed in the deterministic limit are broken in many short trav-
elling fragments (see Fig. 4). Merging and splitting of these fragments are observed
as they often collide but, remarkably, despite the fluctuation in their shape, they
move with an almost constant velocity.

While the properties of the two models that have been presented here are in-
teresting, it would be desirable to study the dynamics of systems which are known
experimentally to lead to nanometric structures. In this view, we will now consider
the case of surface reactions involving co-adsorbed nonreactive metallic species.

§3. Surface reactions with co-adsorbed nonreactive species

In heterogeneous catalysis, nonreactive species are often found on the surface
in addition to the chemicals involved in the reactions. Among these, promoters (or
poisons) are of particular interest: they are usually added in small quantities to
catalytic systems in order to increase (decrease) the rate of a given reaction.22) In
the case of heterogeneous catalysis, these particles are believed to be metallic ions
irreversibly adsorbed on the surface of the solids where they can rapidly diffuse and
locally modify the rate and selectivity of given reactive events. Different microscopic
mechanisms, such as variations in the density of metal states at the Fermi level and
electrostatic interactions between the promoter and the adsorbates, can be invoked
to explain this influence.22),29)

Promoted surface reactions clearly belong to the class of reactive weakly con-
densed systems involving molecules with lateral energetic interactions, which can
lead, as we have seen before, to the emergence of complex phenomena. However,
and despite their frequent use in real-world catalysis, the role of such promoting (poi-
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soning) species in the formation of spatiotemporal patterns has been only recently
studied experimentally. It was shown not long ago that during water formation by
the catalytic H2 + O2 reaction on Rh(110) in the presence of co-adsorbed metal(s),
the adsorbates are not always distributed homogeneously on the surface but can
spontaneously redistribute. If the co-adsorbed metal is potassium, periodic patterns
formed by dense islands comprising K+O are formed20),23)–25) while in other cases
(gold, palladium) the oxygen and the co-adsorbed metal still form regular structures
but separate under reaction conditions.30) In this section, we propose to study an
abstract model representative of this class of systems in order to understand the
basic mechanism at the origin of such phenomena.20),21) The typical wavelength of
the periodic patterns being of the order of a few to tens of micrometers, we will
focus our attention on the deterministic limit of the mesoscopic equations. The
implementation of fluctuations will be the object of a future work.

3.1. The model

In the reaction scheme considered here, particles A and B adsorb from the gas
phase onto the catalytic surface, diffuse on it and react to form a product P that
desorbs immediately:

A(g) + ∗A → A(ads),

B(g) + ∗B → B(ads),

A(ads) + B(ads) → ∗A + ∗B + P(g). (3.1)

A(ads) and B(ads) denote adsorbed molecules, ∗A and ∗B represent vacant surface
sites for the molecules A and B respectively,∗) and P is the product. The reaction
itself is maintained far from thermal equilibrium so that the lifetime of P on the
surface and loss of reactants through desorption can be neglected. We consider in
addition to this annihilation process the presence of an adsorbate C that does not
adsorb, desorb nor react but diffuses rapidly on the surface. Being representative of
a promoter (poison), we assume that this species modifies locally the reaction rate
constant as ν(R) = ν0 exp [ρnC(R)/kBT ] , where ν0 is the reaction rate constant
in the absence of promoter, nC(r) is the local occupation number of C and the
coefficient ρ specifies how strongly the reaction is affected by the promoter. Note
that this expression amounts to assuming that C can increase (ρ < 0) or decrease
(ρ > 0) the activation energy for the reaction, being respectively a poison and a
promoter. For simplicity however, the species C will generally be called promoter,
unless the case of the negative ρ is explicitly considered.

The promoters usually have strong lateral energetic interactions with at least one
of the surface reactants. Considering in this example only interactions between A
and C, two potentials can be defined U(R) = −∑R′ uAC(R′ −R)nC(R′), V (R) =
−∑R′ uAC(R′−R)nA(R′) with uAC being a Gaussian pairwise interaction potential
similar to Eq. (2.2) with intensity u0 and interaction length r0. Lateral interactions
between similar particles, the reactants A and B and between the promoter C and

∗) It is assumed for simplicity that the adsorption sites for the components A and B are different

on the surface.
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132 Y. De Decker and A. S. Mikhailov

the reactant B are absent for the sake of simplicity. Like before, Langmuir adsorption
is considered and the hopping probability of A and C is assumed to depend on the
potentials U and V respectively via the Metropolis rule.

In view of the wavelength of patterns found in experiments, we will focus our
attention on the deterministic limit of the evolution equations. Taking into account
the aforementioned hypotheses, the evolution laws for the coverages (which will be
denoted as θA,B,C) can be cast into the form

.
θA = PA (1 − θA) − ν0 ew θC θAθB + DA∇2 θA

+β DA ∇ [θA (1 − θA)∇U(r)] , (3.2)
.
θB = PB (1 − θB) − ν0 ew θC θAθB + DB ∇2 θB, (3.3)
.
θC = DC∇2 θC + β DC ∇ [θC (1 − θC)∇V (r)] , (3.4)

where U(r) = − ∫ dr0wAC(r0 − r) θC(r0), V (r) = − ∫ dr0wAC(r0 − r) θA(r0), PA =
kA

a pA, PB = kB
a pB and w = ρ/kB T . The diffusion coefficients are DA = ΓA a2 and

DC = ΓC a2 with ΓA, ΓC and a being the hopping probabilities of A, C and the
lattice constant respectively.

These evolution equations have a uniform stationary state where all coverages
are constant: θA(r) ≡ a, θB(r) ≡ b, and θC(r) ≡ c. The coverage c in the uniform
state is determined by the initial conditions and can be considered as a parameter
of the system. The uniform coverages a and b of both reactants are determined by
a balance between adsorption and reaction:

a =
PA

PA + ν0 ew c b
,

b = −PA PB + ν0 ew c (PA − PB)
2 ν0 ew c PB

±
[
(PA PB + ν0 ew c (PA − PB))2 + 4 ν0 ew c PA P 2

B

] 1
2

2 ν0 ew c PB
,

where only one positive solution exists. We will now consider analytically the spatial
instability of this uniform state with respect to small spatiotemporal perturbations.
Pattern formation taking into account the nonlinear contributions to the dynamics
will be studied numerically in the following section.

3.2. Linear stability analysis

Because of the coupling between energetic interactions, diffusion of adsorbed
species and chemical reaction, the uniform stationary state of the system can become
unstable with respect to the growth of nonuniform perturbations. To investigate the
stability of the uniform state (a, b, c), we introduce small variations in the coverages
of the form θX(r, t) = x + δX exp(ikr + ωkt) for each species. Keeping only the
leading terms (of the order of δA, δB, δC), the growth rates of the various spatial
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modes are given by the eigenvalues of the linearization matrix L(k) =


−PA − ν0 b ew c −ν0 a ew c ε DA a (1 − a)k2 e(−r2
0 k2/4)

−DA k2

−ν0 a bw ew c

−ν0 b ew c −PB − ν0 a ew c −ν0 a bw ew c

−DB k2

ε DC c (1 − c) k2e(−r2
0 k2/4) 0 −DC k2




,

(3.5)
where ε = u0/kB T . Numerical investigations of the considered model show that it
does not exhibit oscillations and therefore, when an instability of the uniform state
occurs, it corresponds to a Turing-like bifurcation characterized by an unstable mode
with a purely real ωk. The instability boundary is determined by the condition that
ωkc = (dωk/dk)kC

= 0, or equivalently that

Det
(L(k2

c )
)

=
(

d

d k2
Det

(L(k2)
))

k2
c

= 0. (3.6)

These requirements lead to the following system of equations (we assume kc 
= 0):

DA DB(1 − δ e−r2
0 k2

c/2)k4
c +

[
σ − DA (PB + ν0 ew c a) δe−r2

0 k2
c/2

+DB φ e−r2
0 k2

c/4
]
k2

c + µ + PB φ e−r2
0 k2

c/4 = 0, (3.7)[
r2
0

2
DA DB δ e−r2

0 k2
c/2

]
k6

c +
[
r2
0

2
DA (PB + ν0 ew c a) δ e−r2

0 k2
c/2

+3DA DB (1 − δ e−r2
0 k2

c/2) −r2
0

4
DB φ e−r2

0 k2
c/4

]
k4

c

+
[
2σ − 2DA (PB + ν0 ew c a) δe−r2

0 k2
c/2 + 2DB φ e−r2

0 k2
c/4

−r2
0

4
PB φ e−r2

0 k2
c/4

]
k2

c + µ + PB φ e−r2
0 k2

c/4 = 0. (3.8)

Here, new notations have been introduced:

δ = ε2 a (1 − a) c (1 − c),
µ = PA ν0 ew c a + PB ν0 ew c b + PA PB,

σ = PA DB + ν0 ew c bDB + PB DA + ν0 ew c aDA,

φ = ε a bw ew c c (1 − c). (3.9)

To solve Eqs. (3.7) and (3.8), we first take into account that the interaction
radius r0 is a natural small parameter for the systems under consideration, so that
exp(−r2

0 k2
c/2) ≈ exp(−r2

0 k2
c/4) ≈ 1. Since both expressions are then polynomials,
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it suffices then to express δ from the first of them

δ =
DA DB k4

c + (σ + DB φ) k2
c + µ + PB φ

DA DB k4
c + DA (PB + ν0 ew c a) k2

c

(3.10)

and substitute this into Eq. (3.8). An approximate solution of the quartic equation
for k2

c derived in this way can be found by taking into account once again that the
interaction radius r0 is usually very small. Keeping only the leading terms, this
equation is easily solved and the wave number of the critical mode is determined:

k2
c ≈ 1

r0

[
2 (PA + ν0 ew c b + ε a b ν0 w ew c c (1 − c))

DA

]1/2

(3.11)

corresponding to a critical wavelength

λc ≈ 2π
√

r0 Lkin (3.12)

with the “kinetic length” being

Lkin =

√
DA

2 (PA + ν0 ew c b + ε a b ν0 w ew c c (1 − c))
. (3.13)

Analyzing these results, we first notice that in accordance with the simplest models
in the previous section, the wavelength of patterns emerging at the criticality lies
somewhere between the interaction radius r0 and some length scale depending on the
kinetic parameters. This suggests that the periodicity of such stationary patterns de-
pends on the specificities of the considered system (through the interaction radius,
the strength of interaction or diffusion coefficients) but can be directly controlled
through external parameters such as the pressures of reactants or the temperature,
even if the dependence of λc in these quantities is already here quite complex. Note
that the wave number of the critical mode (and thus the critical wavelength) does
not depend on the diffusion constants of the species B and C. While the indepen-
dence with respect to DB is expected to remain valid only for small r0 and near the
criticality, this is not the case for the promoter for which this result is general and
is not sensitive to a particular approximation.

Substituting the critical wave number into Eq. (3.10), using the definition of δ
and keeping again only the leading term in the interaction radius r0, we find that
the instability boundary is approximately determined by the condition

ε2
c ≈ 1

a (1 − a) c (1 − c)
. (3.14)

This instability boundary is effectively the same as the boundary for spinodal de-
composition in the mixture of two species A and C with surface coverages a and c
in absence of reaction. Since only the square of ε enters into the condition (3.14)
we expect the emergence of an instability both for attraction (ε > 0) and repulsion
(ε < 0) between species A and C. This condition leads, as we will now show, to the
formation of patterns qualitatively similar to those observed in experiments.
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3.3. Numerical simulations

Numerical simulations of Eqs. (3.2)–(3.4) have been performed in order to verify
the predictions of the linear stability analysis and to study the nonlinear behavior of
the system. Because of the rapid exponential decrease of the interaction potential the
interaction function (2.2) was truncated at distances exceeding 2 r0/∆x to speed up
simulations. Periodic boundary conditions were used and a gray scale is considered
for the coverages, where higher concentrations appear brighter. As initial conditions,
the unstable stationary uniform state of the system θA = a, θB = b and θC = c with
small local random perturbations of about one percent in magnitude was always
chosen.

Numerical simulations for the simpler case w = 0, where the coadsorbed species
C does not modify the reaction rate constant, will be first presented. Figure 5 shows
an example of an evolution starting with a randomly performed uniform state. In this
space-time diagram, time runs along the horizontal axis and the spatial coordinate
of the simulated one-dimensional system is varied along the vertical axis. We see
that the uniform state is indeed unstable and a stationary periodic pattern develops,
as predicted by the linear stability analysis. Figure 6(a) displays profiles of all three
coverages in such a pattern at the steady state. Since the parameters are close to
the instability boundary, the amplitudes of spatial variation are relatively small here
and the pattern is approximately harmonical. The local coverage of the reactant A
follows the variation of the surface concentration of species C because of attractive
interactions while the coverage of reactant B exhibits weak antiphase variation (it
is rapidly consumed in A-rich regions).

In Fig. 6(b), the interaction strength is increased to ε = 20, as compared with
ε = 5 in Fig. 6(a). The concentration profiles are in this case strongly unharmonical
and a periodic pattern of domains with sharp interfaces is clearly observed. Inside
each domain, the coverage of species C reaches its maximum possible level of unity
and the surface concentration of the reactant A is strongly increased. Outside of
the domains, almost no species C is found and the coverage of A is very small.
This situation is strongly similar to what is observed in the experiments in the
case of attractive interactions between the promoter and oxygen (in the case of co-
adsorbed K). Nonlinear pattern formation has also been observed numerically in
two-dimensional systems, but will not be illustrated here. Starting from a randomly
perturbed uniform state, the system develops a spatial pattern representing an array
of dots or elongated islands. These regions are characterized by local increases of
the coverages of species A and C. Note that the wavelength of the pattern seen
in numerical simulations and the numerical values of critical parameters (in 1 and
2 dimensions) agree with the approximate analytical predictions (3.11) and (3.14)
yielded by the linear stability analysis within a few percent even for relatively large
values of r0 ≈ 0.5.

As predicted by the analysis, the instability of the uniform state is also found
in numerical simulations in the case of repulsive interactions (ε < 0). Figures 7(a)
and (b) display spatial profiles of all three species in the asymptotic stationary
periodic patterns for relatively weak and strong repulsive interactions. The main
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Fig. 5. Space-time diagram showing the development of a periodic spatial pattern in the coverage

of species C. Time runs along the horizontal axis, spatial coordinate is plotted along the vertical

axis. The size of the one-dimensional system is L = 20 and the displayed time interval is T = 50.

The model parameters are PA = PB = DA = DB = DC = 1, c = 0.5, ε = 5, r0 = 0.2, ν0 = 1

and w = 0.
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Fig. 6. Stationary distribution profiles for species A (bold curve), B (dashed line) and C (dots) in

a one-dimensional system in the case of attractive interactions with (a) ε = 5 and (b) ε = 20.

Other parameters are the same as in Fig. 5. Only part of the system with total size L = 20 is

shown.

difference with Fig. 6 for attractive interactions is that now species A and C tend
to avoid each other. The spatial segregation is almost complete in the case of strong
repulsion [Fig. 7(b)] which is closed to what is observed experimentally in the case
of co-adsorbed Au and Pd.

All the results presented so far were obtained by assuming that C has no direct
effect of promotion or poisoning. When w 
= 0, this species becomes effectively
a promoter or a poison, which can affect strongly the pattern formation. Figure
8(a) shows spatial distributions of reactants and promoter in the periodic stationary
pattern in the case of attractive interactions. The increased reaction rate inside
mixed promoter-reactant domains leads to a decrease in the amplitude of the periodic
pattern because of fast consumption of A. In contrast to this, the amplitude is
increased if species C is a poison [Fig. 8(b)]. If poisoning is sufficiently strong, the
coverage of the second reactant B becomes also increased inside the domains, as can
already be seen in Fig. 8(b). If A and C repel each other, similar effects are observed:
in the case of promotion, the reaction is most efficient in the domains filled with C,
thus leading to dense domains with stiff boundaries. In the case of poisoning, the
reaction is very weak inside the domains filled with C, which leads to a small increase
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Fig. 7. Stationary distribution profiles for species A (bold curve), B (dashed line) and C (dots) in

a one-dimensional system in the case of repulsive interactions with (a) ε = −5 and (b) ε = −20.

Other parameters are the same as in Fig. 5.
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Fig. 8. Stationary distribution profiles for species A (bold curve), B (dashed line) and C (dots) in

a one-dimensional system (a) with a promoter (w = 2) and (b) with a poison (w = −2). Other

parameters are the same as in Fig. 5.

of the coverage of A in these areas and thus to a decreased amplitude of the coverage
variation.

In each case, the compartmentalization of the adsorbed species can signifi-
cantly influence the global reactivity of the surface. To characterize this effect,
we have numerically determined the actual reaction rate R per unit surface area un-
der compartmentalization conditions and compared it with the computed reaction
rate R0 per unit area, assuming uniform distributions of all species. The quantity
∆R = (R − R0)/R0 was then used to characterize the influence of compartmental-
ization. Even when w = 0, so that species C is neither a promoter nor a poison,
the formation of a periodic pattern has some effect on the reactivity. However, this
effect is weak under such conditions and only a decrease of ∆R by a few percents
can be observed. The effect becomes much more pronounced when C is a promoter.
Figure 9 shows the dependence of ∆R on the strength ε of attractive interactions in
this situation. We see that the reactivity is substantially enhanced as ε grows and
compartmentalization occurs. The maximum observed increase of the surface reac-
tivity is about 25%. This increase can be attributed to the spontaneous formation
of dense A+C clusters acting as microreactors where the reaction rate is especially
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Fig. 9. Growth of the relative global reaction rate under increase of the strength of attractive

interactions for promoter with w = 2. Other parameter and system size are the same as in Fig.

5.

high. When C is a poison, comparable effects are observed. The global reaction
rate is even lower than predicted in the homogeneous limit if A and C attract each
other, since most A particles are then captured in dots with a high level of poison.
If the interactions are repulsive, the global reaction rate is always smaller than its
value without poisoning but can nevertheless become larger than predicted by the
homogeneous evolution laws because adsorbate A is then principally located inside
the domains which are poor in the poisoning species.

In the simulations, which we have so far shown, diffusion constants of all species
were chosen equal (DA = DB = DC = 1). Despite this, periodic patterns of surface
concentrations have been found. This clearly indicates that such patterns are dif-
ferent in their origin from the Turing patterns, where a sufficiently strong difference
of diffusion constants is always required. We have also performed some simulations
where the diffusion constants were varied. In accordance with the predictions of the
linear stability analysis, it was observed that changes in the promoter diffusion con-
stant DC do not affect the final stationary pattern and only influence the transient
process, which becomes longer when diffusion of species C is slow. We have also
checked that spontaneous pattern formation is possible even at small promoter (or
poison) concentrations c, if energetic interactions are strong enough, which is close to
the experimental situation. In such cases, very dense domains with stiff boundaries
are formed.

§4. Metropolis vs Arrhenius diffusion

From the different reaction schemes investigated in the previous sections, we can
conclude that the emergence of complex spatial patterns is highly sensitive to the
nonlinear diffusion of particles induced by lateral interactions. For the sake of illus-
tration, a very simple mechanism has been here considered (the Metropolis-Kawasaki
model) for which the probability of hopping between nearest neighbors depends only
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on the energetic level of the particle in its initial and final stage. However, when en-
larging the present theory to model realistic situations, one should take into account
that there are signs that the mechanism of diffusion of adsorbates should be seen
more as an activated process. In this case, the local hopping probability of adsor-
bates should follow an Arrhenius-like law of the type Γ (R) ∼ exp (−β ∆U(R)) where
∆U(R) is the energy difference between the activated state and the initial state of
the diffusing particle. It is legitimate to wonder how the mesoscopic equations for
the coverages read in the case of Arrhenius diffusion, and how this could affect the
global trends highlighted by the previous studies. To illustrate such modifications,
we will consider explicitly the problem of promoted surface reactions studied in the
previous section.

The differences between Metropolis and Arrhenius diffusion mechanisms have
been recently addressed by Vlachos et al.27),28) Starting from the master equa-
tion, they derived an evolution law for the local occupation probability from which a
mesoscopic diffusion equation can be extracted in the limit of long-range interactions
between uncorrelated particles. Their principal conclusion is that while a Metropo-
lis algorithm gives birth to a diffusion coefficient which is essentially constant, an
Arrhenius hopping results in D(r) = D0 eβ U(r) where U(r) is the interaction poten-
tial to which the diffusing particle is subjected. For the monomer-monomer model
of promoted reaction considered in §3, the evolution equations (3.2)–(3.4) for the
coverages become then

.
θA = PA (1 − θA) − ν0 ew θC θAθB + D0

A ∇
[
eβ U(r)∇ θA

]
+β D0

A ∇
[
eβ U(r) θA (1 − θA)∇U(r)

]
, (4.1)

.
θB = PB (1 − θB) − ν0 ew θC θAθB + DB ∇2θB , (4.2)
.
θC = D0

C ∇
[
eβ V (r) ∇θC

]
+ β D0

C ∇
[
eβ V (r) θC (1 − θC)∇V (r)

]
, (4.3)

where all the parameters have the same meaning as before.
Obviously, the linear stability of the (unchanged) homogeneous steady state

(a, b, c) with respect to spatiotemporal perturbations is modified due to the depen-
dence of the diffusion coefficients DA, DC in the local coverages. In fact, perform-
ing the same analysis as was done in §3.2, one readily finds that the linearization
matrix has exactly the same form but with DA and DC replaced respectively by
D0

A exp (−u0 c) and D0
C exp (−u0 a). This should be a general result as far as lin-

ear stability analysis is concerned since all the other contributions related to the
coverage dependence of the diffusion coefficients result in nonlinear terms. As a
consequence, a Turing bifurcation is still found for the model of promoted reaction

when ε2
c ≈ 1/(a (1 − a) c (1 − c)), with a critical wavelength λc ≈ 2π

√
r0 LArr

kin but
where the kinetic diffusion length is now

LArr
kin =

√
DA e−u0 c

2 (PA + ν0 ew c b + ε a b ν0 w ew c c (1 − c))
. (4.4)

Following this analysis, we can conclude that the localization of the bifurcation point
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is not modified by the different diffusion mechanism (at least when r0 � 1) but
that, in opposition to the case of Metropolis diffusion, the periodicity of the patterns
that are formed depends strongly (exponentially) in the interaction potential. More
specifically, when w = 0, the critical wavelength is insensitive to the sign of the
interaction strength u0 for Metropolis diffusion, while for an Arrhenius dependence
patterns formed in the case of repulsive interactions are larger than those formed
when attraction is present.

All these trends were confirmed by numerical integrations of Eqs. (4.1)–(4.3). In
Figs. 10(a) and (b) for example, patterns are shown for the specific case w = 0 for
Metropolis and Arrhenius dynamics with attractive and repulsive interactions respec-
tively. One can observe that the wavelength in Arrhenius diffusion is indeed shorter
than the one with Metropolis diffusion when attractions are considered [Fig. 10(a)]
while the situation is reversed when considering repulsion [Fig. 10(b)]. The simu-
lations can also help to illustrate an interesting difference between the two types
of diffusion mechanisms far from the bifurcation point. Since the coverages vary
periodically in space following the Turing bifurcation, we expect the mobility of
the adsorbates to do so. For Metropolis diffusion, the mobility is proportional to
D θ (1−θ) while in the case of Arrhenius diffusion, it scales as D0 θ (1−θ) exp(β U).
The ratio between these coefficients is so that in the case of attractive (repulsive)
interactions the mobility of a particle following Arrhenius diffusion is lower (greater)
than one undergoing a Metropolis rule. As a consequence, far from the bifurcation
point, where the interaction potentials can take high values, the effective mobility of
particles in the Arrhenius regime can become very low (almost zero) in the regions
corresponding to dense clusters. This opens the question whether a mesoscopic ap-
proach based on the definition of well-mixed boxes on the surface is still valid in this
case.

Fig. 10. Stationary coverage for the promoter C in the of Arrhenius diffusion (plain lines) and

Metropolis diffusion (dashed curves). For the two figures, PA = 0.2, PB = 0.1, c = 0.3, r0 = 0.5,

ν0 = 1 and w = 0. In (a), DA = D0
A = DB = D0

B = DC = D0
C = 10 and ε = 8, while in (b),

DA = D0
A = DB = D0

B = DC = D0
C = 1 and ε = −8. Only a part of the total system (whose

size is 50) is shown here.
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§5. Discussion

Pattern formation and complex phenomena are more the rule than the excep-
tion in surface chemical reactions. The early experimental observations revealed
spatiotemporal dynamics at the order of tens or thousands of micrometers, in other
words processes that take place on macroscopic scales with respect to the lattice con-
stant(s) or the diffusion length(s). Due to the emergence of more and more efficient
experimental techniques, the submicroscopic details of these systems are however
now accessible and specific, complex phenomena have already been identified at this
level.

From a theoretical point of view, describing the dynamics at such scales neces-
sitates in general approaches which are more sophisticated than the usual reaction-
diffusion equations. The approach used here consists in starting from the master
equation describing the evolution of the probability of surface configurations, which
is based in the sole assumption that the elementary steps are Markovian processes,
and from which a stochastic evolution equation can be for the variables of composi-
tion, being in this approach fluctuating quantities. This level of description allows
for the inclusion of spontaneous internal fluctuations but also for a clear connection
between the atomistic mechanisms of elementary events in the presence of energetic
interactions and the corresponding macroscopic limit. The validity of this approach
is a priori limited by the existence of sufficiently large domains into which the mixing
properties are sufficient to consider constant coverages. This supposes that the in-
teractions extend over distances that are large compared with the lattice constants,
which could not be the case in several surface systems. However, it provides an
analytical understanding of the system and recent results suggest moreover that the
domain of validity of such a mesoscopic approach is larger than expected in first
view.

On the basis of this approach, different situations have been considered which
are representative of elementary surface processes involving strongly interacting par-
ticles. In the case of a single interacting adsorbate, phase separation is observed
under appropriate conditions and leads to the coexistence of a dense and a dilute
state for the coverage. Interestingly, the width and the profile of phases boundaries
can be related directly to the parameters of the system: in particular, the width of
standing interfaces depends only on the interaction length and is thus much shorter
than the diffusion length of the adsorbate. The process of nucleation and growth
leading to the coexistence of the two phases is dictated by fluctuations, whose statis-
tical properties can be inferred directly from the parameters of the system thanks to
the mesoscopic approach. For more intricate schemes, including chemical reactions,
nanometric patterns can be formed under reaction conditions thanks to the com-
bination of short-ranged energetic interactions, reactions and molecular diffusion.
Using a simple annihilation scheme between two reactants, stationary and travelling
structures are found whose size lies between the interaction radius and the (reactive)
diffusion length, in other words in the domain of the nanometer. When such small
structures appear, the role of fluctuations can of course become important; it is par-
ticularly the case for travelling waves which decompose into merging and splitting
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fragments which travel nevertheless with a constant velocity.
Experimentally, promoted (or poisoned) surface reactions provide a large class

of important catalytic processes involving particles with strong lateral interactions.
Using a simple model, we have shown that in general promoting or poisoning species
can destabilize the uniform state of surface reactions and lead to the development
of a stationary periodic pattern. The observed structures represent arrays of dense
clusters comprising the promoter (or poison) and/or one of the reactants. If interac-
tions are strong, the surface is compartmentalized into self-organized microreactors,
which can affect dramatically the surface reactivity. Finally, we have also discussed
how the pattern formation detected in the previous sections could be affected by the
microscopic details of the diffusion mechanism. More specifically, it was shown that
an activated diffusion (Arrhenius mechanism) can result in a coverage-dependent
diffusion coefficient modifying thus the wavelength of emerging patterns. Depending
on the intensity and the sign of pairwise interactions, the characteristic wavelength
of the patterns can become in this case larger (if there is repulsion) or shorter (in
the case of attraction) than what is predicted assuming a Metropolis-Kawasaki rule
for hopping events.

As a conclusion, the mesoscopic approach used here allows one to identify com-
plex phenomena arising because of the interplay between energetic interactions, none-
equilibrium reactions and nonlinear diffusion and to assess the role of fluctuations
in these processes. These results open the door to the control of self-organization in
the case of surface reactions. Catalytic reactions on microstructured surfaces, pre-
fabricated using microlithography, have already been experimentally studied. The
principal result of our theoretical investigation is that the surface can also undergo
spontaneous microstructuring through spatial redistribution of adsorbed atoms. In
contrast to prefabricated patterns, such microstructures are however flexible: they
disappear when the reaction is switched off and their properties can vary, adjust-
ing to the reaction conditions. Taking into account that compartmentalization has
a strong effect on the reaction rate, we note that non-equilibrium self-organization
phenomena open a way to the construction of adaptable catalysts. Depending on
the reaction parameters and external controls, such systems would be able to change
their structure through redistribution of adsorbed metal atoms. Potentially, both
reactivity and selectivity of a catalyst can thus be affected. One could in addition
imagine to prepare such structured surface under reaction conditions at high temper-
atures and “freeze” the system by cooling rapidly and in this way construct surfaces
with a well-defined structure. The wavelength of such patterns, being controlled by
non-equilibrium reaction constraints, could extend from a few nanometers to tens of
micrometers.

In the future, theoretical investigations should be extended to realistic models
of various chemical reactions, especially for the promising case of promoted systems.
Moreover, kinetic Monte Carlo simulations of such systems could also be performed,
in order to clarify the limit of validity of the present mesoscopic description.
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